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Modeling Helicopter Rotor Blade Flapping Motion Considering Nonlinear
Aerodynamics

Jyoti Ranjan Majhi, Ranjan Ganguli 1

Abstract: The flapping equation for a rotating
rigid helicopter blade is typically derived by con-
sidering 1) small flap angle, 2) small induced an-
gle of attack and 3) linear aerodynamics. How-
ever, the use of nonlinear aerodynamics can make
the assumptions of small angles suspect. A gen-
eral equation describing helicopter blade flap dy-
namics for large flap angle and large induced in-
flow angle of attack is derived in this paper with
nonlinear aerodynamics . Numerical simulations
are performed by solving the nonlinear flapping
ordinary differential equation for steady state con-
ditions and the validity of the small angle ap-
proximations are examined. It is shown that the
small flapping assumption, and to a lesser extent,
the small induced angle of attack assumption can
lead to inaccurate predictions of the blade flap re-
sponse in certain flight conditions for some rotors
when nonlinear aerodynamics is considered.

Keyword: Helicopter, Flapping, Aerodynam-
ics, Aeroelasticity, Nonlinear System, Fluid-
Structure Interaction

1 Introduction

Helicopter blades undergo flap, lag and twist mo-
tions. The out-of-plane motion of the blade is
called flap and the in-plane motion is called lag.
The simplest model of a rotating blade involves
a rigid blade hinged at the root and undergoing
flapping motion due to the effect of centrifugal,
inertia and aerodynamic forces, as shown in Fig.1.
Accurate solution of the flapping equation pro-
vides basic insights into helicopter rotor dynam-
ics.

The flapping equation is derived in terms of co-
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Figure 1: Forces acting on an element of a flap-
ping blade

ordinates r(radial distance from the root) and
ψ(azimuth angle) shown in Fig.1. In hover, the
flap angle is constant throughout the azimuth be-
cause of axisymmetric aerodynamic loading. But,
in forward flight this axisymmetry is lost and the
aerodynamic load is a function of azimuth and
radial distance from the root and the flap angle
essentially varies with the azimuth in a periodic
manner. The aerodynamic loading depends upon
the pitching angle of the blade as well as the in-
flow through the rotor disk and so does the flap
angle. The pitch angle, θ (ψ), shown in Fig.2, is
the pilot control input and the inflow, φ , is due to
the velocity UP in the downward direction. The
rotor blade section thus experiences an effective
angle of attack given by, α = θ −φ .

The flapping equation with small flap angle
assumption is derived in Leishman (1992) and
Johnson (1975) which need not be applicable
in high angle of attack regime because of the
nonlinearities involved. In these derivations, the
assumption is made that β and φ are small angles.

Considerable research over the past two decades
has shown that aeroelastic nonlinearities play
an important role in fixed-wing (Librescu,
Chiocchia, and Marzocca (1995); Chandiramani,
Plaut, and Librescu (1996); Patil and Hodges
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(2004); Tang and Dowell (2004); Kamakoti,
Lian, Regisford, and et al. (2002)) and helicopter
rotor aeroelasticity (Tongue and Flowers (1988);
Desceliers and Soize (1999); Cesnik, Opoku,
Nitzsche, and Cheng (2004); Simonetti and Mar-
retta (2000)). These nonlinearities can be broadly
classified into structural and aerodynamic cate-
gories. Tang and Dowell (1993), Dowell (1990),
and Dowell and Ilgamov (1988) have given de-
tailed accounts on the aeroelastic nonlinearities.
In general, nonlinearities can significantly affect
the behavior of a dynamical system (Christov,
Christov, and Jordan (2007); Liu (2006); Wacher
and Givoli (2006); Leu and Chen (2006); Han,
Rajendran, and Atluri (2005)). However, in heli-
copter dynamics, an elastic blade model is often
used resulting in a proliferation of moderate and
large deflection geometric nonlinearity terms in
addition to coriolis terms due to flap-lag coupling.

In the present work, a general flapping equation
is derived without any linearization of the aeroe-
lastic nonlinearities and it is shown that the cor-
responding equation for small flap angles given in
text books can be obtained as a special case of this
equation. Then the validity of the small flap an-
gle and inflow angle approximation is investigated
assuming nonlinear aerodynamics. Interestingly,
some of these small angle assumptions are shown
to be inappropriate at certain flight conditions but
are often made in aeroelastic codes.

