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Natural neighbour Petrov-Galerkin Method for Shape Design
Sensitivity Analysis

Kai Wang1, Shenjie Zhou1,2, Zhifeng Nie1 and Shengli Kong1

Abstract: The natural neighbour Petrov-
Galerkin method (NNPG) is one of the spe-
cial cases of the generalized meshless local
Petrov-Galerkin method (MLPG). This paper
demonstrates the NNPG can be successfully used
in design sensitivity analysis in 2D elasticity.
The design sensitivity analysis method based on
the local weak form (DSA-LWF) in the NNPG
context is proposed. In the DSA-LWF, the local
weak form of governing equation is directly
differentiated with respect to design variables
and discretized with NNPG to obtain the sensi-
tivities of structural responds. The calculation
of derivatives of shape functions with respect
to design variables is avoided. No background
meshes are needed to integrate the weak form, no
assembly process is needed to generate the global
stiffness matrix and no user-defined parameters
are used as well. Three numerical examples are
solved using DSA-LWF and the results show the
proposed method gives very accurate solutions
for these problems.

Keyword: shape design sensitivity analysis;
meshless method; Petrov-Galerkin method; nat-
ural neighbour interpolation

1 Introduction

Gradient-based methods are widely used in shape
optimization problems. In these methods, the
shape design sensitivity analysis (DSA) is con-
cerned with finding the variation of structural re-
sponses (displacement, stresses, etc.) with respect
to design variables, which describe the geome-
try of the domain [Lacroix and Bouillard (2003)].
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These sensitivities are needed in order to provide
the gradients of the objective function or con-
straints. An accurate computation of sensitivity
information plays a critical role in the shape opti-
mization and can reduce the computational costs
[Kim, Choi and Botkin (2003)].

There are several methods which can be employed
in design sensitivity analysis. Generally, there are
four different types, namely finite difference, dis-
crete, continuum, and computational derivatives.
Among these methods, the continuum-based DSA
method is widely used in design sensitivity anal-
ysis and shape optimization problems [Lacroix
and Boouillard (2003); Kim, Choi and Botkin
(2003); Bobaru and Mukherjee (2001); Bobaru
and Mukherjee (2002); Grindeanu, Kim, Choi and
Chen (2002); Kim, Yi and Choi (2002); Chang,
Choi, Tsai, Chen, Choi and Yu (1995)]. In this
kind of method, the continuous deformation of the
structure is simulated and the material derivative
concept is used to define the sensitivities of struc-
tural responds.

The finite element methods (FEMs) have become
the most popular numerical approach in various
engineering applications. However, the FEMs are
not convenient for shape optimization problems
due to the use of mesh. Firstly, the remeshing pro-
cess is often inevitable in optimization iterations
when the mesh gets distorted too much. Secondly,
it is necessary to modify the geometry and to gen-
erate a new mesh in order to compute the sensi-
tivities. Unfortunately, for most of the existing
methods, a restriction is that the perturbed mesh
must have the same topology as the initial one.
This can not be satisfied if the mesh is generated
with the aim of controlling its accuracy [Lacroix
and Bouillard (2003)].

Meshless methods [Belytschko, Krongauz, Or-
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gan, Fleming and Krysl (1996); Atluri and Zhu
(1998); Cueto, Sukumar, Calvo, Cegoñino and
Doblaré (2003); Liu, Jun, Zhang (1995)] as al-
ternative methods to FEMs have attracted much
attention these years. As the approximation of so-
lution variables is constructed by scattered nodes
instead of elements, meshless methods are more
suitable for moving boundary problems, large
deformation problems, high speed impact prob-
lems, etc. With regard to the DSA computa-
tion and shape optimization, because no mesh
is needed to interpolate either field variables or
their sensitivities, the aforementioned inconve-
niences of use of FEM are resolved. Many re-
searchers take the advantages of meshless meth-
ods in DSA computations [Lacroix and Boouil-
lard (2003); Kim, Choi and Botkin (2003); Bo-
baru and Mukherjee (2001); Bobaru and Mukher-
jee (2002); Grindeanu, Kim, Choi and Chen
(2002)]. Lacroix and Bouillard (2003) proposed
a DSA approach by coupling the element free
Galerkin method (EFG) [Belytschko, Lu and Gu
(1994)] with the FEM. Bobaru and Mukherjee
(2001, 2002) developed a continuum-based DSA
method in the EFG context and used in shape
optimization problems of both linear elastic and
thermo elastic solids. In their method, the deriva-
tive of global Galerkin weak form of equilib-
rium equation with respect to each design vari-
able is computed by direct differentiation method
(DDM) [Kim, Choi and Botkin (2003); Bobaru
and Mukherjee (2001); Bobaru and Mukherjee
(2002); Grindeanu, Kim, Choi and Chen (2002)].
Numerical methods for continuum-based shape
design sensitivity analysis and optimization us-
ing reproducing kernel particle method (RKPM)
[Liu, Jun and Zhang (1995)] were proposed by
Grindeanu, Kim, Choi and Chen (2002) and Kim,
Yi and Choi (2002).

