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Comparative Computer Modeling of Carbon-Polymer Composites with
Carbon or Graphite Microfibers or Carbon Nanotubes

A.N. Guz1, J.J.Rushchitsky1 and I.A.Guz2

Abstract: The basic approach is offered for
problems of nanocomposites and their mechani-
cal properties, which includes a short review of
modern problems in nanomechanics of materials.
The fibrous carbon-polymer composites with car-
bon or graphite microfibers or carbon nanotubes
are especially discussed. The basic model of the
linear or nonlinear elastically deforming micro-
and nanocomposites is considered. Within the
framework of this model, the comparative com-
puter modeling is performed. The modeling per-
mits to observe the features in prediction of val-
ues of basic mechanical constants. These results
are utilized on next step of modeling – studying
the peculiarities of wave propagation in particular
fibrous micro- and nanocomposites under consid-
eration.

Keyword: Micro- and nanomechanics of ma-
terials, basic approach, fibrous carbon-polymer
composite, continuum models, mechanical prop-
erties, comparative analysis.

1 Description of the problems. Basic ap-
proach

When being invented not long ago [Wilson et al.
(2002)], the atomic force and scanning electron
microscopes allow to see the atoms and transform
therefore during last two decades significantly
the nanotechnology – from the field of futuro-
logical sciences [Drexler (1990)] it was gone to
the modern natural science (first of all, to physics
and chemistry) [Harris (2000); Dresselhaus et al.
(2001); Nalva (2000); Wilson et al. (2002)]. Ac-
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tually the increasing number of scientists from the
wide spectrum of natural sciences is turning the
attention to the objects of nanolevel. The main
practical (a practicalness becomes the predomi-
nating position of the scientific commu-nity) goal
of such interest is the possibility of quick applica-
tion of new knowledge about nanoobjects in di-
verse technologies; it is assumed in connection
with which that the investigations can be referred
to nanotechnologies. The leading world countries
considered the development of nanotechnologies
as being a great priority and have the special pro-
grams on nanotechnologies with very high level
of finance. The majority of results are associ-
ated with studying the nanoformations physicists,
chemists, and scholars from material science.

Attracting mechanics to investigations of nano-
materials is the necessary moment in development
of nanotechnologies and nanomaterials and has
the goal to provide the transition from nanoma-
terials to structural members made of nanoma-
terials. It must be note that even precision de-
vices consist always of separate structural mem-
bers. Probably, it can be assumed that nanoma-
terials as engineering materials have a perspective
of application only in the form of nanocomposites
in which nano-materials are used as the fillers.

Let us consider in this connection some problems
of mecha-nics of nanocomposites. At that a ma-
trix will be considered as made of polymeric ma-
terials what is generally accepted in the most part
of publications on nanocomposites.

As it is noted in [Guz and Rushchitsky (2003)],
in the general system of knowledge on materials,
the mechanics of nanocomposites can be related
to the structural mechanics of materials. Struc-
tural mechanics of materials is understood as that
section of mechanics of materials in which the ba-
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sic relationships include the parameters charac-
terizing the internal structure of materials. It is
well-known that in majority of investigations on
mechanics of materials, the information about in-
ternal structure is used only at the step when ob-
tained results being interpreted.

In dependence on sizes of inhomogeneities in the
internal structure of materials, the structural me-
chanics can be divided on macromechanics, me-
somechanics, micromechanics, and nanomechan-
ics. Taking into account the results of numerous
publications the following classification of the ad-
missible range of changing the characteristic size
of inhomogeneities in the internal structure of ma-
terials.

macro: 10−2−10−5m (from 1 cm till 10 μm);
meso: 10−3−10−8m (from 1 mm till 10 nm);
micro: 10−4−10−8m (from 100 μm till 10 nm);
nano: 10−7−10−9m (from 100 nm till 1 nm).

was proposed in [Guz and Rushchitsky (2003)].

Schematically this classification is shown on
Fig.1.

In conformity with classification (scale) under
consideration equally with macro-, meso-, micro-
, and nanomechanics the micro-, meso-, micro-
, and nanocomposites can be conside-red. The
proposed classification is conditional enough al-
though also convenient enough in description of
approaches and concrete results.

When constructing the foundations of mechanics
of nanocomposites, there exist on author’s opin-
ion four spheres of basic problems: 1. Description
of properties of nanoformations. 2. Description of
properties of a matrix (a polymer binder). 3. De-
scription of phenomena on interfaces of nanofor-
mations and a matrix. 4. Determination of av-
eraged properties of nanocomposites permitting
the transition to mechanics of structural members.
The terms description and determination are un-
derstood as the construction of mechanical mod-
els permitting to describe and to determine the
mechanical phenomena and properties. Below in
quite brief terms the mentioned four spheres of
basic problems will be considered.

It is necessary to note that at present time the nu-

merous publications on mechanics of nanomateri-
als and nanocomposites exist. In this connection
we will refer later to some reviews on these sub-
jects only.

1.1 Description of properties of nanoforma-
tions

All nanoformations are constituted as the sys-
tems of atoms which interact with each other
by forces of interatomic inter-action. The car-
bon nanotubes (CNT) are the most prevailing
and widely discussed in scientific investigations
nanoformations; there are considered the single-
walled (SWCNT) and multi-walled (MWCNT)
carbon nanotubes. Fairly often the nanoforma-
tions are considered, fabrication of which is real-
ized by mechanical joining up a few CNT; for ex-
ample, so called nanowires. The ratio of a length
of nanoformations to their diameter is changed
within the wide range – from more than one thou-
sand to the case when these sizes are compara-
tive with each other. Thus the models both the in-
finitely long fibers and the separate granules can
be applied.

