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Slow viscous motion of a solid particle in a spherical cavity

A. Sellier1

Abstract: The slow viscous and either imposed
or gravity-driven migration of a solid arbitrarily-
shaped particle suspended in a Newtonian liquid
bounded by a spherical cavity is calculated using
two different boundary element approaches. Each
advocated method appeals to a few boundary-
integral equations and, by contrast with previous
works, also holds for non-spherical particles. The
first procedure puts usual free-space Stokeslets
on both the cavity and particle surfaces whilst
the second one solely spreads specific Stokeslets
obtained elsewhere in Oseen (1927) on the par-
ticle’s boundary. Each approach receives a nu-
merical implementation which is found to be in
excellent agreement with accurate results avail-
able for spherical particles. The computations for
spheroidal or ellipsoidal particles, here accurately
achieved at a very reasonable cpu time cost us-
ing the second technique, reveal that the particle
settling migration deeply depends upon the grav-
ity and upon both its shape and location inside the
cavity.

Keyword: Stokes flow, wall-particle interac-
tions, spherical cavity, sedimentation, Green ten-
sor, boundary-integral equations.

1 Introduction

Many applications involve suspensions of solid
particles immersed in a Newtonian liquid with
uniform viscosity μ and density ρ . For dilute sus-
pensions particles ignore each other, at least at
the very first order, and it therefore becomes of
prime interest to determine the net hydrodynamic
force Fh and torque Th exerted on a solid parti-
cle translating and rotating in a quiescent liquid at
prescribed velocities U (the velocity of a point O′

attached to the particle) and W, respectively. In
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practice, the Reynolds number Re = ρVa/μ , with
a and V the particle length and velocity scales, is
small so that inertial effects are negligible and the
liquid experiences a quasi-static Stokes flow. In
the past decades the vectors Fh and Th have been
obtained within this widely-employed framework
using analytical or numerical treatments for either
spherical or non-spherical particles moving in un-
bounded or bounded liquid domains. When the
fluid is not bounded the only analytical results (for
three-dimensional particles, i. e. not for thin ones
such as a disk for instance) have been obtained
(see Happel and Brenner (1973)) for ellipsoidal
particles only. For a sphere with radius a and cen-
ter O′ the quite simple and widely-employed re-
sults read

Fh = −6πμaU, Th = −8πμa3W. (1)

Accordingly, a sphere with radius a and uniform
density ρs immersed in an unbounded fluid settles
under the uniform gravity field g at the following
translational velocity Us and angular velocity Ws

Us = 2(ρs −ρ)a2g/(9μ), Ws = 0. (2)

For arbitrarily-shaped particles Fh and Th in gen-
eral depend by contrast upon both U and W and
can be numerically evaluated by appealing to the
so-called boundary element approach and its nu-
merical implementation (see Pozrikidis (1992)).
Because the results prevailing for an unbounded
fluid may be significantly affected close to bound-
aries many several works also investigated to
which extent Fh,Th and the resulting particle set-
tling migration depend upon particle-wall inter-
actions. In this direction one should first men-
tion the case of a plane, solid and motionless
boundary. Such circumstances have been ana-
lytically and extensively addressed for a spher-
ical particle by resorting to the bipolar coordi-
nates by several authors (see, among others, Bren-
ner (1961); Goldman, Cox, and Brenner (1967a);
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Dean and O’Neill (1963); O’Neill (1964, 1967);
O’Neill and Stewartson (1967)). The case of a
sphere freely suspended or kept at rest near the
wall in different ambient Stokes flows was treated,
again using this method, by Goldman, Cox, and
Brenner (1967b), Chaoui and Feuillebois (2003),
Pasol, Chaoui, Yahiaoui, and Feuillebois (2005)
and Pasol, Sellier, and Feuillebois (2006) whereas
a different and collocation approach has been
worked out in Hsu and Ganatos (1989, 1994) for
a non-spherical particle in a quiescent liquid. It
is also worth noting the powerful and different
method of multipole images introduced and ap-
plied for a single sphere in Cichocki and Jones
(1998) and also further successfully worked out
for a N − sphere cluster immersed in a Stokes
flow in the vicinity of a plane hard wall or free
surface in Cichocki, Jones, Kutteh, and Wajnryb
(2000). The case of two parallel, plane, solid and
motionless boundaries also received attention in
the past decades with results provided for a sphere
by Ganatos, Peffer, and Weibaum (1980a,b) us-
ing a collocation approach and by Jones (2004)
introducing a new and specific Green tensor. Fi-
nally, Staben, Zinchenko, and Davis (2003) and
Pasol and Sellier (2006) were also able to cope
with non-spherical particles by means of differ-
ent boundary-integral approaches based on the
use of a specific Green tensor. Adding more
boundaries further suggests to confine the liquid
by a cavity. In such circumstances, very strong
particle-boundary effects are likely to take place
as revealed by several results available for a solid
sphere moving in a liquid bounded by a spheri-
cal cavity. For instance, the net force Fh exerted
on and the flow about a translating sphere (i. e.
for W = 0) located at the spherical cavity cen-
ter have been obtained using a stream function in
Cunningham (1910); Williams (1915). The more
tricky case of a sphere not located at the spherical
cavity center was solved using bipolar coordinates
by Jeffery (1915); Stimson and Jeffery (1926) for
the axisymmetrical migration and by O’Neill and
Majumdar (1970a,b) for the asymmetrical mo-
tion. Such nice analytical techniques have been
recently revisited in Jones (2008) where a very
accurate implementation is achieved and an omis-
sion in O’Neill and Majumdar (1970a) is cor-