Many meshless methods have been developed so
far. Among these methods, the meshless local
Petrov-Galerkin method (MLPG) originally pro-
posed by Atluri and Zhu (1998) is one of the most
prominent methods, because it is not only a truly
meshless method but also a generalized frame-
work that could be used to derive other mesh-
less methods [Atluri, Kim and Cho (1999); Atluri

and Shen (2002)]. Many researchers are opti-
mistic about this method and use it in their re-
search fields. In recent years, the MLPG has
made great progress in many aspects. Several new
methods are proposed within the framework of
MLPG [Atluri and Shen (2002); Atluri, Liu and
Han (2006a); Atluri, Liu and Han (2006b); Atluri,
Han and Rajendran (2004); Vavourakis, Selloun-
tos and Polyzos (2006); Vavourakis and Polyzos
(2007)]. A wide variety of engineering problems
are solved by the MLPG type meshless methods
[Han and Atluri (2004); Shen and Atluri (2004);
Andreaus, Batra and Porfiri (2005); Han, Rajen-
dran and Atluri (2005); Han, Liu, Rajendran et al.
(2006); Ching and Chen (2006); Gao, Liu and Liu
(2006); Sladek, Sladek and Zhang et al. (2007);
Jarak, Soric and Hoster (2007)].

The natural neighbour Petrov-Galerkin method
(NNPG) [Wang, Zhou and Shan (2005)] is one
of the special cases of the generalized MLPG.
As this method is quite efficient and easy to im-
plement, it is suitable for DSA computation and
shape optimization where high efficiency is de-
sired. This paper demonstrates the NNPG can be
successfully used for DSA computation and shape
optimization in 2D elasticity. The design sensi-
tivity analysis method based on the local weak
form (DSA-LWF) in the NNPG context is pro-
posed. The material derivative concept is adopted
in the DSA-LWF, and the continuous formula-
tion of design sensitivity analysis is derived by di-
rectly differentiating the local weak form of equi-
librium equations. The discretization of the con-
tinuous formulation and the numerical implemen-
tation are also proposed. Three numerical exam-
ples are presented to test the validity and accuracy
of the DSA-LWF method.

This paper is organized as follows: In section
2, the natural neighbour Petrov-Galerkin method
is briefly reviewed. In section 3, the DSA-LWF
method under the NNPG framework is proposed
in details. In section 4, three numerical examples
are presented to test the proposed method. This
paper ends with the conclusions in section 5.
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2 Review of natural neighbour Petrov-
Galerkin method

Under the framework of MLPG, new meshless
method can be derived if the trial function, test
function and integration method are carefully cho-
sen [Atluri, Kim and Cho (1999); Atluri and Shen
(2002)]. The natural neighbour Petrov-Galerkin
method (NNPG) [Wang, Zhou and Shan (2005)]
can be considered as a special case of MLPG. This
method is developed to alleviate the task of impo-
sition of essential boundary condition in classical
MLPG. In the NNPG, the non-Sibsonian interpo-
lation is used to approximate the trial function,
and linear FEM shape function is chosen to be the
test function. The Delaunay tessellation is used to
construct the nodal local sub-domain Ωs, which is
coincident with the support of nodal test function.