2 Blade Element Analysis

The blade element theory is used to obtain the
loads acting on a blade section. At any element
at a radial station r and azimuth angle ψ , the
blade cross-section consists of an airfoil section
as shown in Fig.2. The assumptions of small β
and φ are not made in the derivations shown be-
low.

2.1 Blade Element Velocity Components

There are three components of velocity, an in-
plane component of velocity, UT , an out-of-plane
component, UP and a radial component, UR given
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by(see Fig.2 and Fig.3),

UR = (ΩR)μ cosψ (1)

UT = (ΩR)(rcosβ + μ sinψ) (2)

UP = (ΩR)(λ cosβ + r
∗
β + μsinβ cosψ) (3)

where μ = V∞ cosαs
ΩR is the advance ratio, where

αs is the rotor disk angle of attack and λ is the
rotor disk induced inflow ratio. The underlined
cosβ and sinβ terms occur because we have not
assumed that β is small.

2.2 Blade Element Forces

Lift and drag forces per unit blade span are given
by,

L =
1
2

ρU2cCL (4)

D =
1
2

ρU2cCD (5)

where,

U = resultant velocity =
√

U2
T +U2

P

CL = CL(α)
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CD = CD(α)

and

α =θ −φ = θ −arctan
UP

UT

=θ0 +θ1c cosψ +θ1s sinψ

−arctan
λ cosβ + r

∗
β + μ sinβ cosψ

r cosβ + μ sinψ

(6)

where the expressions for UT and UP in Eq.2 and
3 have been used. The lift and drag forces act per-
pendicular and parallel respectively to the direc-
tion of the resultant flow velocity, U . The normal
force acting on the rotor disk is then given by,

Fz = Lcosφ −Dsinφ (7)

where again the small φ assumption is not used as
indicated by the underlined terms.

3 Flapping Equation

Considering a rigid articulated rotor blade with no
flap hinge offset, the forces acting on an element
of mass mdy are (see Fig.1),

1. Inertia force (IF)=(mdy)β̈y, opposing the
flapping motion;
2. Centrifugal force (CF)=(mdy)Ω2(ycosβ ),
acting radially outwards;and
3. Aerodynamic force (AF)=Fzdy, normal to the
blade.

The moment equilibrium of the above forces
gives,

∫ R

0
[(mdy)β̈y]y+

∫ R

0
[(mdy)Ω2(ycosβ )](ysinβ )

=
∫ R

0
[Fzdy]y (8)

i.e. Ib(β̈ +Ω2 cosβ sinβ ) =
∫ R

0
Fzydy (9)

i.e.
∗∗
β +cosβ sinβ =

R
Ω2Ib

∫ 1

0
Fzrdr (10)

The above equation is the general flapping
equation for a simple articulated rotor blade with
no flap hinge offset and with no spring restraint
where Fz is defined in Eq.7. We note that at

this point we have not made any assumption
regarding aerodynamic nonlinearity in terms of
CL and CD. However, Eq.10 is nonlinear in β and
ψ .
The flapping equation for small flap an-
gles[Appendix] can be easily deduced from
this equation by substituting, cosβ = 1, sinβ = β
and Fz = Lcosφ −Dsinφ ≈ L.

4 Aerodynamics model

To model the aerodynamic behavior of the rotor
system in all flight regimes accurately is a diffi-
cult task because of the highly complicated na-
ture of the unsteady aerodynamic effects. At low
angles of attack with fully attached flow, the un-
steadiness is moderate and can be modeled with
quasi-steady approximations without much diffi-
culty. For linear aerodynamics, the aerodynamic
loads on an airfoil at low angles of attack can be
modeled as polynomial functions of the angle of
attack by curve fitting the airfoil test data. Airfoil
test data for commonly used airfoils are available
in Abbott and Doenhoff Abbott and von Doen-
hoff (1949) and airfoil data for any other spe-
cific airfoil can be obtained by CFD simulation or
wind tunnel tests. The typical linear aerodynamic
model used in deriving the flap equation is

CL(α) = a0 +a1α (11)

CD(α) = d0 +d1α +d2α2 (12)

where a0, a1, d0, d1 and d2 are constants. These
models are valid until static stall is reached.