rected. Unfortunately but not surprisingly, the
fruitful use of bipolar coordinates prevents each
previous work to cope with the challenging case
of a non-spherical particle in a spherical cavity.
The present work therefore advocates a boundary-
integral approach which makes it possible to ac-
curately compute at a reasonable cpu time cost the
net force and torque exerted on a non-spherical
particle experiencing a precribed rigid-body mo-
tion in a liquid bounded by a spherical cavity and
its resulting gravity-driven migration.

The paper is organized as follows. The rele-
vant assumptions and the governing equations are
presented in §2 whereas two suitable boundary-
integral approaches for a rigid-body motion of a
particle of arbitrary shape and a specific Green
tensor established by Oseen (1927) are introduced
in §3. It is shown in §4 how to obtain the par-
ticle settling migration and, if needed, the liq-
uid flow about it. The numerical implementation
is described and each proposed boundary-integral
method is then numerically tested against avail-
able analytical results for a spherical particle in
§5. New results for spheroidal and ellipsoidal par-
ticles are presented and discussed in §6 and a few
concluding remarks close the paper in §7.

2 Governing problem

We consider, as illustrated in Fig. 1, a solid
and arbitrarily-shaped particle P with smooth
enough boundary S, uniform density ρs and vol-
ume V subject to a uniform gravity field g and im-
mersed in a Newtonian liquid with uniform den-
sity ρ and viscosity μ bounded by a solid sphere
with center O, radius R and surface Σ. Henceforth,
we adopt Cartesian coordinates (O,x1,x2,x3) at-
tached to the Laboratory and for any point M
in the spherical cavity or on its boundary Σ we
set x = OM with r = |x| ≤ R and xi = x.ei for
i = 1,2,3. The solid cavity is furthermore as-
sumed to rotate parallel to the vector e at the
sufficiently small angular velocity wce such that
Rewc = ρ |wc|R2/μ � 1 whereas the particle expe-
riences a rigid-body motion characterized by the
translational velocity U, here selected as the ve-
locity of the particle center of mass O′, and the
angular velocity W. Since in absence of particle
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Figure 1: A solid particle P with center of mass
O′ immersed in a Newtonian liquid bounded by a
solid and possibly-rotating spherical sphere.

the fluid has pressure pext = ρg.x and velocity
uext = wce∧ x we thus denote the disturbed ve-
locity and pressure fields in the liquid by ut =
u + wce∧x and pt = p + ρg.x, respectively. Ob-
serving that uext is a Stokes flow and assuming,
if P has length scale a and u typical magni-
tude V, that Re = ρVa/μ � 1 makes it possible
to neglect inertial effects. Accordingly, the dis-
turbances u and p are governed by the following
quasi-static Stokes equations and velocity bound-
ary conditions

μ∇2u = ∇p and ∇.u = 0 in Ω, (3)

u = U+W∧x′ −wce∧x on S, (4)

u = 0 on Σ (5)

where Ω is the liquid domain and x′ = O′M. If n
designates the unit outward normal on S∪Σ di-
rected into the liquid, the flow (u, p) with stress
tensor σ exerts on the particle a net hydrody-
namic force Fh and a net hydrodynamic torque Th

(about O′) given by

Fh =
∫

S
σ .ndS, Th =

∫
S

O′M∧ σ .ndS. (6)

At that stage it is worth pointing out that Fh and
Th are the net force and torque applied on the par-

ticle by the disturbed flow (uext + u, pext + p) be-
cause the rigid-body external flow (uext, pext) ap-
plies zero net force and torque on the particle. For
a prescribed geometry (i. e. for given value of
the cavity radius R and particle’s shape and loca-
tion) both the vectors Fh and torque Th depend
upon the setting (wce,g) and the rigid-body mo-
tion (U,W). In practice, two basic and different
circumstances arise:

(i) One looks at the net hydrodynamic force
and torque experienced by a particle with imposed
translational and angular velocities for a possibly
rotating cavity. This issue, reducing to the deter-
mination of Fh and Th for (u, p) governed by (3)-
(5), is theoretically handled in §3.

(ii) One looks at the particle’s rigid-body
(U,W) for a given gravity field g and/or a pre-
scribed cavity rotation wce. Neglecting the parti-
cle inertia this is achieved by requiring zero force
and torque on the particle. Since this latter has a
uniform density ρs one has therefore to solve the
problem (3)-(5) in conjunction with the additional
relations
∫

S
σ .ndS = (ρ−ρs)V g,

∫
S

x′ ∧ σ .ndS = 0. (7)

As explained in §4, it is actually possible to also
treat this case by exploiting the material devel-
oped in §3.