In each nodal local sub-domain Ωs, the local
Petrov-Galerkin method [Atluri and Zhu (1998)]
is used in stead of global Galerkin one. As non-
Sibsonian interpolation is used to approximate the
field variables, neither penalty parameters [Atluri
and Zhu (1998)] nor Lagrange multipliers [Be-
lytschko, Lu and Gu (1994)] are needed to impose
the essential boundary condition. The NNPG con-
tinuous local weak form of governing equation in
elasto-statics is defined as:

∫
Ωs

σi jNIi, jdΩ−
∫
Lu

NIiσi jn jdΓ

=
∫
Ωs

NIibidΩ+
∫
Lt

NIit idΓ (1)

where ∂Ωs = Lu + Lt + Ls is the boundary of lo-
cal sub-domain, σi jis the stress tensor related to
the displacement field ui, biis the vector of body
force, n j is the unit outward normal vector to
the boundary Lu, ti is the prescribed tractions on
the traction boundaryLt and NIi is the test func-
tion corresponding to the nodal sub-domain Ωs.
To obtain the discrete algebraic equation, the dis-
placement of point x is approximated by:

uh(x) =
n

∑
I=1

φI(x)uI (2)

with

φI(x) =
sI(x)/hI(x)

∑n
J=1 [sJ(x)/hJ(x)]

(3)

where n is the number of natural neighbours of the
point x, uI (I=1, 2,. . . , n) are the vectors of nodal
displacements at n natural neighbours, and φI(x)is
the non-Sibsonian interpolation shape function, sI

is the Lebesgue measure of the Voronoi bound-
ary associated with node I(here is the length of
Voronoi edge in 2D case), and the hI is the dis-
tance between the evaluated point x and the node
I.

The discrete form can be obtained by substituting
equation (2) into it equation (1):

N

∑
J=1

KIJuJ = FI , I = 1,2, . . .,N (4)

where KIJ and FI are local stiffness matrix and
force matrix corresponding to the nodal sub-
domain ΩI

S, N is the total number of the nodes in
the global domain and on its boundary, uJ is the
matrix of nodal displacements.

As a special case of the generalized MLPG, the
NNPG inherits the virtues of the MLPG [Atluri,
Kim and Cho (1999)], e.g., no assembly process
is needed to form the global stiffness matrix and
no additional background cells are needed to in-
tegrate the weak form. Compare with the classi-
cal MLPG, the NNPG has two additional proper-
ties [Wang, Zhou and Shan (2005)]. Firstly, the
calculation of non-Sibsonian interpolation shape
function is more efficient than that of MLS, and
the shape function has Kronecker Delta function
property. This may contribute to its high effi-
ciency. Secondly, by virtue of the test function
used, the supports of integrands align with the in-
tegration domains. This may improve the accu-
racy of numerical integration [Dolbow and Be-
lytschko (1999)]. All these properties, no matter
inherited or intrinsic, render the NNPG a promis-
ing method for DSA computation and shape opti-
mization.

3 Local continuum-based DSA formulation

The sensitivity of a structural response (displace-
ment, stress) with respect to a design variable is a
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kind of material derivative [Bobaru and Mukher-
jee (2001), Kim, Yi and Choi (2002)] which takes
into account the shape variation of the structural
domain due to the design variable perturbation.
Let us consider the displacement vector u which
can be expressed as a function of the design vari-
able τττ and of the position ξξξ . The sensitivity of
u with respect to τττ is defined as [Bobaru and
Mukherjee (2001)]:

u̇ = lim
τττ→0

u[ξξξ (x,τττ),τττ]−u(x,0)
τττ

= u′ +∇u.v (5)

In above equation, v(x) is the design velocity
field [Ródenas, Fuenmayor and Tarancón, J. E.
(2004)], which defines the variation of the po-
sition of each material point due to the varia-
tion of the design variable. By importing strain-
displacement relation and constitutive equation
[Timoshenko and Goodier (1970)], all other sensi-
tivities (e.g., stress sensitivities σ̇σσ) can be derived
from the displacement sensitivity u̇.

3.1 Continuous DSA formulation based on
NNPG local weak form

There are several methods can be used to calculate
the displacement sensitivity. Among these meth-
ods, the direct differentiation method (DDM) is
quite simple and widely used in shape optimiza-
tion problems [Kim, Choi and Botkin (2003); Bo-
baru and Mukherjee (2001); Bobaru and Mukher-
jee (2002); Grindeanu, Kim, Choi and Chen
(2002)]. Consider a structural system in the fi-
nal equilibrium configuration, corresponding to a
given design variableτττ. The equilibrium equation
for the structural system can be written as:

A(τττ)u(τττ) = f(τττ) (6)

The displacement field u can be solved from
above equation. By using DDM, the displacement
sensitivity u̇ is obtained by directly differentiat-
ing equation (6) with respect to every design vari-
ables:

A(τττ)u̇ =
df(τττ)

dτττ
− dA(τττ)

dτττ
u(τττ) (7)

