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Transient Coupled Thermoelastic Contact Problems Incorporating Thermal
Resistance: a BEM Approach
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Abstract: In the present paper a boundary el-
ement procedure is formulated to treat two-
dimensional time dependent thermo-elastic con-
tact problems incorporating thermal resistance
along the contacting surfaces. The existence of
pressure-dependent thermal contact leads to cou-
pling of temperature and stress fields. Therefore,
the inherent non-linearity of the problem demands
simultaneous treating of both thermal and me-
chanical boundary integral equations while iter-
ative procedures are introduced to ensure equi-
librium of mechanical and thermal contact con-
ditions at each step of the process. The transient
behavior of interfacial cracks in bimaterial solids
when undergo thermal shock in the presence of
partial crack closure and thermal contact resis-
tance may be an interesting aspect of engineering
design. For this purpose the methodology is ap-
plied on a thermal barrier coating system (TBC).
Near crack tip singularities of temperature and
displacement fields are modeled through appro-
priate quarter-point singular elements. Fracture
parameters are evaluated from nodal tractions of
singular elements utilizing proper formulas. Nu-
merical results are compared with available solu-
tions from the literature, where possible. Good
agreement between them can be found.

Keyword: Thermal shock; coupled analysis;
BEM; Thermal contact resistance; Interfacial
crack; thermal barrier coating.

1 Introduction

In many technological problems the heat ex-
change between two bodies in contact may be
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of high interest. The presence of imperfect con-
tact and thermal resistance, which depends on
the pressure between the contacting faces, leads
to coupling of the thermal and stress field in
such problems. Several studies dealing with heat
transfer and thermoelastic problems take into ac-
count the imperfect contact and thermal resistance
[Barber and Comninou (1983); Comninou and
Barber (1984); Blandford and Tauchert (1985);
Sih and Chen (1986); Kuo (1990); Zavarise,
Wriggers, Stein and Schrefler (1992); Alonso
and Garrido (1995); Alonso, Garrido, and Foces
(1995); Kishimoto, Inoue and Shibuya (1995);
Pantuso, Bathe and Bouzinov (2000); Martynyak,
Honchar and Nahalka (2003); Hattiangadi and
Siegmund (2005); Giannopoulos and Anifantis
(2007)]. Among them there are analytical and
numerical studies assuming time dependent or
steady state thermoelasticity. A variety of ther-
moelastic problems has also been treated by sev-
eral researchers employing advanced numerical
methods [Chen and Liu (2001); Shiah, Guao and
Tan (2005); Ching and Chen (2006); Sladek,
Sladek, Zhang and Tan (2006)].

However, only a part of all the aforementioned
studies considers the thermal resistance indepen-
dent of the contact pressure. Additionally, over
the last two decades there are not many published
works about procedures capable of solving ther-
moelastic fracture problems of cracks which have
their faces in full or partial contact incorporating
in analysis the thermal contact resistance [Bar-
ber and Comninou (1983); Comninou and Barber
(1984); Sih and Chen (1986); Kuo (1990); Shiah
and Tan (2000); Martynyak, Honchar and Na-
halka (2003); Hattiangadi and Siegmund (2005);
Giannopoulos and Anifantis (2007)].

Interfacial cracks between solids with mismatch
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in material properties, under environmental ther-
mal changes have attracted considerable atten-
tion in the design of various composite structures.
Special mechanical and thermal contact condi-
tions must be employed in order to simulate re-
alistically the contact phenomena and to evaluate
the fracture parameters. The transient behavior of
thermally stressed interfacial cracks, existing be-
tween dissimilar media, was examined by Kokini
and Reynolds (1991). However, there is a lack of
published works based on numerical methods in
which the applied thermal conditions result in the
closure of the crack. Few are as well, the analyt-
ical solutions given in the literature [Barber and
Comninou (1983); Comninou and Barber (1984);
Rizk Abd El-Fattah (1993); Martynyak, Honchar
and Nahalka (2003)] involving crack closure phe-
nomena caused by thermal loading. Since the
non-linearities and the imposed contact condi-
tions are located at the boundaries, the boundary
element method (BEM) is a suitable technique for
the analysis of this class of problems [Martinez
and Dominguez (1984); Raveendra and Baner-
jee (1992); Alonso and Garrido (1995); Alonso,
Garrido, and Foces (1995); Katsareas and Anifan-
tis (1995); Kishimoto, Inoue and Shibuya (1995);
Giannopoulos and Anifantis (2007)].

The demand for durable materials that can un-
dergo extreme thermal environmental conditions
turned the researcher’s interest to thermal barrier
coatings (TBCs), [Kokini and Reynolds (1991);
Rangaraj and Kokini (2003); Arai, Okajima and
Kishimoto (2007)] which provide thermal protec-
tion to the metallic substrates. However, these
coatings have integrity problems, due to the ma-
terial properties mismatches between the coating
and the substrate and interfacial cracks can initiate
in the presence of the developed stress field.