3 Rigid-body motion of a particle

Within this section the particle experiences a pre-
scribed rigid-body motion (U,W) in a rotating
cavity. Two approaches, valid whatever the par-
ticle’s shape and consisting of the treatment of six
boundary-integral equations on a surface S , are
proposed. The first one is by essence also able to
cope with arbitrarily-shaped cavities but involves
the entire surface S = S∪Σ whereas the second
one, restricted to spherical cavities, appeals to a
specific Green tensor and thereby only involves
the particle’s surface with this time S = S.

3.1 Relevant surface quantities

By virtue of (4) note that u = U′ + W′ ∧ x′ on S
with U′ = U + wcOO′ ∧ e and W′ = W − wce.
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Accordingly, it is sufficient by linearity to re-
strict in this section the attention to six auxil-
iary Stokes flows (u(i)

T , p(i)
T ) and (u(i)

R , p(i)
R ) for

i = 1,2,3 which obey (3) and, for L = T,R, the
specific boundary conditions

u(i)
T = ei and u(i)

R = ei ∧x′ on S, u(i)
L = 0 on Σ.

(8)

The flow (u(i)
L , p(i)

L ) with stress tensor σ (i)
L exerts

on the particle’s surface S the traction f(i)L = σ (i)
L .n

and f(i)T or f(i)R accordingly designates the surface
force which arises on S if the particle translates or
rotates parallel to ei, respectively. These vectors
readily produce on the particule the following net
hydrodynamic force −A(i)

L and torque −B(i)
L such

that

A(i)
L = −

∫
S

f(i)L dS, B(i)
L = −

∫
S

x′ ∧ f(i)L dS. (9)

In summary, the problem reduces to the determi-
nation of the relevant surface quantities f(i)T and

f(i)R .

3.2 Velocity integral representation and related
boundary-integral equations

We introduce for a so-called pole y in D = Ω∪P
and j = 1,2,3 three Stokes flows (v( j), p( j)), with
stress tensor σ ( j), such that

μ∇2v( j) = ∇p( j)−δ3d(x−y)e j, ∇.v( j) = 0 in D

(10)

with δ3d(x− y) = δd(x1 − y1)δd(x2 − y2)δd(x3 −
y3) if yi = y.ei and δd designates the Dirac
pseudo-function. Clearly, the above velocity
fields v( j)(x,y) and therefore the resulting Green
tensor G with Cartesian components Gk j(x,y) =
v( j)(x,y).ek are not unique since (10) is not sup-
plemented with velocity boundary conditions on
the boundary Σ of D . A simple and widely-
employed Green tensor is the free-space Oseen-
Burgers tensor G∞ with Cartesian coordinates G∞

k j
such that

8πμG∞
k j(x,y) =

δk j

|x−y| +
[(x−y).e j][(x−y).ek]

|x−y|3

(11)

where δ denotes the Kronecker delta symbol.

We henceforth adopt the usual tensor summa-
tion convention and consider a Stokes flow (u, p)
obeying (3) with stress tensor σ and surface trac-
tion f = σ .n = fkek on S. The velocity u = u je j

then admits in the entire liquid domain the repre-
sentation (see Pozrikidis (1992))

u j(x) = −
∫

S∪Σ
fk(y)Gk j(y,x)dS(y)

+
∫

S∪Σ
u(y). σ ( j)(x,y).n(y)dS(y) for x in Ω.

(12)

As detailed in Pozrikidis (1992) the Green tensor
satisfies the property Gk j(x,y) = G jk(y,x) and if
u vanishes on the surface Σ and is a rigid-body
motion on S the last integral on the right-hand side
of (12) is zero. One thus obtains the single-layer
integral representation

u j(x) = −
∫

S∪Σ
fk(y)G jk(x,y)dS(y), x in Ω.

(13)

By superposition the Cartesian components G jk

of any Green tensor G actually read

G jk(x,y) = G∞
k j(x,y)+Σ jk(x,y) (14)

with velocity fields Σ jk(x,y)ek smooth and
bounded in the domain D . Recalling (11), each
component G jk is thus weakly singular as x tend
to y and (13) consequently also holds for x on
S. Hence, the traction f obeys the Fredholm
boundary-integral equation of the first kind

u j(x) = −
∫

S∪Σ
fk(y)G jk(x,y)dS(y), x on S.

(15)

At this stage two different and possible choices
occur for the Green tensor:

(i) First approach: one uses in (13) and (15)
the free-space Green tensor G∞ defined by (11)
therefore putting so-called stokeslets of unknown
density f on the entire surface S∪Σ. This proce-
dure appeals to a Green tensor available in closed
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form and holds whatever the cavity shape. It how-
ever requires to obtain the traction f also on the
entire surface Σ.