In all cases the nanoformations are a discrete sys-
tem consisting of separate atoms. At present,
different theoretical and experimental methods
for studying the nanoformations are evaluated
and widely utilized. In theoretical methods, the
Cauchy-Born approach [Born and Huang (1954)]
is used when potentials of interatomic interaction
of concrete structure (Tensoff-Brenner potential,
Morse modified potential and so on) are getting.
When such an approach being used, then as if
averaging of properties is carried out and purely
discrete medium consist-ing of separate atoms is
changed on the continuum what is testified by
the next situation. Following the application of
this approach the information about Young modu-
lus, Poisson ratio, density of material, geometrical
sizes of nanoformations and so on – the parame-
ters and coefficients characteristic for the contin-
uum – is obtained. The mentioned procedure can
be quite grounded called the principle or process
of continualization. Probably, this term was for
the first time used applied to nanoparticles in pub-
lication [Guz and Rushchitsky (2003)].
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Figure 1: Scheme of belonging the structure of materials to the macro-, meso-, micro-, and nanoscales

A few experimental methods of determination
of nanoformations properties exist. When they
(methods of: thermal vibration, bending, tension
et cetera) being utilized, then also the informa-
tion on Young modulus, Poisson ratio and so on
is obtained. Thus while the experimental meth-
ods being applied then also the information is ob-
tained on parameters and coefficients, which are
characteristic for continuum. So in this case the
principle of continualization is as if applied.

It was obtained both in theoretical, and in ex-
perimental studies that for nanoformations (basi-
cally for SWCNT and MWCNT) the elastic de-
formations are characteristic. At that, the elas-
tic deformations are running up to several tens
percents under tension; the linear dependence be-
tween stresses and strains is remained up to the
strain order 5-10 % . Under compression, the
elastic deformations are observed up to reaching
the values of strains with the order 5%. In ex-
isting publications, the mechanical properties of
nanoformations are described in continuum ap-
proximation (after application of the continualiza-
tion principle) mainly within the framework of the
model of isotropic elastic body (isotropic elastic
medium).

It should be noted also that for CNT the more
adequate model is the model of transversally
isotropic body with the isotropy axis coinciding
with the CN?axis.

The review of results on experimental and the-
oretical determination of Young modulus for
SWCNT and MWCNT is presented in [Zhang et
al. (2004)]. The results on determination of Pois-

son ratio for zig-zag and armchair SWCNT are
cited in [Xiao et al. (2005)]. Data on mechanical
properties of nanoformations are cited also in re-
view articles [Qian et al. (2002); Srivastava et al.
(2003); Yakobson and Avouris (2001)], in sepa-
rate chapters of collective mono-graphs [Dressel-
haus et al. (ed) (2001); Harris (ed) (2000); Milne
(ed) (2003); Nalwa (2000); Wilson et al. (2002)]
and in a row of other publications.

From analysis of mentioned publications follows
that the most common and relatively enough sub-
stantiated model for nanoformations (after appli-
cation of continualization principle) is the model
of linear elastic isotropic body with determina-
tion of all parameters corresponding to continuum
concept.

Hereon by mentioned above comments as applied
to description of properties of nanoformations we
will restrict our self.

1.2 Description of properties of a matrix (a
polymer binder)

When mechanics of nanocomposites being stud-
ied logically and consistently, then evidently it
is necessary to consider the nanoformations and
the matrix within the framework of kindred model
representations.

It was noted above that the model of linear elas-
tic isotropic body is applied for nanoformations
on the final stage (in continuum approximation).
In this connection, we will cite below some in-
formation on description of the polymer binder in
continuum approximation too.

The large quantity of results for the matrix (the
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polymer binder) in continuum approximation was
obtained, when the fundamentals of microme-
chanics of microcomposites being created. This
direction was actively discovered mainly in the
second half of XX century. These results are
expounded in numerous publications. For ex-
ample, in collective multi-volume monographs
[Broutman and Krock (ed) (1974-1975); Guz
(ed) (1993-2003); Kelly and Zweben (ed) (2000);
Milne et al. (ed) (2003)] and hand-books [Katz
and MIlewski (ed) (1978); Lubin (ed) (1982)]
and a row of other publications. It can be there-
fore assumed that mentioned above results corre-
spond in full measure to description of properties
of the matrix (the polymer binder) in the case of
nanocomposites with the polymer matrix also.

The analysis of cited publications show that the
quite grounded model for the polymer matrix as
applied to nanocomposites is the model of linear
isotropic elastic or viscoelastic body. For tem-
perate temperatures and relatively short-time ac-
tion of the load the quite acceptable model for the
polymer matrix is the model of linear isotropic
elastic body.

Remark. Let us note that the linear dependence
between stresses and strains in the polymer matrix
can be kept up to the strain 1.5-2.5 % .

In mechanics of nanocomposites comparing, for
example, with mechanics of microcomposites a
fortiori with mechanics of composites of other
structure, the additional situation arises as applied
to polymer matrix. The point is that in nanocom-
posites comparing with microcomposites for one
and the same volume fraction of fillers (for ex-
ample, carbon nanotubes or graphite microfibers)
the significantly more interface between the ma-
trix and fillers is formed. This can be explained by
essential difference in sizes of inhomogeneities.

It is necessary to remember that in structural me-
chanics the notion of volume fraction of the ma-
trix and fillers are introduced as applied to the
representative volume or elementary cell and it
doesn’t depend naturally on absolute sizes of in-
homogeneities.

The noted difference in interfaces is detecting
when physical volumes of composites (for exam-

ple, micro- or nanosamples) being considered.

Let us consider this question at first with reference
to unidirectional fibrous composites with fibers
of circular cross-section. Let restrict the analy-
sis by the case of long enough fibers, when the
model “infinitely long fibers” is working. Then
the analysis can be carried out in the plane of
cross-section only (an elementary cell is marked
out by the dotted line) as it is shown on Fig.2.

Figure 2: The plane of cross-section of unidimen-
sional fibrous composite

Let us introduce the conventional notations for el-
ementary cell or the representative volume: v( f )

and v(m) – volumes of the material of fillers
(fibers) and the matrix; v = v( f ) +v(m) – total vol-
ume; c( f ) and c(m) – volume fractions of fillers and
the matrix; s – area of interface with reference to
the elementary cell. In this case the well-known
expressions have a place

c( f ) =
v( f )

v
, c(m) =

v(m)

v
, c( f ) +c(m) = 1,

s = 2πr.
(1)

where r is the radius of fibers.