As global Galerkin method dominates in numeri-
cal methods, almost all the continuum-based DSA

formulations are derived from it. In this case,
the equation (6) is a global symmetric weak form
of equilibrium equation. After using DDM, the
equation (7) includes integrals over global do-
main. These integrals have to be evaluated with
the aid of background meshes [Belytschko, Kro-
ngauz, Organ, Fleming and Krysl (1996)]. It is
reported that the support of the integrand needs to
be aligned with the background mesh to improve
the accuracy of Gaussian quadrature [Dolbow and
Belytschko (1999)]. However, to construct back-
ground meshes aligning with the supports of in-
tegrands is not easy for most meshless methods.
Therefore, integration error is often introduced. In
addition, the “assembly” process is always neces-
sary to generate the stiffness matrix in these meth-
ods [Atluri and Zhu (1998)].

Under the framework of NNPG, the local weak
form is used instead of global Galerkin one and a
more explicit form of equation (7) is obtained by
directly differentiating the continuous local weak
form of governing equation (1). For example, the
material derivative of first term in the left hand of
the equation (1) is calculated:

∫
Ωs

[ ˙(σi j(u)NIi, j)+(σi j(u)NIi, j)(vi,i)]dΩ =

∫
Ωs

[σ̇i j(u)NIi, j +σi j(u) ˙NIi, j +σi j(u)NIi, j(vi,i)]dΩ

(8)

where ˙NIi, j = ṄIi, j − NIi,kvk, j is the material
derivative of the spatial derivative of the test func-
tion. σ̇i j is the stress sensitivity, which can be ob-
tained by importing strain-displacement relation
and constitutive law:

σ̇i j(u) = σi, j(u̇)− 1
2

Di jkl(vk, jui,k +vk,iu j,k) (9)

where Di jkl is the material constant tensor. Substi-
tuting equation (9) into equation (8), the material
derivative of first term in the left hand of the equa-
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tion (1) can be written as:

∫
Ωs

[
˙(σi j(u)NIi, j)+(σi jNIi, j)(vi,i)

]
dΩ

=
∫
Ωs

σi j(u̇)NIi, jdΩ

− 1
2

∫
Ωs

Di jkl
(
vk, jui,k +vk,iu j,k

)
NIi, jdΩ

+
∫
Ωs

σi j(u)(ṄIi, j −NIi,kvk, j)dΩ

+
∫
Ωs

σi j(u)NIi, j(vi,i)dΩ (10)

With similar procedures, the material derivative of
equation (1) can be written as:

∫
Ωs

σi j(u̇)NIi, jdΩ

− 1
2

∫
Ωs

Di jkl[vk, jui,k +vk,iu j,k]NIi, jdΩ

−
∫
Ωs

σi j(u)NIi,kvk, jdΩ

+
∫
Ωs

σi j(u)(vi,i)NIi, jdΩ

−n j

∫
Lu

σi j(u̇)NIidΓ

+
n j

2

∫
Lu

Di jkl[vk, jui,k +vk,iu j,k]NIidΓ

−
∫
Lu

σi j(u)n jNIi(vini)HdΓ =

∫
Ωs

[ḃi +bi(vi,i)]NIidΩ +
∫
Lt

[ṫ i + t i(vini)H]NIidΓ

(11)

where H = −ni,i is the surface divergence [Bo-
baru and Mukherjee (2001)]. In above equation,
considering strain-displacement relation and con-
stitutive law of elasto-statics, the local continuous

DSA formulation is obtained:

∫
Ωs

Di jkl
1
2
(u̇k,l + u̇l,k)NIi, jdΩ

− 1
2

∫
Ωs

Di jkl[vk, jui,k +vk,iu j,k]NIi, jdΩ

−
∫
Ωs

Di jkl
1
2
(uk,l +ul,k)NIi,kvk, jdΩ

+
∫
Ωs

Di jkl
1
2
(uk,l +ul,k)(vi,i)NIi, jdΩ

−n j

∫
Lu

Di jkl
1
2
(u̇k,l + u̇l,k)NIidΓ

+
n j

2

∫
Lu

Di jkl[vk, jui,k +vk,iu j,k]NIidΓ

−
∫
Lu

Di jkl
1
2
(uk,l +ul,k)n jNIi(vini)HdΓ =

∫
Ωs

[ḃi +bi(vi,i)]NIidΩ +
∫
Lt

[ṫ i + t i(vini)H]NIidΓ

(12)