(ii) Second approach: one resorts to the Green
tensor Gc which complies with the no-slip con-
dition on the cavity boundary Σ i. e. such that
its Cartesian components satisfy Gc

jk(x,y) = 0 for
x on Σ. If y lies on Σ note that also Gc

jk(x,y) =
Gc

k j(y,x) = 0 and the previous identities (13) and
(15) thus become

u j(x) = −
∫

S
fk(y)Gc

jk(x,y)dS(y), x in Ω∪S.

(16)

The numerical implementation of (16) requires to
determine the Green tensor Gc but solely involves
the particle’s surface S and thereby circumvents
meshing the cavity boundary Σ which may be-
come large.

3.3 Green tensor for a spherical cavity

The required Green tensor Cartesian components
Gc

jk(x,y) for a spherical cavity with center O and
radius R have been analytically obtained in Oseen
(1927). Setting

y′ =
R2y
|y|2 , r′ = x−y′, r′ = |r′|, x.

y′

|y′| = |x|cosθ ,

(17)

his results for the regular Cartesian components
Σ jk = G∞

jk −Gc
jk introduced by (14) may be cast

into the following form

Σ jk(x,y) =− Rδ jk

|y|r′ −
(

R
|y|

)3 [r′.e j][r′.ek]
r′3

− |y|2−R2

|y|
{ |x|2−R2

2|y|2
∂vk

∂x j

+
(y′.e j)(y′.ek)

R3r′
[1+2

y′.r′

r′2
]

− R[(y′.e j)(r′.ek)+(y′.ek)(r′.e j)]
|y|2r′3

}

(18)

with δ jk the Kronecker delta and v = vkek the vec-
tor

v =
Rr′

r′3
− 2[r′.y′]

Rr′3
y′

+
3{|x|+[r′ − |y′|]cosθ}

R|x||y′|2 sin2 θ
[R2x− (x.y′)y]. (19)

4 Migration in a gravity field and/or a rotat-
ing cavity

This section shows how to determine the rigid-
body motion (U,W) of a particle induced by a
gravity field g and/or a rotation wce of the spheri-
cal cavity by exploiting the results obtained in §3.

4.1 Incurred rigid-body migration

The flow (u, p) about the particle satisfies (3)-(5)
and (7) together with, using the reciprocal identity
(see Kim and Karrila (1991)), the basic identities
∫

S∪Σ
u.f(i)L dS =

∫
S∪Σ

u(i)
L . σ .ndS. (20)

Recalling that

U′ = U+wcOO′ ∧e, W′ = W−wce (21)

setting U′ = U ′
je j,W′ = W ′

je j and also

Ai, j
L = A(i)

L .e j, Bi, j
L = B(i)

L .e j, (22)

then easily makes it possible to cast (7) under the
form

Fh.ei = −[Ai, j
T U ′

j +Bi, j
T W ′

j] = (ρ −ρs)V g.ei,

(23)

Th.ei = −[Ai, j
R U ′

j +Bi, j
R W ′

j] = 0. (24)

Injecting (21) in (23)-(24) finally gives

Ai, j
T Uj +Bi, j

T Wj = (ρs −ρ)V g.ei

−wc[A
i, j
T (OO′ ∧e).e j −Bi, j

T e.e j], (25)

Ai, j
R Uj +Bi, j

R Wj =

−wc[A
i, j
R (OO′ ∧e).e j −Bi, j

R e.e j]. (26)

As in Sellier and Pasol (2006) it is possible to
prove that (25)-(26) has a real-valued, symmetric
and positive-definite square matrix and therefore
a unique solution (U,W) here obtained by solely
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calculating the vectors A(i)
L and B(i)

L defined in (9).
Let us denote by (U0,W0) the solution for a mo-
tionless cavity (wc = 0). Inspecting (25)-(26) then
readily shows that

U = U0 +wce∧OO′ , W = W0 +wce. (27)

The relations (27) then describe the simple influ-
ence of the cavity rotation upon the sedimentation
of the particule.

4.2 Disturbed velocity field in the cavity

Once (U,W) is known it is also possible, if
needed, to calculate in the cavity the disturbed ve-
locity field ut = u + wce ∧ x using on S∪ Σ the
boundary conditions (4)-(5) and in the liquid do-
main Ω the integral representations (13) or (16)
for the Cartesian component u j = u.e j with the
surface traction f = σ .n. By superposition, this
traction reads

f = [Ui +wc(OO′ ∧e).ei]f
(i)
T +[Wi −wce.ei]f

(i)
R .

(28)

5 Numerical strategy and benchmarks

As shown in the previous sections, one solely
needs to compute the tractions f(i)T and f(i)R ex-
erted on the particle’s surface when it translates
or rotates in a motionless cavity. In practice one
needs to numerically invert the proposed Fred-
holm boundary-integral equations of the first kind
(15) or (16) and also to implement the associ-
ated velocity integral representations (see §4.2).
In this section we briefly describe how each in-
tegral equation is solved and also benchmark the
proposed numerical method against accurate re-
sults available for a spherical particle.