Let us consider the physical volume of compos-
ite, actually understanding it’s as the sample of
certain sizes. With the purpose of simplifying of
expressions, let us choose the physical volume in
the form of a circular cylinder and consider fol-
lowing the problem statement the plane of cross-
section. In reference to the physical volume (the
sample), the next notations can be in this case in-
troduced: V - sample volume, D - sample surface,
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S - total area of interfaces in the whole of sample,
K - number of elementary cells in the sample vol-
ume, R - sample radius. Then the expressions are
valid

S = Ks, K =
V
v
, D = 2πR, V = πR2. (2)

It follows then from (1) and (2)

S = Ks =
V
v

s = s
V

v( f ) c( f ). (3)

Taking into account the introduced notations and
the form of the marked out elementary cell, the
expression can be written

V

v( f ) =
(

R
r

)2

. (4)

From expressions (1)-(4) after some transforma-
tions the relationship for determination the value
S (area of interfaces in the whole physical volume
– sample) can be obtained in the following form

S = D
R
r

c( f ). (5)

Exactly the same expression follows from an anal-
ysis of the granular material with granules in the
form of spheres. In this connection the next anal-
ysis seems to be general for typical unidirectional
fibrous and granular composites.

Let us consider henceforward the physical volume
(sample) one and the same sizes (D = const; R =
const in (5)) for micro- and nanocomposites. Let
introduce the next notations:

rN and c( f )
N – fiber radius and volume fraction of

fibers for the nanocomposite; rM and c( f )
M – fiber

radius and volume fraction of fibers for the micro-
composite; SN and SM – area of interfaces in the
physical volume (sample) for nano- and macro-
composites. Taking into account the adopted no-
tations and conditions, we obtain

SN = D
R
rN

c( f )
N , SM = D

R
rM

c( f )
M . (6)

According to Fig.1 for the lowest values rN and
rM the next estimate can be assumed

10rN ≈ rM. (7)

It can be drawn the interesting conclusions from
(6) and (7).

If the nano- and microcomposites with identical
volume fraction of the fillers (c( f )

N = c( f )
M ) are con-

sidered, then the relationship for areas of inter-
faces follows

SN =
rM

rN
SM, SN ≈ 10SM. (8)

Thus in this case the increasing the area of inter-
faces in nanocomposites is observed on one order
more than in microcomposites.

If the nano- and microcomposites with identical
area of interfaces (SN = SM) are considered, then
we obtain for volume fractions of the fillers

c( f )
N =

rN

rM
c( f )

M , c( f )
N ≈ 10−1c( f )

M . (9)

Thus in this case we obtain the essential (on the
order) decreasing the fillers volume fraction in the
nanocomposite as compared with the microcom-
posite.

The cited above estimates testify the urgency of
developing the polymer matrix which will provide
the effective adhesion in the case of significant in-
crease of the interface area. Moreover these esti-
mates testify the unreasonableness of studying the
nanocomposites with high volume fraction of the
fillers.

1.3 Description of phenomena on an interface
of nanoformations and a matrix

In order to analyze the phenomena under consid-
eration, it is convenient to introduce the notion of
geometrical interface of nanoformations (as the
filler) and the polymer matrix. The geometrical
interface is understood as the surface, sizes and
form of which are defined when the nanoforma-
tions being described in the continuum approxi-
mation.

When the nanoformations and the polymer matrix
are united into the nanocomposite, the phenom-
ena with involving the more deep mechanisms are
occurring than it takes place, for example, in the
case of microcomposites.

The point is that in the general case the nanofor-
mations consist of the system of curvilinear lay-
ers; each of layers consists of the system of atoms
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interacting with each other owing to forces of in-
teratomic interaction.

In this connection, when the fillers and the ma-
trix are united into the nanocomposite, then the
interaction of atoms of the “extreme” layer of
the atoms of nanoformations with nearest atoms
of the polymer matrix (owing to forces of inter-
atomic interaction) should evidently be displayed.
In this way the consisting of interacting atoms
of the nanoformations and the matrix thin inter-
mediate layer is appearing. Studying the indi-
cated phenomenon and determination of regular-
ities which characterize the phenomenon seems
to be the complicate and actual physical-chemical
problem. Its solution can be realized by the rep-
resentatives of corresponding scientific directions
only.

When nevertheless the foundations of mechanics
of nanocomposites being constructed, then for de-
scription of phenomena in the mentioned inter-
face it will be expediently to use the traditional
approaches of mechanics elaborated in the analy-
sis of related problems. Traditionally in mechan-
ics, the occurring in intermediate thin layers or on
surfaces of thin bodies phenomena are modeling
by some boundary conditions. At that the bound-
ary conditions “are carried” or “are taken to”
certain in some sense close but more simple sur-
face.

Let us consider a few examples.

Example 1. In the classical theory of flow past a
wing the boundary conditions on the wing surface
“are taken on” the wing chord.

Example 2. In the theory of contact interaction of
elastic bodies in the case when the stamp bottom
has some deviation from the plane form, then the
boundary conditions of contact interaction “are
taken on” the plane boundary.

Example 3. In the problem of dynamical inter-
action of the liquid and elastic bodies (including
thin-walled ones) the boundary conditions on the
oscillating interface “are taken on” the fixed in-
terface.

Taking into account the mentioned traditional in
mechanics approaches and modeling the nanofor-
mations and the matrix by continua, while the

foundations of mechanics of nano-composites be-
ing created, the next approach can be proposed,
which corresponds to adopted in mechanics ex-
actness.

It seems to be expedient the phenomena occur-
ring at the thin intermediate layer between the
filler and the matrix to model by certain bound-
ary conditions of conjugation (interfacing) of two
continua and take on or translate the mentioned
conditions on the geometrical interface of the
nanoformations and the matrix.

At that the establishment of concrete structure of
the boundary conditions reflecting the phenomena
in the interface is actually the problematical ques-
tion, since physicists and chemists don’t yet con-
struct the quite substantiated theory of the men-
tioned phenomena.

Because of complexity of the problem on estab-
lishment of concrete structure of boundary con-
ditions on geometrical boundary, the special top-
icality takes the development of two-sided esti-
mates for given phenomena, which permit also
to estimate the values of corresponding quantities
under study.

From point of view of mechanics, the most “stiff”
or perfect joining of two media (nanoformation –
matrix) in continuum description corresponds to
the conditions of full mechanical contact (conti-
nuity of displacement and stress vectors) on the
interface. The most “mild” or imperfect joining of
two media in continuum description corresponds
to the conditions of “sliding” contact.

Thus the study of nanocomposites for two in-
dicated boundary conditions on the geometrical
interface enables to obtain the two-sided esti-
mates for quantities under study, when different
physical-chemical mechanisms being displayed
in the interface.