In the present study a BEM formulation, im-
plemented in a home made computer code, is
proposed for the solution of transient coupled
problems of thermo-elasticity by assuming con-
tact pressure-dependent thermal contact resis-
tance (TCR) between contacting areas of dissimi-
lar media. The formulation is based on the bound-
ary integral equations for 2D time-dependent
thermo-elasticity. A general contact problem of

two solids with different material properties is
firstly investigated to verify the applicability of
the formulation. Afterwards, the proposed BEM
procedure is utilized in order to characterize ther-
momechanical fracture at the interface of ther-
mal barrier coatings (TBC) under thermal shock.
In this step, the impact of TCR of the partiality
closed crack faces on the fracture severity is ex-
amined for such systems. Extensive parametric
and sensitivity analyses in regard to the level of
mismatch in material properties and several cases
of friction coefficient and heat convection are ex-
amined assuming different scenarios of TCR. In
essence the application of the proposed technique
on TBC, yields valuable information for the de-
sign and fracture assessment of such systems. The
singularities around the crack tip are approached
using quarter-point elements (QPEs) [Martinez
and Dominguez (1984); Katsareas and Anifantis
(1995)]. Appropriate solutions from the literature
are used, where possible, in order to validate the
methodology and results.

2 Coupled boundary element analysis con-
sidering thermal contact resistance

2.1 Application of BEM to quasi-static
thermo-elasticity

In the case of a two-dimensional solid defined
on domain Ω of boundary Γ, the time dependent
thermo-elastic behavior, in the absence of internal
heat sources, is described by the following bound-
ary integral equations [Brebbia, Telles and Wro-
bel (1984); Raveendra and Banerjee (1992)]:

c(ξ )θ (ξ , tF)+
tF∫

t0

∫
Γ

θ (x, t)Q(x,ξ , tF, t)dΓ(x)dt

−
∫
Ω

θ 0(x)Q(x,ξ , tF, t0)dΩ(x)

=
tF∫

t0

∫
Γ

q(x, t)Θ(x,ξ , tF, t)dΓ(x)dt (1)
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ci j(ξ )u j(ξ , tF)+
∫
Γ

u j(x, tF)Ti j(x,ξ )dΓ(x)

=
∫
Γ

t j(x, tF)Ui j(x,ξ )dΓ(x)

+
tF∫

t0

∫
Γ

[
θ (x, t)Qi(x,ξ , tF, t)

−q(x, t)Θi(x,ξ , tF, t)
]
dΓ(x)dt (2)

where i and j correspond to directions xi and
x j, respectively, with i, j = 1,2, x and ξ are
points on the boundary Γ, c and ci j are con-
stants depending on the geometry at point ξ ,
θ and q denote temperature and heat flux, u j

and t j denote components of the boundary dis-
placement vector and traction vector, respec-
tively, t is the time at which the responses are
calculated, t0 and tF are the initial and final
time points and θ 0 is the initial temperature.
The functions Θ(x,ξ , tF, t), Q(x,ξ , tF, t), Ti j(x,ξ ),
Ui j(x,ξ ), Θi(x,ξ , tF, t), Qi(x,ξ , tF, t) represent
the fundamental solutions for two-dimensional
time-dependent thermo-elasticity available in the
literature [Brebbia, Telles and Wrobel (1984)].
The boundary of the body is discretized into a
number of standard 3-node quadratic isoparamet-
ric elements. Over each element the variations
of the geometry, displacements and tractions are
described in terms of nodal values, by the cor-
responding shape functions [Brebbia, Telles and
Wrobel (1984)]. It is mentioned that standard
quadratic elements are used everywhere in the
boundary except for the crack tips where special
quarter-point elements (QPEs) are utilized. Dis-
critization of the boundary Γ and assembly of
equations lead to the transformation of Eq. (1)
and (2) into the following matricial form:

[
Q1

]{
θ F

}
=

[
Θ1

]{
qF

}
+

{
BF

}
(3)

[T ]
{

uF}
= [U ]

{
tF

}
+

{
B

F
}

(4)

where F is the current time point and θ f , q f are
the nodal temperatures and heat fluxes at the time
instant f = 1,F, respectively. The vectors {BF},

{BF} are defined as:

{
BF}

=
F−1

∑
f=1

(
[ΘF+1− f ]{q f}− [QF+1− f ]{θ f})

(5)

{BF}=
F

∑
f=1

(
[QF+1− f ]{θ f}− [ΘF+1− f ]{q f}

)

(6)

where [Q], [Θ], [T ], [U ], [Q], [Θ] are coefficient
matrices containing the contributions from Qi, Θi,
Ti j, Ui j, Qi, Θi, respectively. The vectors {θ},
{q}, {u}, {t} represent nodal boundary values of
temperatures, heat fluxes, displacements and trac-
tions, respectively. A constant time interpolation
is employed (Δt = t f −t f−1 = const) and thus only
the matrixes [Q1] and [Θ1] need to be computed
and stored in memory for each additional time
step [Brebbia, Telles and Wrobel (1984); Raveen-
dra and Banerjee (1992)] during the analysis. The
singular diagonal terms of matrixes [Q1] and [Θ1]
containing the function c(ξ ) and ci j(ξ ), respec-
tively, are obtained through the rigid body tech-
nique [Brebbia, Telles and Wrobel (1984)].