5.1 Numerical implementation

There is a considerable literature dealing with the
numerical treatment of boundary-integral equa-
tions and we refer for details the reader to clas-
sical textbooks such as C. A. Brebbia and Wrobel
(1984); Beskos (1998); Bonnet (1999) and also in
other fields to Gardano and Dabnichki (2006), F.
Duddeck (2006) and Sanz, Solis, and Dominguez

(2007). In the present work we use the colloca-
tion method described in Sellier and Pasol (2006)
for a quite different Green tensor. For the sake
of conciseness we thus briefly introduce the tech-
nique but pay a special attention to the treatment
of the regular part of the Green tensor given in
(18). The particle’s surface S is discretized us-
ing a N−node mesh made of 6−node isoparamet-
ric and curvilinear boundary elements. The asso-
ciated quadratic shape functions and the adopted
procedure to remove the weakly-singular contri-
bution of the Oseen-Burgers tensor G∞ by us-
ing local polar coordinates are detailed in Sellier
(2007) and thus not reproduced here. When us-
ing (in our second approach; see §3.2) the Green
tensor Gc of the spherical cavity one also needs
to compute the regular components Σ jk(x,y) for a
pole y and a so-called field point x located on S.

Unfortunately, (18) is not well-adapted for such a
numerical implementation as |y| and/or sinθ tend
to zero. Introducing the quantities

y′ =
R2y
|y|2 , t =

y
|y| , a = x−(x.t)t, h =

|x−y′||y|
R

,

(29)

and resorting to elementary manipulations too
long to be reproduced here it has been found
preferable to adopt the equivalent forms

Σ jk(x,y) =

− δ jk

h
− (x.e j)(x.ek)

h3 +
(t.e j)(t.ek)

h

[ |x|2
h2 −1

]

−
[

2|y|t.x
h3

]
(t.e j)(t.ek)

+ |y|
[
(t.e j)(x.ek)+(t.ek)(x.e j)

h3

]

− [|x|2−R2][|y|2−R2]
2

{
δ jk

R3h3

− 3
R2

[
(h.e j)(h.ek)

h5

]

−2
t.ek

R2

[
t.e j

h3 − 3(h.e j)(h.t)
h5

]

+
3A
R4h

[
δ jk − (t.ek)(t.e j)

]

+
3a.ek

R

[
− E

R3h

{ |y|h.e j

Rh2 +
2a.e j

|a|2
}
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+
E.e j

R4h2[|x|± (x.t))]
+a.e j

[
(2R2)±|y||x|

R4h2|a|2
]]}

(30)

with real E and vector E defined as

E =
{
|x|± 2R2x.t

R2 +Rh∓|x||y|
}

/{|x|±x.t}, (31)

E =∓|y|x+
[|y||x|± (1∓2)R2] t

±2

[
2R2|y|x+[R3h∓R2|y||x|]t

R2 +Rh∓|y||x|
]

(32)

and the use of upperscripts or subscripts in (30)-
(32) for x.t ≥ 0 or x.t < 0, respectively. If y = 0
we furthermore set y = εe1 with ε = 10−12 in
(30) which therefore admits a sense. It has been
numerically checked that (18) and the proposed
form (30)-(32) satisfy the announced symmetry
property Σ jk(x,y) = Σk j(y,x) for points x and
y inside the spherical cavity. Finally, each dis-
cretized boundary-integral equation then results
in a linear system which, having a fully-populated
3N×3N square matrix, is solved by LU factoriza-
tion.

5.2 Benchmark tests for a spherical particle

As mentioned in the introduction and to the au-
thor’s very best knowledge, only results for a
spherical particle have been obtained so far. In
this subsection we thus test the proposed ap-
proaches (use of the free-space Green tensor G∞

or of the specific Green tensor Gc) against the lit-
erature in two different cases:

(i) Case of a sphere at the center of the cavity

As noticed in Happel and Brenner (1973), the
very specific case of a sphere with radius a trans-
lating at the velocity ei and located at the center of
the spherical cavity has been analytically treated
by Cunningham (1910) and Williams (1915). In
addition to the liquid velocity field those authors
obtained the net force −A(i)

T acting on the sphere
which is, by symmetry, aligned with ei. More pre-
cisely, if β = a/R one gets A(i)

T = 6πμac(β )ei

with c > 0 and c(0) = 1 (usual case of the un-
bounded fluid given by (1)). For a < R < ∞
one has the exact relation (Happel and Brenner

(1973))

c(β ) =
1−β 5

1− 9β
4 + 5β 3

2 − 9β 5

4 +β 6
, β = a/R < 1.

(33)

We denote by cs or cc the computed value of c us-
ing the Green tensor G∞ on S∪Σ (first approach)
or the Green tensor Gc on S (second approach).
In practice, we put 1058 collocation points on Σ
for the first approach and use a N − node mesh
on the particle’s surface. The quantities cs,cc and
the associated relative errors Δcc = |cc −c|/c and
Δcs = |cs − c|/c are displayed in Tab. 1 versus N
for R/a = 1.1,2,5.