But in high angle of attack regimes, the lift
and drag become highly nonlinear functions of
the angle of attack, due to separation and stall.
The purpose of this study is to investigate the
validity of the small β and small φ assumptions
in the flapping equation. For this purpose, a
linear aerodynamics model shown in Eq.11 and
12 is inappropriate as it is valid only for low α
which may not result in all flight conditions of
the helicopter. There are two simple methods to
account for high angle of attack aerodynamics.
The first method used for rotor analyses is the ta-
ble look-up method in which the section airloads
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at different values of angle of attack are tabulated
against the corresponding angle of attacks from
airfoil test data and an interpolating technique is
used for intermediate values. The second method
is based on curve fits using data which is valid
between angles of attack of −1800 and 1800. In
the high angle of attack range, airloads can be
modeled as smooth curves by the quasi-steady
approximation Leishman (1992) as,

CL(α) = Asin2(α −α0) (13)

CD(α) = D+E cos2(α −α0) (14)

where A = 1.1 for NACA 0012 airfoil and A =
1.25 for the SC 1095 airfoil, for any arbitrary air-
foil the average value of both the airfoils works
reasonably and D = 1.135 and E = −1.05 work
well for any arbitrary airfoil. In this paper, we
consider a NACA 0012 airfoil.

5 Results and Discussion

The blade can be visualized as a composite of a
number of aerodynamic sections situated at dif-
ferent radial distances from the flap hinge. Con-
sidering a blade element of sufficiently small span
�r situated at r0 nondimensional distance from
the flap hinge as shown in Fig.4, the airloads can
be assumed to be independent of r over this span,
i.e. Fz = Fz(ψ). The flapping equation for this el-

c

rΔ

r0

r

β

Ω

Flapping 
Hinge

Reference
Plane

Figure 4: Forces acting on an element of a flap-
ping blade

ement can then be derived in the way it is carried

out in Sec.4 (Eq.8-10) as
Large β formulation :

∗∗
β +cosβ sinβ =

R
Ω2I�r

Fz(ψ)r0�r (15)

Small β formulation :

∗∗
β +β =

R
Ω2I�r

Fz(ψ)r0�r (16)

where I�r is the moment of inertia of the blade
element about the flap hinge.

5.1 Solution Procedure

The above flapping equation for the blade el-
ement is a second order ordinary differential
equation in β . This is solved using a Runge-Kutta
technique with zero initial conditions. Transients
are allowed to decay and the final blade steady
response β (ψ) is considered.
A blade element of span �r = 0.02, i.e. the
blade is divided into fifty blade elements and
one among those is chosen, at r0 = 0.75 and the
flapping response, the angles of attack and lift
coefficient are found out. Static aerodynamics
based on Eq.11-14 is used. The results presented
here are carried out with the following data of a
four bladed rotor:

Blade Data
μ = 0.3
R = 8.17 m
c = 0.5273m
m = 13.04651163 kg/m
CT /σ = 0.0726
rotor disk angle of attack αs = 150

Airfoil section (NACA 0012) characteristics:

CL =

{
6.25α for |α |< αstall = 130

1.1sin2(α −α0) for |α |> αstall = 130

CD =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.006+0.005CL
2

for |α |< αstall = 130

1.135−1.05cos2(α −α0)
for |α |> αstall = 130

α0 = 00

In Fig.5-8 a typical set of results with the large
β and large φ formulation with a uniform inflow
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model for only a collective pitch input of θ0 = 130

is presented.

The main objective of this paper is to address two
issues, 1) the validity of the small β assumption,
and 2) the validity of the small φ assumption.
These assumptions are investigated in the forego-
ing subsections.

5.2 Flapping Response

The flapping responses with the proposed formu-
lation (large β and large φ ) are presented here
along with those derived from the small angle ap-
proximation formulation (small β and large φ ),
see Fig.9-16.

In both of the cases a uniform inflow model is
used. We see that as θ0 increases from 10 to 200 in
Fig.9 through Fig.16, the small β assumption be-
comes incorrect. For low θ0 the effect is primarily
on the magnitude of the flap response but at higher
θ0, it affects both magnitude and phasing.