2.2 Thermal and mechanical contact condi-
tions and assembly of equations

Consider two-dimensional body defined in the do-
main Ω(Γ), which is bounded by surface Γ. It
is assumed that the domain of the problem is
divided into sub-domains IΩ and IIΩ, such that
Ω(Γ) = IΩ(IΓ)+ IIΩ(IIΓ) (see Fig. 1). Part of the
boundary of the bodies IΩ and IIΩ, has the possi-
bility to come into contact and they are defined as
master and slave surfaces.

If the boundary surfaces are descritized in ele-
ments then a number of master-slave node pairs
are created. In the general case, the boundary con-
tact zone consist of three possible contact zones,
Γo,Γα ,Γs, which correspond to the open, adhe-
sion and slip state, denoted as o, a, s, respec-
tively. Additionally, an interface also exists which
is characterized by full geometric continuity and
compatibility. The Coulomb’s law of friction is
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Figure 1: Thermomechanical contact of two elas-
tic bodies

employed to account for frictional contact be-
tween the bodies. The mechanical contact condi-
tions are expressed in an average local coordinate
system (n, t), between two nodes of a node-pair,
being in one of those contact states (see Fig. 1).
Thermal contact conditions are defined according
to the assumption that the heat flow between the
contacting areas is dependent on the thermal resis-
tance R, which is regarded as a function of con-
tact pressure. The thermal and mechanical con-
tact conditions at a time instant F for a node-pair
in adhesion, slip, open state, as well as along the
interface are summarized in Tabs. 1 and 2, respec-
tively. In these tables μ represents the coefficient
of friction, n,t the local tangential and normal di-
rection and gF

n expresses the possible initial nor-
mal gap between the nodes of a node-pair. If Eqs.
(3), (4) are applied to both subregions then the
matricial form of equations for the subdomains IΩ
and IΩ becomes for the thermal part of solution:

[IQ1]{Iθ F}
=

[IΘ1]{IqF}
+

{IBF}
(7)[IIQ1]{IIθ F}

=
[IIΘ1]{IIqF}

+
{IIBF}

(8)

and for the mechanical part:

[IT
]{IuF}

=
[IU

]{I tF
}

+
{

IB
F
}

(9)
[IIT

]{IIuF}
=

[IIU
]{II tF

}
+

{
IIBF

}
(10)

Table 1: Thermal conditions
Adhesion – Slip Open Interface 

FIIFI qq −= FIIFI qq −= FIIFI qq −=
FIF

n
IFIIFI qtR )(−= 0qFI = FIIFI =

Table 2: Mechanical conditions
Adhesion Slip Open Interface

F
t

IIF
t

I tt −= F
t

IIF
t

I tt −= F
t

IIF
t

I tt −= F
t

IIF
t

I tt −=
F
n

IIF
n

I tt −= F
n

IIF
n

I tt −= F
n

IIF
n

I tt −= F
n

IIF
n

I tt −=
F
t

IIF
t

I uu = F
n

IF
t

I tt ±= 0tFt
I = F

t
IIF

t
I uu =

F
n

F
n

IIF
n

I guu −= F
n

F
n

IIF
n

I guu −= 0tFn
I = F

n
IIF

n
I uu =

If the thermal conditions of Tab. 1 are substituted
into Eqs. (7)-(8) the resulting equations can be
assembled to the following equation referring to
the thermal part of the problem:

[
IQ 0 IQi

IQa
IQs

IQo 0
0 IIQ IIQi

IIQa
IIQs 0 IIQo

]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Iθ F

IIθ F

Iθ F
i

Iθ F
α

Iθ F
s

Iθ F
o

IIθ F
o

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
[

IΘ 0 IΘi
IΘα

IΘs
IΘo 0

0 IIΘ −IIΘi M1 M2 0 IIΘo

]

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

IqF

IIqF

IqF
i

IqF
α

IqF
s

IqF
o

IIqF
o

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

+
{

BF}

(11)

where M1 = −IIΘα −R(ItF
n,α)IIQα and M2 =

−IIΘs −R(ItF
n,s)IIQs.