As N increases a nice convergence towards the an-
alytical ratio c is observed for both approaches.
Note however that for the small sphere-cavity gap
R-a=0.1a the (second) approach appealing to the
Green tensor Gc provides more accurate results.

(ii) Case of a sphere not located at the center
of the cavity

As soon as the sphere is not located at the spher-
ical cavity center there is no more available an-
alytical result equivalent to (18). Several au-
thors (see O’Neill and Majumdar (1970a,b); Jones
(2008)) however provided numerical results by re-
sorting to bipolar coordinates. For example, us-
ing this method Jones (2008) was recently able to
accurately provide the friction coefficients for a
sphere translating or rotating in the cavity. For
further purposes (see §6) let us introduce such
quantities for ellipsoidal particles with semi-axis
(a1,a2,a3), center O′ such that OO′ = de3 and in-
equality

(x1/a1)2 +(x2/a2)2 +([x3 −d]/a3)2 ≤ 1. (34)

The distance d obeys 0 ≤ d < R−a3 and is also
such that the entire ellipsoid lies within the cav-
ity (therefore sometimes requiring R− d − a3 to
be large enough depending upon the value of
(a1,a2)). For symmetry reasons, the net force

−A(i)
L and torque −B(i)

L (recall (9)) then take the
form (without summation over indices in (35))

A(i)
T = 6πμa3ciei, B(i)

R = 8πμa3
3tiei, (35)
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Table 1: Computed quantities cs, Δcs, cc and Δcc versus the number N of collocation points on the sphere’s
surface for R/a = 1.1,2,5. In calculating (cs,Δcs) 1058 nodes have been used on Σ.

N R/a cs Δcs cc Δcc

74 1.1 3258.137 1.00613 2097.155 0.29128
242 1.1 2124.983 0.30842 1949.547 0.01030

1058 1.1 1777.331 0.09436 1676.260 0.00353
exact 1.1 1624.089 0 1624.089 0

74 2. 7.223525 0.00968 7.218993 0.01030
242 2. 7.289179 0.00068 7.284937 0.00126

1058 2. 7.297493 0.00046 7.293273 0.00012
exact 2. 7.294118 0 7.294118 0

74 5. 1.749799 0.00344 1.749640 0.00353
242 5 1.755232 0.00035 1.755073 0.00044

1058 5. 1.755937 0.00005 1.755777 0.00004
exact 5. 1.755845 0 1.755845 0

B(1)
T = −8πμa2

3s1e2, B(2)
T = 8πμa2

3s2e1,

B(3)
T = 0,

(36)

A(1)
R = 8πμa2

3s2e2, A(2)
R = −8πμa2

3s1e1,

A(3)
R = 0,

(37)

where the dimensionless and so-called fric-
tion coefficients ci, ti, s1 and s2 depend upon
(a1/a3,a2/a3,d/a3,R/a3). For a sphere with ra-
dius a then ai = a and one furthermore gets c1 =
c2, t1 = t2 and s = s2 = s1 therefore ending up
with solely five friction coefficients c1,c3, t1, t3
and s also introduced and computed in Jones
(2008). Comparisons with computations kindly
provided on request by R. B. Jones for R = 4a
and two different normalized sphere-cavity gaps
η = (R−d −a)/a have been performed for both
approaches. The results for the first approach em-
ploying the free-space Green tensor G∞ and the
entire surface S∪Σ are reported in Tab. 2. Be-
cause the sphere-cavity gap becomes small it has
been required to use on the boundary Σ more col-
locations points than for the case of a sphere at
the center of the cavity. Using 4098 nodes on Σ
made it possible to gain a very good agreement
with Jones results for η = 0.5 (medium gap) and
η = 0.1 (small gap).

As revealed by Tab. 3, the second approach us-
ing the Green tensor Gc also permits one to ob-
tain a nice convergence towards the values com-
puted by Jones. It also turns out that this second

approach yields more accurate results, especially
for the small gap η = 0.1, than the first (usual) one
which would actually require for a comparable ac-
curacy to put more than 4098 collocation points
on Σ for such a small gap and thus become pro-
hibitive in terms of memory space and cpu time
cost.

In summary, both approaches nicely recover for a
spherical particle the accurate results previously
obtained by other authors exploiting quite dif-
ferent and analytical procedures. Since it yields
faster computations at a reasonable memory space
price the (second) method appealing to the Green
tensor Gc derived by Oseen (1927) for the spheri-
cal cavity is employed for all the numerical com-
putations reported in §6.

6 Numerical results for non-spherical parti-
cles and discussion

Contrary to previous works, the advocated proce-
dure also holds for non-spherical particles. This
permits one to examine to which extent the net
force −A(i)

L and torque −B(i)
L (recall (9)) and the

incurred rigid-body motion (U,W) depend upon
the particle’s geometry and location inside the
cavity. For such a purpose we consider ellipsoidal
particles with uniform density ρs 
= ρ , center of
volume O′ with OO′ = de3, semiaxes a1,a2,a3

and inequality (34). For a motionless cavity (i.
e. for wc = 0) symmetries of the addressed con-
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Table 2: Computed friction coefficients versus the number N of collocation points on S (with N1 = 74,N2 =
242,N3 = 1058) for R = 4a and two dimensionless sphere-cavity gaps η using the free-space Green tensor
G∞ (first approach) with 4098 collocation points on Σ. The results kindly provided by R. B. Jones are
labelled J.