It is necessary to emphasize that by using two
mentioned boundary conditions the results in
fracture mechanics of micro composites under
compression were obtained when the start of the
fracture process is defined by the phenomenon of
stability loss into the internal structure of compos-
ite. Such type results were presented in the mono-
graph [Guz (1990)] and in a row of other publica-
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tions.

There is a need to note also that in mechanics
of microcomposites the numerous problems ex-
ist, which are associated with necessity to ensure
the corresponding adhesion strength on the inter-
face. These problems are determined by differ-
ent mechanisms in the intermediate layer. Never-
theless these mechanisms are not associated with
manifestation of interatomic interaction forces in
contrast to the nanocomposites where the influ-
ence of interatomic interaction forces in the inter-
mediate layer can be essential.

1.4 Determination of averaged properties of
nano-composites permitting the transition
to mechanics of structural members

Cited above considerations on modeling the
nanoformations, the matrix, and the conditions
on interface can be used in studying the prob-
lems of statics, dynamics, stability, and fracture
of nanocomposites within the framework of me-
chanics of nanocomposites with the polymer ma-
trix. When such study being carried out, then the
statement of problems and methods of solution
can be used by analogy with corresponding ap-
proaches evaluated within the framework of me-
chanics of microcomposites (see, for example, the
multi-volume collective (in 12 volumes) mono-
graph [Guz (ed) (1993-2003)]. In such investi-
gations, the model of piece-wise homogeneous
medium and the model of medium with averaged
properties can be applied traditionally.

When the study within the framework of mechan-
ics of structural members made of nanocompos-
ites being carried out, then apparently the most
promising and may be the uniquely possible ap-
proach will be that one as the nanocomposite
(piece-wise homogeneous material) is changed on
the homogeneous material with averaged proper-
ties. In accordance with such an approach in prob-
lems of mechanics of structural members made of
nanocomposites the principle of homogenization
is applied preliminary or the procedure of homog-
enization is carried out, and the nano-composite
is considered now as the homogeneous material
with averaged properties.

It is to all appearance expediently to distinguish

two approa-ches to determination of averaged
properties of nanocompo-sites: the first one –
determination of reduced (averaged) properties
within the framework of the model of anisotropic
elastic homogeneous body; the second one – de-
termination of averaged values of parameters ap-
pearing in more complicate structural models, for
example, the model of mixture of mate-rials.

As applied to nanocomposites when the reduced
constants being determined within the framework
of the first approach, then the statements of prob-
lems and the methods of investigations, which
were elaborated for granular, fibrous, and layered

microcomposites of determined and random
structures, can be utilized. Such types of the state-
ments of problems and the methods of investiga-
tions are expounded in numerous publications, for
example, in corresponding volumes of collective
multivolume monograph [Guz (ed) (1993-2003)].

It is necessary to note that in this case the val-
ues of averaged constants are asymptotically ex-
act and follow under definite conditions from the
strong results obtained within the framework of
the three-dimensional theory.

With reference to the theory of wave propagation
the cited conditions correspond to the situation,
when the ratio of geometrical parameter charac-
terizing the internal structure of nanocomposite to
the wave length tends to zero, that is the situation
as if corresponds to the long-wave approximation.

As applied to nanocomposites when the reduced
constants being determined within the framework
of the second approach, then should be noted that
the theory of mixtures uses for determination of
interaction of components the approximate ap-
proaches (as compared with the exact approach of
the piece-wise homogeneous medium approach).
Nevertheless the obtained basic relationships of
the theory of mixtures permit to investigate in
the theory of wave propagation in nanocompos-
ites not only in the long-wave approximation, but
for more wide range of wave lengths. Results
on constructing different models of the theory of
mixtures and investigation of a row of correspond-
ing problems are presented in numerous publica-
tions. The basic relationships of the theory of
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mixtures are offered, for example, in the mono-
graph [Rushchitsky (1991)] and the review [Rush-
chitsky (1999)], where the basic publications on
constructing the theory are also presented.

Let us note that above some comments as applied
to the theory of wave propagation in nanocompos-
ites are considered,

as an example only, when the analysis of the prob-
lem of determination of averaged properties in
the process of homogenization being carried out.
The similar situation is taken place in other prob-
lems of statics, dynamics, stability, and fracture
of nanocomposites.

Remark. Above the terms “principle, process,
or concept of continualization” and “principle,
process, or concept of homogenization” are of-
ten used. Let us note in this connec-tion that
the principle, process, or concept of continual-
ization consists in the substitution of the discrete
system by some continuous one with determina-
tion of corresponding averaged properties within
the framework of the continuous system. Analo-
gously, the principle, process, or concept of ho-
mogenization consists in the substitution of the
piece-wise homogeneous continuous system by
some homogeneous continuous system with de-
termination of corresponding averaged properties
within the framework of the homogeneous contin-
uous system.

Thus, principles, processes, or concepts of con-
tinualization and homogenization are utilizing
for constructing the foundation of mechanics of
nanocomposites with the polymer matrix and at
the same time are differing in principle.

1.5 Basic approach

We will understand the basic approach as the ag-
gregate of concepts, models and statements of
problems, development of methods of investiga-
tion and obtaining the basic results, which are ad-
equate to phenomena under consideration.

The produced above discussion and correspond-
ing considerations testify to the next basic ap-
proach is quite ordinary when the foundations of
mechanics of nanocomposites with polymer ma-
trix are constructing.

The approach consists of four parts.

1. Modeling the nanoformations by the linear
isotropic homogeneous body with averaged
values of elastic constants obtained with uti-
lization of the concept of continualization
from results taking into account the action of
forces of inter-atomic interaction.

2. Modeling the polymer matrix (binder) by the
linear isotropic homogeneous elastic or vis-
coelastic body.
Similar modeling was traditionally used
when the foundations of mechanics of
microcomposites were constructed. For
temperate temperatures and comparatively
short-time loading the polymer matrix can
be modeled as applied to nanocomposites by
the linearly elastic isotropic homogeneous
body.

3. Modeling the interaction of the nanoforma-
tions and the matrix (in the thin intermedi-
ate layer with allowance for forces of inter-
atomic interaction) by certain boundary con-
ditions when these conditions being trans-
ferred on the geometrical interface.
Application of the boundary conditions of
the full (perfect) contact (continuity of dis-
placement and stress vectors) and the bound-
ary conditions of sliding contact for two-
sided estimates of quantities under study.