In the same manner a solvable equation involving
the mechanical part of the problem is derived by
assembling Eq. (9), (10) according to the mechan-
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ical contact conditions provided in Tab. 2 above:

[
IT 0 ITi

I Ta
ITt,s

ITn,s 0 ITo 0
0 II T IITi

IITa 0 IITn,s
II Tt,s 0 II To

]

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

IuF

IIuF

IuF
i

IuF
a

IuF
t,s

IuF
n,s

IIuF
t,s

IuF
o

IIuF
o

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
[

IU 0 IUi
IUa M3 IUo 0

0 IIU −IIUi −IUa M4 0 IIUo

]

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ItF

IItF

ItF
i

ItF
α

ItF
ns

−I tF
o

ItF
o

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

+
{

B
F
}

(12)

where M3 = IUn,s±μ IUt,s and M4 =
−(IIUn,s±μ IIUt,s).
In the above equation the subscripts o,a, s, denote
the nodes being in open, adhesion and slip state,
respectively. Matrices with these subscripts refer
to the average local coordinate system in which
the corresponding nodes are analyzed (see Fig. 1).

2.3 Iterative procedure for the coupled analy-
sis

It is assumed that the total response time is di-
vided in a number of equal time steps. Each step
corresponds to a specific time point tF which rep-
resents the state SF . The values ItF

n,a, ItF
n,s which

express the normal contact pressure along the ad-
hesion and slip areas, are required to evaluate
the thermal resistance terms R(ItF

n,a), R(ItF
n,s) and

hence to make Eq. (11) solvable for the state
SF . Due to the fact that ItF

n,a, ItF
n,s are not known

and the mechanical part of the problem is not
solved yet for the state SF , it is assumed that
R(ItF

n,a) = R(ItF−1
n,a ), R(ItF

n,s) = R(ItF−1
n,s ) where

R(ItF−1
n,a ), R(ItF−1

n,s ) correspond to the previous

state SF−1 and finally Eq. (11) is solved for the
state SF−1. Afterwards, the mechanical part of
the problem is computed through Eq. (12) con-
sidering the contact status of the previous state
SF−1. At this stage, every node-pair is examined
according to Tab. 3 in order to check if any viola-
tions in regard with the geometrical compatibility
and traction continuity have occurred. The change
in contact or open state is initially checked using
the gap gF−1

n of the previous state SF−1. For the
node-pair closest to a change, appropriate changes
from open to contact state, from adhesion to slip
state, and vise versa are made and the new con-
tact condition is applied. Equation (12) is solved
again for the state SF . The node-pairs are checked
again (see Tab. 3) and if no changes from contact
to open state or vice versa occurs then the new
contact status has been evaluated for the state SF .
However, if additional node-pair come to contact
or open, additional iterations take place until the
imposed constraints of Tab. 3 are satisfied.

Table 3: Definition of contact status
Assumption Decision 

 Open Contact

 Open 1−>− F
n

F
n

IF
n

II guu 1−≤− F
n

F
n

IF
n

II guu

Contact 0≥F
n

I t 0<F
n

I t

 Adhesion Slip

Adhesion )( F
n

IF
t

I tt < )( F
n

IF
t

I tt ≥

Slip 0)( >−⋅ F
t

IIF
t

IF
t

I uut 0)( ≤−⋅ F
t

IIF
t

IF
t

I uut

Next, the thermal resistance terms are updated
according to the computed tractions ItF

n,a, ItF
n,s.

Equation (11) is then reconstructed and solved
with the new contact status and new thermal re-
sistance terms R(ItF

n,a), R(ItF
n,s). Having the new

thermal solution for the state SF known, Eq. (12)
is resolved and the above-described process con-
tinues iteratively. During this iterative procedure,
Eqs (11), (12) are solved repeatedly until the con-
tact status does not change and the calculated ther-
mal resistance terms of all adhesion-slip node-
pairs of the last iteration Rlast are approximately
equal to the corresponding terms of the previous
iteration Rprev. If the aforementioned criteria are
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fulfilled then the thermal and mechanical solution
of state SF is finalized and the analysis proceeds
to the next time point tF+1 as far as the computa-
tions at the final time point N is completed. This
criterion concerning thermal resistance values is
expressed as:

∣∣∣∣Rlast −Rprev

Rlast

∣∣∣∣×100 ≤ δ (13)

where δ is a small numerical quantity. The last
criterion ensures the consistency between thermal
and mechanical solutions along the contact zone
since the thermal resistance couples the temper-
ature and stress fields. The procedure described
above is illustrated in the flow-chart of Fig. 2,
where open and contact are denoted as o, c, while
the adhesion and slip state when contact occurs
are noted as a and s, respectively. It is noted
that for the first time point t0 it is assumed that
R(It1

n,a) = 0 and R(It1
n,s) = 0. Finally, it should be

mentioned that the convergence of the numerical
solution at any time point is controlled through
the typical procedures used in such type of prob-
lems and it is improved when more time steps are
used and therefore fewer iterations needed until
the criteria mentioned above are satisfied.