3.2 NNPG discretization and numerical imple-
mentation

To avoid the derivatives of shape functions with
respect to design variables, the displacement
sensitivities are also approximated with non-
Sibsonian interpolation:

u̇h(x) =
n

∑
I=1

φI(x)u̇I (13)

where φI is the non-Sibsonain interpolation shape
function of natural neighbour I and u̇I are the vec-
tors of fictitious nodal displacement sensitivity.
Substituting equation (2) and (13) into equation
(12), the discrete form of sensitivity formulation
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is obtained:

∫
Ωs

Di jkl
1
2

(
n

∑
I=1

φI,l(x)u̇Ik +
n

∑
I=1

φI,k(x)u̇Il

)

NIi, jdΩ

− 1
2

∫
Ωs

Di jkl

[
vk, j

(
n

∑
I=1

φI,k(x)uIi

)

+vk,i

(
n

∑
I=1

φI,k(x)uI j

)]
NIi, jdΩ

−
∫
Ωs

Di jkl
1
2

(
n

∑
I=1

φI,l(x)uIk +
n

∑
I=1

φI,k(x)uIl

)

NIi,kvk, jdΩ

+
∫
Ωs

Di jkl
1
2

(
n

∑
I=1

φI,l(x)uIk +
n

∑
I=1

φI,k(x)uIl

)
(vi,i)

NIi, jdΩ

−n j

∫
Lu

Di jkl
1
2

(
n

∑
I=1

φI,l(x)u̇Ik +
n

∑
I=1

φI,k(x)u̇Il

)

NIidΓ

+
n j

2

∫
Lu

Di jkl

[
vk, j

(
n

∑
I=1

φI,k(x)uIi

)

+vk,i

(
n

∑
I=1

φI,k(x)uI j

)]
NIidΓ

−
∫
Lu

Di jkl
1
2

(
n

∑
I=1

φI,l(x)uIk +
n

∑
I=1

φI,k(x)uIl

)

n jNIi(vini)HdΓ

=
∫
Ωs

[
ḃi +bi(vi,i)

]
NIidΩ

+
∫
Lt

[
ṫ i + t i(vini)H

]
NIidΓ (14)

For simplicity, the matrix form of above equations
can be written as:

N

∑
J=1

KIJu̇J =
N

∑
J=1

(LIJ +MIJ)uJ +QI ,

I = 1,2, . . .,N (15)

where N is the total number of the nodes in the
global domain and on its boundary, u̇J is the ma-
trix of nodal displacements, matrices KIJ , LIJ ,
MIJ and QI are given by

KIJ =
∫
Ωs

VT
dIDBJdΩ−

∫
Lu

VINDBJdΓ (16)

LIJ =
∫
Ωs

VT
dIDBJdΩ+

∫
Ωs

V
T
dIDBJdΩ

−
∫
Ωs

VT
dIDBJ divvdΩ (17)

MIJ =
∫
Lu

VINDBJ(v ·n)HdΓ−
∫
Lu

VINDBJdΓ

(18)

QI =
∫
Ωs

VI
(
ḃ +bdivv

)
dΩ

+
∫
Lt

VI

[
ṫ + t(v ·n)H

]
dΓ (19)

It should be noted that the equation (16) is the
same as the equation (16) in Wang, Zhou and
Shan (2005). See Wang, Zhou and Shan (2005)
for the explicit form of BJ , N, D, VI and VdI in
2D elasto-statics problem. Matrices BJ and VdI

are defined:

BJ =

⎡
⎣v1,1φJ,1 +v2,1φJ,2 0

0 v1,2φJ,1 +v2,2φJ,2

v1,2φJ,1 +v2,2φJ,2 v1,1φJ,1 +v2,1φJ,2

⎤
⎦

(20)

VdI =

⎡
⎣v1,1NI,1 +v2,1NI,2 0

0 v1,2NI,1 +v2,2NI,2

v1,2NI,1 +v2,2NI,2 v1,1NI,1 +v2,1NI,2

⎤
⎦
(21)

For 2D cases, equation (16) denotes two algebraic
equations containing 2N unknown nodal displace-
ment sensitivities for one sub-domain. Loop over
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all the sub-domains, the global algebraic system
is obtained without ‘assembly’ process.