4. Determination of averaged values of elastic
constants for nanocomposites with utiliza-
tion of different methods of homogenization
what ensure the transition to mechanics of
structural elements made of nanocomposites.

Thus, while the basic approach under discussion
being realized, then investigations of different
problems of statics, dynamics, stability, and frac-
ture of mechanics of materials (nanocomposites)
and mechanics of structural elements (made of
nanocomposites) can be carried out.

In studying the problems of mechanics of
nanocomposites, the model of piece-wise homo-
geneous medium (after realization of the con-
cept of continualization for nano-formations) and
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the model of homogeneous anisotropic body with
averaged values of elastic constants (after re-
alization of the concept of continualization for
nanoformations and next realization of the con-
cept of homogenization for obtained piece-wise
homogeneous medium) is applicable.

In studying the problems of mechanics of struc-
tural elements made of nanocomposites the appli-
cation of the model of homogeneous anisotropic
body with averaged values of elastic constants
(after realization of the concept of continualiza-
tion for nanoformations and next realization of
the concept of homogenization for obtained piece-
wise homogeneous medium) is preferable.

There is no doubt that the analysis of multi-
layered structural elements is important for me-
chanics of structural elements made of nanocom-
posites (for example, for constructing the mod-
els and theories of multi-layered rods, plates, and
shells).

Nevertheless for each separate structural element
(for each layer, for example) the model of homo-
geneous anisotropic body with averaged values
of elastic constants (after realization of the con-
cept of continualization for nanoformations and
next realization of the concept of homogenization
for obtained piece-wise homogeneous medium) is
used.

Let us restrict ourselves in the undertaken discus-
sion of constructing the foundations of mechan-
ics of nanocomposites by the stated above in quite
brief terms information.

Within the considered approach a number of
new results are obtained. They are presented in
publications of authors [Guz A.N. (2006); Guz
A.N., Rodger and Guz I.A. (2005); Guz A.N.
and Rushchitsky (2003); Guz I.A. and Rush-
chitsky (2004a,b,c)] and in a number of other
publications; the related problems are consid-
ered in [Rushchitsky et al (2005); Rushchitsky
(2005a,b,c)]. It is necessary to note that at present
the row of review articles associated with differ-
ent problems of mechanics of nanocomposites are
already published; for example, [ Buryachenko et
al (2005); Lau and Hui (2002); Srivastava, Wei
and Chao (2003); Thostenson, Chunyu and Chou

(2005)] and a row of other publications. Among
review publications, it seems to be expedient to
mark out the article [Thostenson, Chunyu and
Chou (2005)] with significant title “Nanocompos-
ites in context”, what is in harmony with the ti-
tle “Composites in context” of well-known re-
view [Kelly (1985)], published 20 years ago in the
same journal Composites Science and Technol-
ogy. Authors, when being analyzed the mechanics
of nanocomposites, are noted also the mentioned
above link.

Further in the paper some results of modeling of
mechanical behavior of fibrous carbon-polymer
composites with fillers in the form of carbon or
graphite microfibers or carbon nanotubes are pre-
sented and discussed.

2 Basic structural models

As one of the first publications in the field of
modeling the composite materials the Voigt pub-
lication of 1887 is considered, where the idea
was advanced to evaluate of physical parame-
ters with averaging the physical parameters of in-
homogeneous material over the volume and ori-
entation. In 1929 Reuss proposed the averag-
ing of inverse tensors of physical properties of
composites. Later in 1964 Hill showed that the
evaluated by Voigt approach value gives the up-
per estimate whereas the evaluated by Reuss ap-
proach value gives the lower estimate. For exam-
ple, the Young modulus of a granular composite
with Young moduli of fibers and matrix E( f ), E(m)

and corresponding volume fractions c( f ), c(m) are
equal by Voigt EV = c( f )E( f ) + c(m)E(m) and by
Reuss 1

ER = c( f )

E( f ) + c(m)

E(m) . Then Voigt-Reuss bracket
is as follows

ER ≤ Ee f f ≤ EV . (10)

It is needed to note that the practice to write
the formulas for effective physical constants in
the form of brackets is useful and very common
in the theory of effective constants. The well-
known Hashin-Shtrikman bracket for shear mod-
ulus [Broutman and Krock (1974)]

μ(−HS) ≤ μ−e f f ≤ μ+e f f ≤ μ(+HS) (11)
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corresponds to the understanding that for differ-
ent schemes of evaluation of effective constants
the composite material “soft matrix – stiff fillers”)
has the moduli close to the lower bound and the
composite material “stiff matrix – soft fillers” has
the moduli close to the upper bound.

The characteristic bracket for one of shear moduli
of fibrous composite has the form [Broutman and
Krock (1974)]

μ(m) +
c( f )

1
μ( f )−μ(m) +c( f ) K(m)+2μ(m)

2μ(m)(K(m)+μ(m))

≤ μe f f
23

≤ μ( f ) +
c(m)

1
μ(m)−μ( f ) +c( f ) K( f )+2μ( f )

2μ( f )(K( f )+μ( f ))

. (12)

The formulas for evaluating the effective moduli
can have also the form of equalities.

Further the fibrous unidirectional composites will
be considered and for calculation of their effec-
tive properties the equalities will be just used. It
should be noted that for modeling such compos-
ites the transversally isotropic medium is conve-
nient. It has one symmetry axis and the isotropy
plane perpendicular to this axis; in the linear case
it is characterized by the matrix with five indepen-
dent constants C1111, C3333, C4444, C1313, C2211.
These constants are utilized mainly in wave anal-
ysis. In non-wave problems, the technical con-
stants are used most often (Young and shear mod-
uli, Poisson ratio) E, G, ν (for longitudinal di-
rection) and E ′, G′, ν ′ (for transversal direction).
Then E ′ = 2G′ (1+ν ′).