Figure 2: Iterative procedure of the coupled anal-
ysis

3 Characterization of interfacial fracture

The present study deals with the computation of
fracture characteristics of time-dependent ther-
mally loaded interfacial cracks, existing between
dissimilar media. Specifically, these cracks lie in
the bond line between two homogeneous isotropic
elastic materials. For these bimaterial interface
cracks, temperature and heat flux field have an
oscillatory behavior near the crack-tip, regard-
less of the thermal conductivity mismatch [Chen
and Huang (1992)]. Thus, as it has been pre-
viously mentioned, the well-known quarter-point
elements (QPEs) are used for the representation of
the near crack tip temperature and displacement
field [Martinez and Dominguez (1984); Katsar-
eas and Anifantis (1995)] while traction-singular
quarter-point elements (TSQPEs) are utilized to
account for the near crack tip heat flux and trac-
tion field [Martinez and Dominguez (1984); Kat-
sareas and Anifantis (1995)]. In order to analyze
the fracture behavior, the complex stress intensity
factor for interfacial cracks in bimaterials [Rice
and Sih (1965)] defined by the following relation-
ship is introduced:

K = KI + iKII (14)

or equivalently:

K = K0eiψ (15)

where K0 =
√

K2
I +K2

II and ψ = tan−1(KII/KI)
are the magnitude and the argument of K, respec-
tively.

The magnitude of K0 can be calculated by the
traction formula [Gao and Tan (1992)] according
to the following relationship:

K0 =
√

2π�

cosh(πε)
[(tA

s )2 +(tA
n )2]1/2 (16)

where s and n refer to the tangential and normal
direction, respectively and � is the length of the
crack tip element.

Furthermore:

ε = 0.5π lnδ (17)

δ = (μ1 +κ1μ2)/(μ2 +κ2μ1) (18)
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where μd is the shear modulus of the domain
d =1, 2 and κd = 3 − 4νd for plane strain or
κd = (3 − 4νd)/(1 + νd) for plane stress. The
superscript A, in Eq. (16) states the node at the
crack tip as illustrated in Fig. 3. This formula is
very simple since it demands only the calculation
of the traction components at the crack tip and it
is preferred in the present analysis against the dis-
placement formulas. The accurate evaluation of
the crack-tip tractions is achieved using a traction
singular quarter point element ahead of the crack
tip and fine numerical integration. These trac-
tions are extracted directly by the solution of Eq.
(12). Therefore, any computation of stresses on
the boundary of the crack through hyper-singular
integrals is not necessary.

The fracture characterization of TBC systems,
which examined in this study, is made through the
calculation of the complex thermal stress intensity
factor and the strain energy release rate (SERR) G
which is a measure of their fracture resistance ef-
ficiency. The SERR is related to the magnitude of
complex thermal stress intensity according to the
following equation:

G =
(K0)2

4

(
1−νC

μC
+

1−νS

μS

)
(19)

4 Numerical results and discussion

At fist the developed formulation is tested through
a simple benchmark problem considering imper-
fect transient thermal contact between two bodies
with mismatch in their material properties. The
results are compared with data found in the liter-
ature and computation by finite elements. After-
wards, the case of a time dependent problem of a
thermal barrier coating system with an interfacial
central crack is examined. A series of paramet-
ric analyses is carried out to account for the crack
severity when several scenarios of TCR and com-
binations of coating and substrate properties are
considered. Solutions available in the literature
are used for comparisons where possible.
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Figure 3: Quarter point elements’ configuration at
the crack tip

4.1 Transient thermal analysis of two plates
with thermal contact resistance

For the two rectangular plates of Fig. 4a plane
stress condition is presumed. The length of the
plates is L= 0.1 m. The aspect L/H is equal to 2.
The material properties are as follows: Young’s
modulii EA = EB = 2.1× 1011Pa, Poisson’s ra-
tios νA = νB = 0.3, coefficients of thermal expan-
sion αA = 2.25αB = 22.5 ·10−6 °C−1 and thermal
conductivities kA = 1.5 · kB = 60W/m2 °C. The
boundary conditions of the problem are shown in
Fig. 4a and the boundary element discretization
that was used for the computations is provided
in Fig. 4b. It should be noted here that double
boundary nodes are placed at the corner points in
both thermal and mechanical analyses to account
for the discontinuity of tractions and heat fluxes
as the outward normal has different direction at
each side of the corner. Existence of pressure-
dependent TCR is assumed between the contact-
ing surfaces and the cases of TCR-normal trac-
tion relations considered are [Kishimoto, Inoue
and Shibuya (1995)]:

R0 = 0 (20)
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R1(t2) = 0.0002×exp
(
10−8t2

)
(21)

R2(t2) = 0.002×exp
(
10−8t2

)
(22)

R3(t2) = 0.02×exp
(
10−8t2

)
(23)

where t2 is the normal contact traction in Pa unit.
It is noted that Eq. (20) corresponds to perfect
thermal contact.
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Figure 4: Two rectangular plates in thermome-
chanical contact

The transient behavior of the system and the evo-
lution of temperature and stress fields are exam-
ined. A time period ttot = 200 sec is considered
and a time step Δt = 2 sec is utilized. The compu-
tations were performed for δ = 0.001 (Eq. (13)).