N η c1 c3 t1 t3 s
N1 0.5 2.6330 4.6730 1.1640 1.0789 0.11870
N2 0.5 2.6473 4.7107 1.1639 1.0755 0.11927
N3 0.5 2.6488 4.7144 1.1639 1.0755 0.11938
J 0.5 2.6487 4.7131 1.1639 1.0755 0.11933

N1 0.1 3.9016 15.552 1.6065 1.1960 0.20206
N2 0.1 3.9273 18.886 1.6145 1.1939 0.19108
N3 0.1 3.9159 18.832 1.6171 1.1945 0.18494
J 0.1 3.9121 18.674 1.6163 1.1945 0.18344

Table 3: Computed friction coefficients versus the number N of collocation points on S (with N1 = 74,N2 =
242,N3 = 1058) for R = 4a two dimensionless sphere-cavity gaps η using the Green tensor Gc (second
approach). The results kindly provided by R. B. Jones are labelled J.

N η c1 c3 t1 t3 s
N1 0.5 2.6327 4.6714 1.1639 1.0789 0.11861
N2 0.5 2.6471 4.7090 1.1639 1.0755 0.11920
N3 0.5 2.6486 4.7127 1.1639 1.0755 0.11932
J 0.5 2.6487 4.7131 1.1639 1.0755 0.11933

N1 0.1 3.9009 15.413 1.6052 1.1960 0.20138
N2 0.1 3.9237 18.636 1.6134 1.1938 0.19001
N3 0.1 3.9121 18.711 1.6160 1.1945 0.18353
J 0.1 3.9121 18.674 1.6163 1.1945 0.18344
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figuration show that the gravity-driven migration
(U0,W0) of the ellipsoidal particle with typical
length scale a is such that
(i) If g = ge1 :

U0 = U ′
su1e1, W0 = aU ′

sw2e2, (38)

(ii) If g = ge2 :

U0 = U ′
su2e2, W0 = −aU ′

sw1e1, (39)

(iii) If g = ge3 :

U0 = U ′
su3e3, W0 = 0 (40)

with U ′
s = (ρs −ρ)a2g/μ a typical settling veloc-

ity.

Let us first consider a sphere with radius a and
two spheroids with typical length scale a, semi-
axes a1 = t ′a,a2 = a3 = ta and t ′/t = 1/2 (oblate
spheroid) or t ′/t = 3/2 (prolate spheroid). We se-
lect (t, t ′) so that the sphere and each spheroid set-
tle (without rotating) in an unbounded liquid at
the same velocity Us = 2(ρs−ρ)a2g/9 as soon as
g∧ e1 = 0. Note that those particles by contrast
do not admit the same velocity if g is parallel to
the axis of revolution (O′,e1). According to Hap-
pel and Brenner (1973) and setting l = t ′/t, one
arrives at t = t(l) with

8
3t2 =

l2

l2 −1
+

2l3 −3l

(l2 −1)3/2
log(l +

√
l2 −1), l < 1,

(41)

8
3t2 =

2l2

1− l2 +
2(l−2l3)
(1− l2)3/2

arctan(
√

1− l2

l
), l > 1.

(42)

The sphere with radius a has volume Vs and de-
noting by V the spheroid’s volume it follows that
a1 ∼ 0.6296a,a2 = a3 ∼ 1.2591a and V /Vs ∼
0.9981 for the oblate spheroid (l = 1/2) whilst
a1 ∼ 1.3384a,a2 = a3 ∼ 0.8923a and V /Vs ∼

1.066 for the prolate one (l = 3/2). When a
spheroid is located at the cavity center (d = O)
it does not rotate and u2 = u3. For comparisons,
the velocity u2 is plotted in Fig. 2 versus the ra-
tio R/a ≥ 1.5 for each addressed spheroid. Those

o1 2 3 4 5 6 7 8 9 10
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0.075
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0.175
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Figure 2: Normalized settling velocity u2 = u3

versus R/a ≥ 1.5 for three equivalent (i. e. with
identical settling velocities as R/a → ∞ when
g∧ e1 = 0) sphere (◦), oblate spheroid (�) and
prolate spheroid (�) located at the center of the
cavity.

results reveal that, for a particle located at the cav-
ity center, the wall-particle interactions dramat-
ically slow down each particle as the cavity ra-
dius decreases but are weakly shape-dependent.
Moreover, the prolate spheroid is seen to adopt
the smallest velocity for each prescribed ratio R/a
whereas the oblate one experiences nearly the
same velocity as the sphere.