Ku̇ = F′ (22)

In above equation, matrix F′ is called external fic-
titious force [Bobaru and Mukherjee (2001)]. Ma-
trix K is the global stiffness matrix same as the
stiffness matrix of structural analysis. Thus, the
stiffness matrix in structural analysis stage can be
stored and used for DSA purpose, which can re-
duce computational costs. By solving equation
(22) for u̇, ε̇εε(u) and σ̇σσ (u) at any desired position
can be approximated as:

ε̇εε(u) =
n

∑
I=1

BI u̇I −
n

∑
I=1

BIuI (23)

σ̇σσ(u) = Dε̇(u) (24)

From the equation (20)-(21), it is observed that
the DSA results will strongly depend on the de-
sign velocity field. Applying an inappropriate ve-
locity field may lead to inaccurate DSA results.
Although the velocity field for a given problem
is not uniquely defined, the design velocity field
must meet both a regularity requirement and a
linear dependency requirement [Ródenas, Fuen-
mayor and Tarancón (2004)]. For regularity re-
quirement, the C0 design velocity field with in-
tegrable first derivatives is required. The linear
dependency requirement states that the design ve-
locity fields must linearly depend on the variation
of shape. There are several methods for comput-
ing the design velocity field. For example, bound-
ary displacement method, isoparametric mapping
method, Laplacian smoothing, exact differenti-
ation of nodal co-ordinates and boundary mesh
method are commonly used. Comparisons be-
tween these methods can be found in Ródenas,
Fuenmayor and Tarancón (2004). The boundary
displacement method [Chang, Choi, Tsai, Chen,
Choi and Yu (1995); Ródenas, Fuenmayor and
Tarancón (2004)] is used in this work. This
method generates the velocity field by solving an
auxiliary elasticity problem. As this method can
simulate the natural deformation of the continuum
structure, the obtained velocity field can be used
to update the nodal position in optimization itera-
tions.

The numerical implementation of DSA-LWF is
quite easy, and can be summarized as several ma-
jor steps shown in table 1.

4 Numerical results

Three numerical examples are presented to test
the validity and accuracy of the proposed DSA-
LWF approach. Three Gaussian points are used
to evaluate domain integrals over each Delaunay
triangle. For convergence study, the relative er-
ror of sensitivities [Fuenmayor, Oliver and Ró-
denas (1997); Ródenas, Fuenmayor and Tarancón
(2004)] with respect to a given design variable αm

is defined:

ηm =

√∣∣∣∣χmathrme
m −χn

m

χe
m

∣∣∣∣ (25)

where the superscripts e and n denote the ex-
act solutions and numerical solutions, respec-
tively. Andχm is the sensitivity of the displace-
ment norm:

χm =
∂ ‖u‖2

∂αm
=

∂
∂αm

⎛
⎝∫

Ω

uT udΩ

⎞
⎠ (26)

As the non-Sibsonian interpolation only have C0

continuity, a least square smoothing procedure is
employed to recover nodal stresses and their sen-
sitivities. The GiD [http://gid.cimne.upc.es] is
used to visualize the results in the third numeri-
cal example.

4.1 The pulling of a bar

A bar with E = 3×107Pa and ν = 0.3 is subject
to a uniaxial stress t = 1.0×104Pa in the x direc-
tion at the free end. The dimensions of the bar
and its boundary conditions are illustrated in fig-
ure 1(a). In this problem, the length of the bar
l is chosen to be the design variable. A linear
velocity distribution is used. The exact solution
of displacement sensitivity is given in Bobaru and
Mukherjee (2001). In the computation, irregular
nodal arrangement with 68 nodes is used as shown
in figure 1(b). The numerical solution for the dis-
placement sensitivity u̇x along the x at the top edge
are compared with the exact solution in figure 2.
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Table 1: The pseudo code for DSA-LWF computation

Structural analysis, the stiffness matrix K and nodal displacements are stored 

Loop over all nodes 

Loop over all the included triangles and determine Gaussian points 

Loop over all the Gaussian points 

Loop over all the natural neighbours of the Gaussian point 

Compute the contribution toF′ (right hand of Eq.15) 

End loop over the natural neighbours 

End loop over Gaussian points 

End loop over triangles 

End loop over nodes 

Solve the algebraic system (Eq.22) to get the nodal displacement sensitivities 

Evaluate displacement or stress sensitivities at any given point 

(a) Geometric model and its boundary conditions   (b) The discrete model with 68 irregular nodes 

Figure 1: The bar subject to a uniaxial stress

It can be seen that the DSA-LWF solution is in
excellent agreement with the exact one.