Figure 5 shows the final temperature distributions
along x2 axis at x1 = L/2 and Fig. 6 illustrates
the variation of the final normal contact traction
t2. Due to the symmetry, only the results for
x1 ∈ [0, L/2] are demonstrated.

0 0.05 0.1
-50

0

50
   Kishimoto et al. (1995)

R = R0

R = R1

R = R2

Present transient
R = R0

R = R1

R = R2

Material AMaterial B

x2 (m)

T
em

pe
ra

tu
re

 (
o C

)

Figure 5: Temperature distribution for different
thermal contact resistance scenarios
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Figure 6: Distribution of normal traction at the
interface for different thermal contact resistance
scenarios

The results of analyses are depicted in Figs. 5, 6
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for temperature and normal traction, respectively
and are plotted against those given by Kishi-
moto, Inoue and Shibuya (1995) which refer to
the steady state of this problem. Apparenlty, the
large time period of 200 sec, which has been
considered in the present transient analysis, it is
enough to derive the steady state solution. In Fig.
5, the temperature distribution along the thick-
ness of the bimaterial solid exhibits a jump at the
interface because of the existence of TCR. The
higher the TCR is, the higher the jump in temper-
ature since the heat conduction between the sur-
faces is restricted. In Fig. 6, the normal traction
along the interface is presented for three levels of
TCR. The analysis showed that higher values of
thermal resistance lead to the increase of normal
contact stress while the pick value appears at the
edge of the contacting faces. Obviously, results of
the present coupled analysis compares well with
the steady state solution of Kishimoto, Inoue and
Shibuya (1995).

The temperature and stress distributions along the
same cross sections as presented in Figs. 5-6, at
several time points are illustrated in the series of
Figs. 7a-7b and 8a-8b, respectively.

Specifically, Figs. 7a-7b depict the temperatures
at 20, 40 and 200 seconds assuming TCR R1 and
R2, respectively (Eqs. (21), (22) and Figs. 8a, b
provide the normal traction t2 for the above cases.
In all graphs results of the present boundary ele-
ment analysis are compared to results of finite ele-
ment analyses conducted by the authors due to the
lack of transient analysis with pressure-dependent
TCR in the literature. The finite element results
were obtained using the commercial package AN-
SYS. According to Figs. 7a-7b the distribution
of temperature is not-linear during the first sec-
onds of the heat exchange and gradually it tends
to the linear profile which represents the steady
state. The jump in temperature is increased as the
heat exchange is evolved.

On the contrary, Figs. 8a-8b show a similar dis-
tribution of the normal traction at any time instant
for both levels of TCR. The contact pressure is
increased with time taking its maximum values
at the steady state. In all cases the results of fi-
nite and boundary element analyses compare fa-
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Figure 7: Comparison between temperature dis-
tributions computed by FEA and BEA at different
time points for TCR: (a) R = R1 and (b) R = R2

vorably encouraging the present formulation.

4.2 Thermal shock of a TBC system with an
interfacial central crack

The developed boundary element formulation is
adopted in order to study the transient fracture
problem of the TBC system shown in Fig. 9a.
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Figure 8: Comparison between normal traction
distributions along the interface computed by
FEA and BEA at different time points for TCR:
(a) R = R1 and (b) R = R2

Due to the symmetry only the half of the system
modeled. The problem consists of two subdo-
mains, a coating layer of thickness Hc and a sub-
strate of thickness Hs = 10Hc. An interfacial cen-
tral crack of length 2a = 2(Hs/8) exists between
the two layers. Fig. 9a shows the boundary condi-

tions and geometrical aspects of the BEM model
and the mesh is given in Fig. 9b. Similarly to the
problem examined in 4.1, double boundary nodes
are used at any corner point as well as at the crack
tip.
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Figure 9: Model of a TBC system with an interfa-
cial central crack

After tests it was proved that a length L = 10a
is more than sufficient for the time-dependent so-
lution to converge to the solution of the infinite
problem (for L > 10a the vertical constraints on
the right would not have any effect on the solu-
tion). The material that is used as coating is Zirco-
nia (ZrO2), while nodular cast iron is used as sub-
strate. In essence, it is a simple ceramic-to-metal
bond and not an integrated TBC system, since
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the metallic bond coat, which is applied between
the ceramic top coat and the substrate, [Rangaraj
and Kokini (2003); Arai, Okajima and Kishimoto
(2007)]] is not considered here, for reasons of
simplicity. The material properties are provided
in Tab. 4. The TBC system has an initial temper-
ature T0 and experiences a thermal shock as the
free surface of the coating is heated by the ambi-
ent temperature Tα � T0 considering a coefficient
of heat convection h0=50 W/m2 °C. Plane strain
conditions are assumed.