Among the plenty of models of composite ma-
terials the mentioned above model of averaged
(effective) elastic moduli is chosen (it can be re-
ferred to structural mechanics and takes into ac-
count the internal structure of materials by val-
ues of effective moduli). As it was commented
above (see also [Bro-utman and Krock (1974);
Guz A.N. (1993)], calculation of effective moduli
is based in most cases on assumption that compo-
nents of the composite are described by the con-
tinuum and their properties are isotropic. This fact
will be taken into account later, when the prop-
erties of composite materials under consideration
being described. For calculating the constants,

further will be used the proposed in [Van Fo Fy
(1971)] analytical formulas for effective constants
of unidirectional fibrous composites which are in
a good concordance with experimental observa-
tions of fibrous composites

E = cmEm +c f E f

+
4μmcmc f

(
ν f −νm

)2

[1−c f (1−2νm)]+cm (1−2νm) (μm/μ f )

G = μm 1+c f +cm
(
μm/μ f

)
cm +(1+c f ) (μm/μ f )

,

ν = νm

− 2(1−νm)c f
(
νm −ν f

)
[1−c f (1−2νm)]+cm (1−2ν f ) (μm/μ f )

,

1
E ′ =

ν2

E
+

1
4μ

+
1−2νm

4μm

· cm +
(
1−2ν f

)(
μm/μ f

)
1−c f (1−2νm)+cm (1−2ν f ) (μm/μ f )

G′ =

μm (3−4νm)+c f +(1−cm)
(
μm/μ f

)
(3−4νm)cm +[1− (3−4νm)c f ] (μm/μ f )

,

(13)

where is assumed that the matrix and fibers are
isotropic, and by Em, E f , μm, μ f , νm, ν f the
Young and shear moduli, Poisson ratios of ma-
trix and fiber are denoted. The values of effective
density are evaluated by a conventional technique
using the Voigt-Reuss bracket

ρV = cmρm +c f ρ f ;
1

ρF =
cm

ρm +
c f

ρ f ;

ρe f f = (1/2)
(
ρV +ρF)

.

(14)

Further the effective density ρe f f , six technical
elastic constants E, E ′, G, G′, ν , ν ′ (longitudinal
tension, transversal tension, longitudinal shear,
transversal shear, Poisson ratios for transversal
tension and longitudinal shear) and two classical
elastic constants

Ce f f
1111 = E ′ 1−ν2 (E ′/E)

(1+ν ′) [(1−ν ′)−2ν2 (E ′/E)]
, (15)
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Ce f f
3333 = E

1−ν
(1−ν ′)−2ν2 (E ′/E)

(16)

will be evaluated.

There is a need to note that the common feature
of all formulas is an absence in the formulas of
the explicit geometrical parameters in the form of
layer thickness, fiber or granule radius and an in-
direct presence of these parameters in the form of
the volume fractions. Therefore the indicated in-
ability of the model of effective constants to re-
spond to changing the characteristic for compos-
ite materials scales (the characteristic size of in-
ternal structure, the filler sizes) excites

sometimes the criticism in the case of application
of the model to nanocomposite materials. But it
is the price, which we oblige to pay for using the
notion of continuum.

Further the basic continuum model will be used
in computer modeling in two variants: the linear
model of effective elastic constants which is as-
sociated with the classical theory of elasticity and
the physically and geometrically nonlinear model
of effective elastic constants used the well studied
in the nonlinear theory of elasticity Murnaghan
potential. The choice of this potential is substan-
tiated with the special property of the potential
to describe properly the wave velocities in trans-
versely isotropic media and by the author’s inten-
tion to study the propagating in such a media har-
monic waves and their evolution.

The last model reflects the possibility of nonlinear
elastic deformation of the composites (in our case
the composite inherits this nonlinearity from the
isotropic nonlinearity of the epoxy matrix, which
includes a small amount of the non-linearly de-
forming polystyrene).

In the model, a transversally isotropic continuum
is assumed additionally to be quadratically non-
linear according to the Murnaghan elastic poten-
tial [Guz (2004); Rushchitsky et al (2005)]. It is
necessary for elimination of contradiction to use
the modified for the case of transversal isotropy
Murnaghan potential, in concordance with which
the third order constants in the direction along the
fibers A3, B3, C3 and across the fibers A1 = A2,

B1 = B2, C1 = C2 are different

W (εik) =

−Cikik (1−δik) (εik)
2 +(1/2)Ciimm (εmm)2

+(1/3)Aiεikεikεik +Bi (εik)
2 εik +(1/3)Ci (εii)

3 ,

(17)

C1111 = C2222, C2233 = C1133,

C1313 = C2323, C1212 = (1/2) (C1111−C1122) ,

It is necessary to note that the Murnaghan poten-
tial is utilized for description of nonlinear defor-
mation of the wide class of materials used in en-
gineering sciences and the presented in (10) con-
stants of the third order are determined for these
materials quite exactly [Guz (2004)].

3 Mechanical properties of matrix and fillers

Four types of fibrous unidirectional composite
materials will be further considered. We think all
types of fibers as being made of carbon and the
matrix material is made both epoxy rosin EPON-
828 with properties: density ρ = 1.21 ·103kg/m3,
Young modulus E = 2.68GPa; shear modulus
μ = 0.96GPa; Poisson ratio ν = 0.40 – and con-
sists of a mixture of the rosin EPON-828 and the
polystyrene. The last one is the product of poly-
merization of styrene [−CH2 −CH (C6H5)−]n
with proper-ties within the framework of non-
linear Murnaghan model: density ρ = 1.05 ·
103kg/m3; elastic moduli of the second order:
Young modulus E = 2.56 GPa; shear modu-
lus μ = 1.14GPa; Poisson ratio ν = 0.30; elas-
tic moduli of the third order: A = −10.8GPa;
B =−7.85GPa; C =−9.81GPa (Murnaghan con-
stants).

Since the organic epoxy rosin EPON-838 is as-
sumed as the material of matrix and this rosin
from technological reasons (for avoiding the crys-
tallization) contains always the addition of high-
molecular polymers [Lubin (1982)], then the pres-
ence in computer modeling of some hypothetic
material consisting of chaotic mixture of epoxy
rosin and high-molecular polystyrene seems to be
not contradicting the nature of the rosin and quite
possible.
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Figure 3: Dependence of density ρe f f on c f for 4
types of composites (from top – microW, microT,
nanoZZ, nanoCH).
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Figure 4: Dependence of longitudinal shear mod-
ulus Ge f f on c f for 4 types of composites.
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Figure 5: Dependence of transverse shear modu-
lus G′e f f on c f for 4 types of composites (upper
plot – microT).

0.05 0.1 0.15 0.2 0.25 0.3

0.365

0.37

0.375

0.38

0.385

0.39

0.395

Figure 6: Dependence of Poisson ratio νe f f on c f

for 4 types of composites (upper plot – nanoZZ).