5.3 Induced Inflow Angle

As shown above, the small flap angle approxima-
tion formulation is not always valid. In general,
for high angle of attack aerodynamics problems,
the model proposed in this paper can be used.
Note that in Fig.9 through Fig.16, φ is assumed
to be large. It is important to investigate the na-
ture of the induced inflow angle, that is, whether
it is really large or a small angle approximation
can be made which might lessen the mathemat-
ical complication of the model. As can be seen
from Eq.6 and 7, the assumption of large φ results
in a complicated formulation. To verify this, the
variation of the induced inflow angle is calculated
here from the proposed model with the usual in-
duced inflow angle, φ = arctan UP

UT
as well as that

with small angle approximation,i.e.,φ = UP
UT

in dif-
ferent flight regimes as follows.

5.3.1 Induced inflow angle for uniform inflow
model

The results presented here are calculated using a
uniform inflow model.
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Fig.9-16. Variation of β with Azimuth. large β large φ ; −−−− small β large φ .
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Figure 17: θ0 = 50
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Figure 18: θ0 = 100
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Figure 19: θ0 = 150
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Figure 20: θ0 = 200

Fig.17-20. Variation of φ with Azimuth.
large β large φ ; −−−− large β small φ .

We can conclude (from Fig.17-20) that for a uni-
form inflow model and collective pitch θ0 input
the small φ approximation holds good.
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Figure 21: θ0 = 80, θ0 = 40, θ0 = −100
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Figure 22: θ0 = 100, θ0 = 50, θ0 = −120

Fig.21-22. Variation of φ with Azimuth.
large β large φ ; −−−− large β small φ .

Also this assumption is investigated for typical
cases of cyclic pitch inputs (Fig.21-22) and it is
observed that the angle is altered by about 1−20

near ψ = 3π/2, which is significant.

5.3.2 Induced inflow angle for uniform inflow
model with large disk loading

Next, let us see whether this assumption can be
made for a large disk loading. For this a CT

σ
as high as 0.15 is chosen and the induced in-
flow angle is simulated for μ = 0.3 as well as
for μ = 0.4. The results are presented in Fig.23
through Fig.28.

We see that the small induced inflow angle of at-
tack assumption can be made even for extreme



32 Copyright c© 2008 Tech Science Press CMES, vol.27, no.1, pp.25-36, 2008

Π 2Π
Ψ �rad�

5

6

7

8

9

Φ� 0�

Figure 23: θ0 = 100, μ = 0.3
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Figure 24: θ0 = 150, μ = 0.3

Fig.23-24. Variation of φ with Azimuth for CT
σ =

0.15. large β large φ ; −−−− large β
small φ .

disk loading in cases where only collective pitch
is applied. But when cyclic pitch is also applied
this assumption does not hold true as it is seen
from Fig.27-28.

5.3.3 Induced inflow angle for linear inflow
model in climbing forward flight with
varying cyclic pitch and rotation speed

The above results were restricted in terms of flight
conditions and wake models. Looking at the ex-
pression of the induced inflow angle (Eq.6) it
can be suspected that it could be high at certain
azimuth locations in the case of a linear inflow
model. In addition, a climb speed, Vc is consid-
ered. Here, we have,

λ = λ0(1+krr cosψ) (17)

UT = (ΩR)(r cosβ + μ sinψ) (18)
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Figure 25: θ0 = 100, μ = 0.4
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Figure 26: θ0 = 150, μ = 0.4

Fig.25-26. Variation of φ with Azimuth for CT
σ =

0.15. large β large φ ; −−−− large β
small φ .

UP = (ΩR)(λ cosβ + r
∗
β + μ sinβ cosψ)+Vc

(19)

φ = arctan
(ΩR)(λ cosβ +r

∗
β +μ sinβ cosψ)+Vc

(ΩR)(r cosβ + μ sinψ)
(20)

To simulate this a kr of 1.2 and a climb speed
of 15 m/sec is chosen and φ is calculated from
the proposed model with and without considering
the small φ assumption. There could be many
combinations of the collective, lateral cyclic and
longitudinal cyclic pitches which would give
rise to a large induced inflow angle; also a small
rotational speed could lead to a large induced
inflow angle. Results for several combinations
are presented in Fig.29 through Fig.32. From
Fig.29-30, it is observed that even when only
collective pitch is applied the small φ assumption
is not appropriate to an appreciable extent.
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Figure 27: μ = 0.3
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Figure 28: μ = 0.4

Fig.27-28. Variation of φ with Azimuth for CT
σ =

0.15, θ0 = 80, θ1c = 40, θ1s = −100.
large β large φ ; −−−− large β small φ .