Table 4: Material properties of the thermal barrier
coating system

Property Zirconia Nodular
(coating) cast iron

(substrate)
Young Modulus (GPa) 200 168
Poisson’s ratio 0.23 0.31
Coefficient of thermal
expansion (°C−1)
×10−6

10.2 13.7

Thermal conductivity
(W/m°C)

2.2 48.9

Density (kg/m3) 5900 7290
Specific heat (J/kg °C) 460.6 418.4

This transient problem has been examined by
Kokini and Reynolds (1991) using finite elements.
In that work, the problem was solved for a finite
length of L =32a assuming frictionless and adia-
batic contact. Since it was proved in the present
work that for L > 10a the same transient behavior
of G∗ is obtained, a comparison between the two
studies for the case μ = 0 and R = ∞ can be made.
In order to achieve convergent time behaviors of
G∗, quarter point elements of lengths � = a/20
were selected. Constant time steps Δt∗=0.00162
for 0.00162 ≤ t∗ ≤ 0.0324 and Δt∗=0.0162 for
0.0324 ≤ t∗ ≤ 0.324 were utilized, since it was
proved that they were sufficient to produce con-
vergent solution. In order to reduce the computa-
tional effort, crack faces were discretized into 7 +
7 elements while both bodies were divided into 23
(substrate) + 22 (coating) elements. This coarse
mesh was selected after a mesh convergence test
which showed that finer meshes for the discretiza-

tion of the crack surfaces produce the same time
behaviors of G∗. The heating of the upper surface
of the coating results to the creation of compres-
sive tractions which finally lead to crack closure.
This adhesive or sliding contact is taken into ac-
count in order to determine the temperature field
around the crack lips. The lack of appropriate data
from the literature for the relation of thermal resis-
tance with the contact pressure for material used
in TBC systems leads to the consideration of func-
tion of Eqs. (20)-(23) for imperfect thermal con-
tact [Kishimoto, Inoue and Shibuya (1995)]. This
full or partial conductance may have significant
impact on the produced displacement and stress
field. The results are presented in terms of the
following non-dimensional parameters:

G∗ =
G

ECα2
C(ΔT )2HS

, t∗ =
kC t

ρC cCH2
S

(24)

The evolution of non-dimensional SERR G∗ is
presented in Fig. 10 for perfect, imperfect and
adiabatic contact (insulation) conditions. The
case considered here represents frictionless con-
tact (μ = 0). If insulation between the crack
faces is assumed the current results can be directly
compared to finite element results of Kokini and
Reynolds (1991).

The comparison reveals remarkable agreement
between the present methodology and FE results.
Apparently, the existence of pressure TCR has a
significant influence on the developed G∗. The ex-
treme cases of thermal insulation and perfect ther-
mal contact between the crack faces delimit the
values of G∗ and the higher the TCR the higher the
stress intensity leading to the upper bound of G∗

when adiabatic contact (R = ∞) is assumed. The
differences in G∗ values between these two cases
is about of an order of magnitude. Low TCR val-
ues reduce the jump in temperature at the interface
and the stress distribution derives lower strain en-
ergy release rates. The analyses give very similar
results when R0 (Eq. (20)) or R1 (Eq. (21)) is con-
sidered for the TCR-normal traction relation and
in essence R1 corresponds to perfect thermal con-
tact. Additionally, the time points at which the
peak values of G∗ is independent from the level
of TCR. Obviously, disregarding the partial con-
ductance between the crack faces in contact the
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Figure 10: Non-dimensional G∗ versus non-
dimensional time for several levels of thermal
contact resistance

fracture assessment of TBC systems lead to con-
servative estimation of their fracture resistance.

In Fig. 11, G∗ is plotted against the time for sev-
eral combinations of coefficient of friction and
TCR. The friction coefficient has not a remark-
able influence on G∗ because the normal con-
tact stresses has relatively low values resulting
to low tangential frictional stresses (Coulomb’s
law). Therefore, for reasons of computational
simplicity all the subsequent analyses consider
frictionless contact and results refer to the case of
μ = 0.

The peak values of G∗ are very sensitive to the
magnitude of the heat transfer coefficient h. Thus,
apart from the original case h0=50 W/m2°C the
problem was solved for additional heat transfer
coefficients. The results are summarized in Fig.
12 which show the variation of peak values of
SERR, G∗

peak, with respect to the ratio h/h0, re-
spectively. As it can be seen from Fig. 12 G∗

peak,
is rapidly increased for greater ratios h/h0 espe-
cially for higher values of TCR, exhibiting a lin-
ear behavior in this double logarithmic scale. This
diagram is an indication that assuming high TCR
or thermal insulation, the crack severity may be
overestimated for very intense thermal shocks.
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Figure 11: Non-dimensional G∗ versus non-
dimensional time for various combinations of
thermal contact resistance and coefficient of fric-
tion
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for different thermal contact resistance functions

The mechanical and thermal properties of a TBC
can be customized if it is composed of a num-
ber of layers, each one being a mixture of ceram-
ics and metal alloy of several volume fractions
[Rangaraj and Kokini (2003)]. Such combina-
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tions lead to a functionally graded TBC with prop-
erties different of those of the original ceramic
coating. The following parametric study was con-
ducted for ratios of thermal expansion coefficients
α∗ = αc/αs and thermal conductivities k∗ = kc/ks

where the indices c, s, denote the coating and sub-
strate respectively.