It is necessary to note that the matrix made of
the mixture of epoxy rosin with polystyrene is
the material with the soft characteristics of non-
linearity. The material with the heavy charac-
teristics of nonlinearity is found rarely enough,
it is studied here in the form of the matrix con-
sisting of the mixture of the epoxy rosin with
the Pyrex – glass. For this glass the following
physical properties are assumed: ρ = 9.95 · 103

kg/m3; λ =1.45GPa; μ=0.941GPa; A=124GPa;
B= -252GPa; C=350GPa. Additions to epoxy
rosin are assumed to be the tenth portion of the
mixture as a whole.

Fillers have the following characteristics:

Filler N1 – industrial carbon microfiber Thornel-
300 with properties: mean diameter 8 μm,
density ρ = 1.75 ·103 kg/m3 Young modulus
E = 228 GPa; shear modulus μ = 88 GPa;
Poisson ratio ν = 0.30.

Filler N2 – graphite whiskers with properties:

mean diameter 1 μm, density ρ = 2.25 · 103

kg/m3, Young modulus E = 1.0 GPa; shear
modulus μ = 385 GPa; Poisson ratio ν =
0.30.

Filler N3 – zig-zag carbon nanotubes with prop-
erties: mean diameter 10 nm, density ρ =
1.33 · 103kg/m3, Young modulus E = 0.648
GPa; shear modulus μ = 221 GPa; Poisson
ratio ν = 0.33.

Filler N4 – chiral carbon nanotubes with prop-
erties: mean diameter 10 nm, density ρ =
1.40 · 103 kg/m3, Young modulus E = 1.24
GPa; shear modulus μ = 477 GPa; Poisson
ratio ν = 0.30.

Shown data about the matrix and fibers (further
microT, microW, nanoZZ, nanoCH) are utilizing
for computer modeling the physical constants in
basic models. The modelling is de-scribed in
next paragraph, where changing in value of basic
constants in dependence with the degree of fiber
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volume concentration as well as the distinction
and similarities between micro- and nanocases are
studied. Some of the results are predictable. For
example, certain of the constants are very sensi-
tive to the fiber properties (Young and shear mod-
uli) big distinctions and some of constants are al-
most identical for all types of fibers.

4 Computer modeling of mechanical proper-
ties of fibrous composites

Within the framework of the linear model of ef-
fective constants the constants ρe f f , Ee f f , Ge f f ,
νe f f , E ′e f f , G′e f f , ν ′e f f , Ce f f

1111, Ce f f
3333 are consid-

ered. The results of modeling are shown on next
plots.

Everywhere the abscissa axis corresponds to the
volume fraction of fibers c f (it is assumed to be
small – up to 0.3). The restriction to small filling
of fibers is caused by that in this case the utilized
formulas are exact sufficiently, on the one hand,
and at present level of technology progress and
nanoparticles or nanofibers cost the denser filling
of matrix seems to be problematic, on the other
hand.

It can be noted that Figs. 3-6 show the weak non-
linearity in dependence of both shear moduli on
the volume fraction of fibers. This type of nonlin-
earity is characteristic for majority of parameters
in the case of small filling by fibers what can be
seen from next plots. Also Figs. 4-6 show that
corresponding parameters are not sensitive to the
difference between micro- and nanofiber proper-
ties.

The strong nonlinear dependence of Poisson ratio
ν ′e f f and a shift of its values to the range (0.5;
0.7) can be noted as one of interesting results. A
commenting the shift can be found in [Guz and
Rushchitsky (2004a)].

So, Fig. 9 seems to be very similar to Fig. 5 and
testifies the almost full insensitivenessof transver-
sal Young modulus E ′e f f and transverse shear
modulus G′e f f on fiber properties. At the same
time both parameters are changed significantly
with changing the filling degree.

Thus, if we assume that two groups of parame-
ters differ essentially microcomposites from nano
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Figure 7: Dependence of Poisson ratio ν ′e f f on
c f for 4 types of composites (from top – microW,
nanoZZ, nanoCH, microT).
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Figure 8: Dependence of longitudinal Young
modulus Ee f f on c f for 4 types of composites
(from top – nanoCH, microW, nanoZZ, microT).
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Figure 9: Dependence of transversal Young mod-
ulus E ′e f f on c f for 4 types of composites (mi-
croW, nanoCH, nanoZZ are practically identical).
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Figure 10: Dependence of elastic modulus Ce f f
1111

on c f for 4 types of composites (from top –
nanoCH, microW, nanoZZ, microT).
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Figure 11: Dependence of elastic modulus Ce f f
3333

on c f for 4 types of composites (from top –
nanoCH, microW, nanoZZ, microT).
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Figure 12: Dependence of constants A (lower
plot), B (upper plot), C (middle plot) on c f for
the matrix rosin-styrene.
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Figure 13: Dependence of constants A (middle
plot), B (lower plot), C (upper plot) on c f for the
matrix rosin-Pyrex.
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Figure 14: Evolution of the running harmonic
longitudinal plane wave for microT.
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Figure 15: Evolution of the running harmonic
longitudinal plane wave for nanoCH.
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ones – Young and shear moduli as the mechan-
ical group and fiber diameter as the geometrical
group – then pictures above show a differing in-
fluence of the first group on mechanical constants
of composites.

The most significant difference can be seen in the
cases of longitudinal Young modulus Ee f f and
elastic modulus Ce f f

3333.

Two plots on Figs. 12 and 13 show the varia-
tion of elastic constants of the third order (Mur-
naghan constants, in GPa) against volume fraction
of fibers. As it can be seen they are changed not
very much within the chosen range of filling with
fibers.

5 Comparative analysis of waves in of
carbon-polymer micro- and nanocompos-
ites

The problems on propagation of harmonic waves
are indicative not only in that they show the
distinction between wave pictures in micro- and
nanocomposites, but also they are very convenient
for detection of the range of applicability of struc-
tural models of composite materials. The point is
that the harmonic wave contains in its analytical
representation the wave length as an independent
parameter. Therefore the analysis of applicabil-
ity of models can always forego the modeling of
wave picture within framework of models adopted
here. From the viewpoint of that by the use of
comparison of the wave length with the character-
istic length of internal structure of composite, the
limit values of the wave length can be indicated.
The limit ones in that the values less of the limit
ones are to short for neglecting the peculiarities of
internal structure of representative volume.