And when cyclic pitch inputs are also applied the
assumption certainly breaks down as seen from
Fig.31-32.
In these cases, small changes in the values of φ
lead to changes in the blade response. Both mag-
nitude and phasing of the response are affected.

Note that
∗
β and

∗∗
β representing damping and in-

ertia forces are important terms in helicopter dy-
namics and any inaccuracies in the prediction of β
also affects these terms to an even greater extent.
Therefore, the assumption of small β and small φ
often made in helicopter flap dynamics may not
be appropriate.

6 Conclusion

In this article, a general flapping equation is for-
mulated without making small angle assumptions.
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Figure 29: θ0 = 50
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Fig.29-30. Variation of φ with Azimuth for linear
inflow in climbing forward flight. large
β large φ ; −−−− large β small φ .

A nonlinear aerodynamics model is used. There
onwards it is shown that the small flap angle for-
mulation can lead to inaccurate predictions in the
flap response. Then the validity of the small in-
duced inflow angle of attack assumption is inves-
tigated in various flight regimes and it is seen that
in many normal modes of helicopter flight the as-
sumption can be made but in certain high perfor-
mance operations it is not accurate. Therefore, it
is better to assume that the flap angle β and inflow
angle φ are large angles in helicopter dynamics.
The final model of the flapping equation can be
summarized as,

∗∗
β +cosβ sinβ =

R
Ω2Ib

∫ 1

0
Fzrdr (21)

UT = (ΩR)(r cosβ + μ sinψ) (22)

UP = (ΩR)(λ cosβ + r
∗
β + μ sinβ cosψ) (23)
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Figure 31: θ0 = 80, θ1c = 40, θ1s = −100
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Figure 32: θ0 = 100, θ1c = 50, θ1s = −120

Fig.31-32. Variation of φ with Azimuth for lin-
ear inflow in climbing forward flight with varying
cyclic pitch. large β large φ ; −−−−
large β small φ .

φ = arctan
UP

UT
;α = θ −φ (24)

Fz = Lcosφ −Dsinφ (25)

L =
1
2

ρU2cCL (26)

D =
1
2

ρU2cCD (27)

CL =

{
a0 +a1α for |α |< αstall

Asin2(α −α0) for |α |> αstall
(28)

CD =

{
d0 +d1α +d2α2 for |α |< αstall

D+E cos2(α −α0) for |α |> αstall

(29)
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Appendix
Flapping Equation for small flap angles

The three components of velocities are (Fig.1-2)

UR = (ΩR)μ cosψ

UT = (ΩR)(r + μ sinψ)

UP = (ΩR)(λ + r
∗
β + μβ cosψ)

In this case, the following assumptions can be
made
1. The out-of-plane component of velocity UP is
much smaller than the in-plane velocity UT . So
the resultant velocity is

U =
√

U2
T +U2

P ≈ UT

2. The induced angle φ is small, so that

φ = arctan
UP

UT
≈ UP

UT

3. As φ is small and drag is at least one order of
magnitude less than the lift,

Fz = Lcosφ −Dsinφ ≈ L

Now considering a rigid articulated rotor blade
with no flap hinge offset, the forces acting on an
element of mass mdy with the assumptions for
small β , cosβ ≈ 1 and sinβ ≈ β ,are (see Fig.33),

Ω

Flapping
hinge

β

ββ

IF

AF

CFy

y

m dy

Plane
Reference

Figure 33: Forces acting on an element of a flap-
ping blade

1. Inertial force (IF)=(mdy)β̈ y, opposing the flap-
ping motion;
2. Centrifugal force (CF)=(mdy)Ω2y, acting radi-
ally outwards;and
3. Aerodynamic force (AF)=Ldy, normal to the
blade.
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The moment equilibrium of the above forces
about the flap hinge gives,

∫ R

0
[(mdy)β̈y]y+

∫ R

0
[(mdy)Ω2y]yβ =

∫ R

0
[Ldy]y

i.e. Ib(β̈ +Ω2β ) =
∫ R

0
Lydy

i.e.
∗∗
β +β =

R
Ω2Ib

∫ 1

0
Lrdr

This is the flapping equation for small flap angles.
Typically, with this formulation, a linear aerody-
namics model is considered, where CL = CLα α ,
CLα being the lift-curve slope and drag is ignored.