10-3 10-2 10-1

0

2

4

6

8

t*

G
*    

x 
  1

0-6

k* = 0.045 (initial)

k* = 0.1

k* = 1

R = R2

(a)

10-3 10-2 10-1

0

2

4

6

8

t*

k* = 0.045 (initial)

k* = 0.1

k* = 1

R = R3

G
*    

x 
  1

0-6

(b)
Figure 13: Effect of thermal conductivities ratio
on transient G∗ for TCR: (a) R = R2 and (b) R =
R3

Figures 13a-b depict the transient G∗, for various
k∗, when R2 or R3 (Eq. (22)-(23)) is considered.
The graphs show that the higher k∗ the lower the
SERR. This dependency is well pronounced for
both R2 and R3 and of course the higher TCR
R3 (Fig. 13b), yields higher G∗ values. A low
conductivity of the coating does not permit rapid
spread of the heat over the thickness of TBC when
the coating surface withstands a thermal shock.
Consequently, the temperature jump on either side
of the interface is high producing great SERR. On
the other hand the lower the mismatch in thermal
expansion coefficient a∗ the lower the developed
SERR. This is evident in Figs. 14a-b for R2 or R3,

respectively where the evolution of G∗ with time
is presented for several values of α∗.
Obviously, the effect of α∗ is more significant.
When increasing α∗ one order of magnitude, G∗

is increased two orders of magnitude. It is no-
ticeable that the transient behavior of the crack is
similar for every combination of TCR or material
incompatibility since the peak value of the non-
dimensional G∗ appears almost at the same time
t∗.
All cases examined above are summarized in Fig.
15 for thermal conductivity mismatch and Fig. 16
for thermal expansion mismatch in respect with
the peak value of SERR, G∗

peak since the time be-
havior is similar for any case.

These two graphs afford valuable information to
the designer of a TBC system. The failure resis-
tance of such system can be improved when the
thermal conductivities ratio k∗ is increased (see
Fig. 15) and the ratio of coefficients of thermal
expansion ratio α∗ is decreased (see Fig. 16) dis-
regarding the level of TCR between the contacting
crack faces. Additionally, for any material com-
bination the fracture assessment is highly sensi-
tive to the level of pressure-dependent TCR that
is incorporated in analysis. The results show that
the difference in G∗

peak when the extreme cases
of thermal insulation and perfect thermal con-
tact are adopted is about one order of magnitude.
Certainly, both hypotheses are not valid and an
intermediate level of resistance is representative
for this problem with partial crack face contact.
Therefore, considering adiabatic contact the crack
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Figure 14: Effect of thermal conductivities ratio
on transient G∗ for TCR: (a) R = R2 and (b) R =
R3

severity may be overestimated giving a conserva-
tive evaluation of the failure resistance.

5 Conclusions

A boundary element formulation capable of treat-
ing time-dependent, coupled thermoelastic con-
tact problems, where pressure-dependent thermal
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Figure 15: Sensitivity of the peak values of the
non-dimensional SERR to the combination of
thermal conductivities ratio with the level of TCR
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non-dimensional SERR to the combination of the
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resistance between contacting faces is involved,
was presented. The approach is based on sub-
regional technique and iterative procedure be-
tween time-increments. The time-evolution of
temperature within the thickness or at the inter-
face of two solids in contact can be easily com-
puted. In an effort to emphasize the impact of
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thermal contact resistance on the fracture assess-
ment the proposed methodology has been applied
to a thermal barrier coating system under thermal
shock when a stationary interface crack is present.
The consideration of different levels of thermal
contact resistance between the crack faces, espe-
cially when the heat flow is perpendicular to the
crack, may lead to conservative or optimistic con-
clusions about the fracture resistance of the sys-
tem utilizing as index the strain energy release
rate. The higher the thermal contact resistance is,
the higher the severity of the crack especially un-
der very high heating rates. Furthermore in the
framework of parametric analysis it was found
that the presence of coefficient of friction has a
little effect on the strain energy release rate. Also,
the lower the thermal conductivity of the coating
is, the higher the value of the strain energy release
rate. On the contrary lower values of thermal
expansion coefficient of the coating reduce the
SERR. Apparently, it can be concluded that the ef-
fect of pressure-dependent thermal resistance may
be considerable in cases of fracture assessment
of bimaterial solids under thermal shock and ap-
propriate boundary elements formulations can be
very efficient for the solution of this class of prob-
lems.
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