Thus, for micro- and nanocomposites the ranges
of wave lengths or frequencies, in which the lin-
ear model of effective constants is applicable, can
be compared. The case in point is the upper limit
(short waves) because the long waves will have
any restrictions from below. The assumption that
exceeding the wave length of characteristic size of
internal structure of materials lCSM in 8-10 times
is the limit one seems to be natural and substanti-
ated by experimental observations.

Also is seems to be natural that the limit wave
lengths are calculated for microcomposites in mi-
crons whereas for nanocomposites in nanometers
and the difference is approximately three orders.

From point of view of frequencies, this means a
transition from the ultrasound range to the hyper-
sound range.

It will be displayed in the wave theory in differing
on the same order times of evolution progress of
initially harmonic wave.

Let us consider now three different waves prop-
agating in a fibrous composite material which is
described within the nonlinear model of effec-
tive constants by elastic Murnaghan potential and
properties of which are described above. The first
wave is the running longitudinal plane wave evo-
lution of which is caused by the quadratic nonlin-
earity of the propagation medium [Guz and Rush-
chitsky 2004b]. The second wave is the run-
ning transverse plane wave and its evolution is
caused by the cubic nonlinearity of the propa-
gation medium [Rushchitsky et al 2003]. The
third wave is already not the running plane but the
cylindrical and it is propagated from the cylindri-
cal cavity and is caused by the harmonic oscil-
lations on the cavity boundary. The evolution of
this wave is caused by the quadratic nonlinearity
of the propagation medium [Rushchitsky 2005c].

For realization of computer modeling (the inter-
active system Mathematica 5.1 was used) many
necessary parameters are at first evaluated.

The characteristic size of internal structure lCSM

was determi-ned in assumption that: fibres are
placed within the quadratic structure; the fiber
radius is r f and the volume fraction of fibers is
c f = 0,1: lCSM =

√
10πr f .

The wave length λ3 was fixed as conditionally
extremely possible for each material within the
framework of continuum approach, namely as ex-
ceeding the CSM 4π times: λ3 = 4π lCSM.

The wave number k∗3 was recalculated through the
known wave length: k∗3 = (1/(2lCSM)).

The phase velocity in linear approximation vph
3

was determined by the formula vph
3 = (ω/k∗3) =√

C3333/ρe f f .
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The extremely possible frequency ω3 was calcu-
lated through the wave number k∗3 and the phase
velocity vph

3 .

The initial amplitude uo
3 was chosen from a reason

of weak accumulation of changes of the profile on
the distance of one wave period, namely such that
it is significantly less of the wave length λ3 (for all
materials, the ratio of uo

3 to λ3 was chosen equal
0,1).

The extremely possible time tL was recalculated
through the known extremely possible distance dL

using the zero phase ϕ = k∗LdL−ωLtL = 0 → tL =(
dL/vph

L

)
.

Parameter dL expresses quantitatively the fact
of essential dependence of the distance which
must run the wave for displaying the evolution
of its initial profile on the wave length and the
same dependence of the minimally admissible
wave length on the characteristic size of inter-
nal structure. Comparison of parameter dL for
microT, microW, nanoZZ, nanoCH with identi-
cal fiber volume fraction c f = 0.1 and for the
quadratically nonlinear elastic harmonic longitu-
dinal plane wave shows that within the condi-
tion of propagation of the wave with the mini-
mally admissible wave length the distinction is es-
timated by orders – for the first material with car-
bon microfibers of diameter 8 μm the distance dL

is 1,127 μm (more than one millimeter); for the
second material reinforced by microwhiskers of
diameter 1 μm the distance dL is about 141 μm ;
for materials with fibers in the form of zig-zag and
chiral nanotubes (Z-CNT and C-CNT with diam-
eter 10 nm) the necessary distance is decreasing
up to 1407 nm. So, in this case the basic non-
linear phenomenon – transformation of harmonic
impulse into its second harmonics – occurs for
micromaterials on distances of microlevel and for
nanomaterials on distances of nanolevel. Respec-
tively, durability of the evolution process for mi-
crocomposites is 224 and 14,58 μs, whereas for
nanocomposites it is evaluated in ns – 175 and
127.

On Fig. 15 and 16 all stages of evolution devel-
opment (from the initial profile in the form of the
first harmonics to the form of the second harmon-

ics or, simpler, the process of transformation of
the profile with one hump into the profile with
two humps on the same semi-period) of running
harmonic longitudinal plane wave propagating in
composite materials for mentioned above initial
parameters are shown.

In next list of four parameters the first position
corresponds to microT and the second one to
nanoCH:

The characteristic size of internal structure lCSM –
22.42 μm; 28nm.

The critical wave length λ3 – 281.8 μm; 352 nm.

The critical wave number k∗3 – 2.23 · 10−4 1/m;
0.1785 1/m.

The phase velocity vph
3 – 5.031 km/s; 11.08 km/s.

At the last two pictures, the critical initial ampli-
tude uo

3 and the frequency ω were chosen from a
reason of quick evolution – uo

3 – 28.18 μm; 35.2
nm; ω – 100MHz; 100GHz.

The unit on abscissa axis corresponds to running
distance 100 μm, on ordinate axis corresponds
to running time 100 μs, on applicate axis corre-
sponds to 1 μm for microT, and on abscissa axis
– 100nm, on ordinate axis – 100 ns, on applicate
axis – 1 nm for nanoCH.

So, process of harmonic wave evolution for
micro- and nanocomposites is similar. The main
distinction consists in transition from one scale of
distance (microns) and time (microseconds) to an-
other one (nanometers and nanoseconds).

In conclusion, we should note that performed
computer and analytical modeling testifies first of
all the high values of elastic moduli of nanocom-
posite materials. These materials show really high
strength to deformations and in concordance with
experimental observations the continuum model
of effective moduli describes this high level of
strength of deformations and can be applied at
the problem of prediction of mechanical proper-
ties of nanocomposite materials. The theoretical
and next computer modeling of physical proper-
ties must be necessary based on certain models.
The elaborated by authors approach used the clas-
sical continuum model, which authors think as the
quite appropriate. But, of course, some problems
of nanocomposites are beyond the framework of
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this approach. In our opinion, this fact doesn’t
minimize the fundamental and classical impor-
tance of the approach.

All considerations shown above permit to con-
clude that there is no hope of our getting quick so-
lutions of the nanocomposite problem in the near
future.
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