4.2 Lame’s problem

This problem is concerned with a thick cylin-
der of internal radius a=1.0m, and external radius
b=2.0m, which is subjected to uniform internal
pressure p=1.0Pa. Due to symmetry, only the up-
per right quadrant of the cylinder is modeled as
shown in figure 3(a). Symmetrical conditions are
imposed on the left and bottom edges. The inter-
nal radius a is chosen to be the design variable,
and the geometry changes linearly with changes
of the design variable a. The exact solution for
displacement, stresses and their sensitivities are

Figure 2: Comparison of displacement sensitivity
u̇x at the top edge of the bar
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(a) Geometric model and its boundary conditions     (b) The discrete model 

Figure 3: The Lame’s problem

given in Bobaru and Mukherjee (2001).

Figure 4: Displacement ux along x-axis at y=0.0m

The plane strain condition is assumed with ma-
terial properties E = 1.0× 106Pa and ν=0.3. In
the computation, 11 × 21regular nodal arrange-
ment shown in figure 3(b) is used. The compar-
ison between the exact and numerical results for
displacement and stresses at y=0.0m along x-axis
are shown in figure 4-5. Excellent agreement be-
tween the numerical solutions and exact ones are
achieved. The DSA-LWF displacement sensitiv-
ity at y=0.0m along x-axis against exact one is
shown in figure 6, from which we can see the two
solutions almost match perfectly. In figure 7, the
DSA-LWF stresses sensitivities at y=0.0m along
x-axis are compared with the exact ones. Obvi-

Figure 5: Stresses along x-axis at y=0.0m

Figure 6: Displacement sensitivity u̇x along x-axis
at y=0.0m



116 Copyright c© 2008 Tech Science Press CMES, vol.26, no.2, pp.107-121, 2008

Figure 7: Stress sensitivities along x-axis at
y=0.0m

ously, the accuracy of stress sensitivity is lower
than that of displacement sensitivity.

(a) 44 DOF      (b) 102 DOF     (c) 292 DOF 

Figure 8: Nodal discretization for convergence
study

Figure 9: Evolution of ηm

Three irregular nodal arrangements shown in fig-
ure 8 and one regular nodal arrangement shown in

figure 3(b) are used to carry out the convergence
study. Twenty-five Gaussian points are used to
evaluate the relative errors. The evolution of the
relative error in sensitivitiesηm is illustrated in fig-
ure 9, from which we can observed that the rela-
tive error decreases when the DOF increases. The
convergence rate slows down when the DOF ex-
ceeds 102, which may reflect the error introduced
by the inexact numerical integration. This inexact
numerical integration is mainly due to the non-
polynomial form of the non-Sibsonian interpola-
tion shape function [Cueto, Sukumar, Calvo, Ce-
goñino and Doblaré (2003)].

4.3 Shape optimization of a fillet

The aim of this example is to find the optimal
shape that minimizes the area without causing
yielding anywhere in the bar. Here, the young’s
modulus, Poisson’s ratio, admissible von Mises
stress and traction are chosen to beE = 1.0 ×
107Pa, ν = 0.3, [σ ] = 120.0Pa and t=100.0Pa, re-
spectively.

Table 2: Coordinates of the control points

Control Nodes Coordinates Movable
A (9.00, 9.00) N
N1 (10.30, 8.10) Y
N2 (12.25, 6.75) Y
N3 (14.20, 5.40) Y
C (15.50, 4.50) N

4.
5

20

B
C

4.5

9

9

1N
2N

3N

x

y

t

A

O

Figure 10: The geometric model, design bound-
ary and boundary conditions

Due to symmetry, only the upper half of the struc-
ture is modeled as shown in figure 10. The seg-
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ment AC is chosen to be the design boundary that
can be varied during the optimization. Five con-
trol points are used to model the design bound-
ary, namely A, N1, N2, N3 and C. As shown
in table 2, A and C are fixed, while N1, N2

and N3 are movable. The y-coordinates of mov-
able points on the design boundary are chosen to
be the design variables, i.e., (y_N1, y_N2, y_N3).
The initial values of design variables are (8.10,
6.75, 5.40). With certain design parameterization
method [Kim, Choi and Botkin (2003); Chang,
Choi, Tsai, Chen, Choi and Yu (1995)], the de-
sign boundary can be expressed as the function of
design variables, i.e. p(y_N1,y_N2,y_N3). It is re-
ported that the use of Akima spline interpolation
as the design boundary representation can lead
to the smooth design boundary after optimization
[Bobaru and Mukherjee (2001)], and therefore the
Akima spline interpolation is used in this work.
As the minimization of the total area is equivalent
to minimization of the area of triangle ΔABC, the
objective function is chosen to be the area of tri-
angle ΔABC. The inequality g(y_N1,y_N2,y_N3)
is that the maximum von Mises stress do not ex-
ceed the given admissible stress [σ ]. The mathe-
matical formulation of this optimization problem
can be written as:

minAΔABC =
∫

AC

p(y_N1,y_N2,y_N3)dx−4.5×6.5

(27a)

s.t.g(y_N1,y_N2,y_N3) = 1− σmax

[σ ]
≥ 0 (27b)

4.5 ≤ y_Ni ≤ 9.0, i = 1,2,3 (27c)

Figure 11: The discrete model with 339 irregular
nodes

Figure 12: The distribution of von Mises stress of
initial design

(a) Contour plot  

(b) Vector plot 

Figure 13: The velocity field vsum computed using
boundary displacement method

Figure 14: The displacement sensitivity u̇sum ob-
tained using DSA-LWF

The structure analysis is solved for plane strain
case. The nodal arrangement is shown in figure
11, which have 339 irregular nodes. There are
21 nodes are equal-space placed on the design
boundary. Among these nodes, the 1st , 5th, 11th,
17th and 21stnodes are corresponding to the con-
trol points A, N1, N2, N3 and C respectively. The
stress distribution of the initial structure is shown
in figure 12. The severe stress concentration is
observed and the maximum stress is 187.06Pa,
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Figure 15: Displacement sensitivity u̇x along the
line OC

Figure 16: Displacement sensitivity u̇y along the
line OC

which exceeds the admissible one by over fifty
percent. The design velocity field (vector sum)
with respect to design variable y_N3 of the ini-
tial design is shown in figure 13. As we can see,
the velocity value at the control point N3 is unity
and decreases to zero as the distance from that
control point increases. The distribution of dis-
placement sensitivity (vector sum) with respect
to design variable y_N3 is illustrated in figure 14.
The displacement sensitivity component u̇x and u̇y

along the line OC obtained by the DSA-LWF are
compared with those obtained by the finite differ-
ence method (FDM, perturbation=0.001) in figure
15-16, where perfect matches are observed.

Due to the nonlinear property of shape optimiza-
tion problem, the Sequential Quadratic Program-

Figure 17: The iteration history

Figure 18: The final optimal design: The geomet-
ric model, discrete model and the distribution of
von-Mises stress of the optimal design

ming method (SQP) in Bobaru and Mukherjee
(2001) is used to solve the minimization problem.
In figure 17, the iteration history for the objec-
tive function is illustrated. From this figure, we
can observe that the value of objective function
is decrease from 14.625m2 to 7.03m2 after only
four iterations, which is quite close to the opti-
mal value, i.e., 6.98m2. The high convergence
rate benefits from the accurate sensitivities ob-
tained from DSA-LWF. In figure 18, the optimal
design is illustrated, where no oscillating design
boundary is observed. The severe stress concen-
tration disappeared and there are 13 nodes out
of 21 nodes on the design boundary whose von
Mises stresses approach admissible one. Satis-
fied result is obtained after the optimization even
though only three design variables are used. Also,
the optimization process is totally automatic, and
absolutely no remeshing processes are needed.
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5 Conclusions

The design sensitivity analysis method based on
the local weak form (DSA-LWF) is proposed in
this paper. The numerical examples show the ob-
tained DSA-LWF solutions are valid and accurate.
This method possesses the following properties:

(1) No additional background meshes are needed
to integrate the weak form and no assembly
process is needed to generate the global stiff-
ness matrix because the local weak form is
used instead of global weak form. No user-
defined parameters (e.g., penalty parameter
and size of supports of weight functions) are
needed.

(2) More accurate solution can be obtained, as
the differentiation is taken before the dis-
cretization. The calculation of derivatives of
shape functions with respect to design vari-
ables is avoided.

(3) Drawbacks related to the use of FEM are
eliminated because the NNPG is used to dis-
cretize the continuous form of DSA formu-
lation. The accuracy of the DSA-LWF solu-
tions will not degenerate during optimization
iteration as no explicit mesh is needed to in-
terpolation the field variable and their sensi-
tivities.

(4) The numerical implementation of this method
is quite easy and can be integrated into the
NNPG code, where the stiffness matrix of the
structural analysis can be stored and reused in
DSA calculation.
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