However, the previous trends are likely to be mod-
ified for particles close to the cavity but not cen-
tered at its center. This issue is examined by com-
puting the velocities u2,u3 and w1 versus R/a ≥ 2
for a given particle-wall gap equal to 0.5a (i. e.
for d = R−a3 −0.5a). The results, displayed in
Fig. 3, reveal that u2,u3 and w1 this time deeply
depend upon the particle’s shape. The oblate or
prolate spheroid rotates slower or faster than the
equivalent sphere, respectively and each spheroid
translates faster than the sphere except the prolate
one when sedimenting normal to the cavity (u3
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component). The previous results clearly indicate
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Figure 3: Normalized velocities u2,u3 and w1 ver-
sus R/a ≥ 2 for three equivalent sphere (circles
with u2 = u3), oblate spheroid (squares) and pro-
late spheroid (triangles) not centered at the cavity
center with d = R− a3 − 0.5a. (a) Translational
velocities u2 (clear symbols) and u3 (filled sym-
bols). (b) Angular velocity w1.

that the behaviour of a particle strongly depends
upon its location inside the cavity. We further
illustrate this key feature by changing the parti-
cle’s location for a given cavity. For comparisons,
those investigations have been achieved for two
particles having the same volume and density ρs :
a sphere with radius a and the non-spheroidal el-
lipsoid with inequation (34) and semi-axis a1 =
5a/3,a2 = 0.6a and a3 = a. As explained in §5.2,
the relations (35)-(37) hold with a = a3 and we

also use (38)-(40). The behaviour of each parti-
cle is therefore characterized by 13 dimensionless
quantities ci, ti,ui for i = 1,2,3 and also sl,wl for
l = 1,2 which solely depend upon the normalized
parameters R/a and λ such that

R/a > 1 and 0 ≤ λ = d/a < R/a−1. (43)

Such quantities have been computed for R/a = 3
and λ ≤ 1.9 (i. e. up to a small particle-cavity
gap of 0.1a; a value at which the ellipsoid does
not touch the cavity for R = 3a) by using 1058 or
1634 collocation points on the spherical or ellip-
soidal particle, respectively. The results also take
into account that c1 = c2, t1 = t2, s1 = s2,u1 = u2

and w1 = w2 for the sphere.

The computed velocities u1,u2,u3,w1 and w2 are
drawn versus λ in Fig. 4 where the sphere and the
ellipsoid having the same volume adopt quite dif-
ferent settling velocities in presence of the gravity
g. The ellipsoid rotates faster than the sphere if
g is aligned with e1 at a positive angular veloc-
ity w2 whereas it exhibits a more subtle rotation
if g is aligned with e2 : the angular velocity w1 is
positive or negative for d < dc or d > dc, respec-
tively and vanishes at the critical value dc ∼ 1.5a.

Although each component ui is seen in Fig. 4a
to decrease, due to increasing wall-particle inter-
actions, as d = λ a increases the translational ve-
locities of the two particles exhibit various trends.
The ellipsoid translates faster or slower than the
sphere if g is aligned with or normal to e1, respec-
tively. Moreover, if u1 = u2 > u3 for the sphere
note that u3 − u2 may either be positive, zero or
negative depending upon d. In other words, there
exist a critical location dl ∼ 1.27a at which the el-
lipsoid adopts the same translational velocity for
g = ge2 and g = ge3. This is clearly not the case
for the sphere. How the velocity of each consid-
ered particle is affected by a rotation of the cavity
at the velocity wce is given by (27). Whereas one
has only to add wce to the angular velocity W0

(whatever the particle shape and position) the case
of the translational velocity is more tricky and it is
possible to tune the rotation of the cavity to van-
ish the velocity U. For example, if g = ge1 and
ρs 
= ρ one obtains U = (ρs −ρ)a2gu/μe1 when
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Figure 4: Normalized velocities for the sphere
(clear symbols) and the ellipsoid (filled sym-
bols). (a) Translational velocities u1 (circles), u2

(squares) and u3 (triangles). (b) Angular veloci-
ties w1 (circles) and w2 (squares).

the cavity rotates at the velocity wce2 with

u = u1 +λ Awc, A = μ/[(ρs−ρ)ag] 
= 0 (44)

and therefore for a given location λ the particle
does not translate when the cavity rotates at the
critical angular velocity −u1e2/[λ A].
The coefficients ci, ti, s1 and s2 are plotted in Fig.
5 and Fig. 6. Each coefficient is seen to weakly
and strongly vary for d = λ a smaller or greater
than unity, respectively with wall-particle interac-
tions significantly acting for a sufficiently small
wall-particle gap and increasing the magnitude of
each coefficient. The ellipsoid and the sphere
exhibit either very close behaviours for c1,c3, t1
or quite different behaviours for the other coef-
ficients. One should also note that s2 for the
ellipsoid is either positive for d < dc, zero for
d = dc ∼ 1.488a or negative d > dc.

7 Conclusions

Two possible boundary-integral appoaches have
been proposed and implemented to investigate the
rigid-body and/or gravity-driven motion of a solid
and arbitrarily-shaped particle in a spherical cav-
ity. The first method spreads free-space Stokeslets
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Figure 5: Normalized coefficients ci for the
sphere (clear symbols) and the ellipsoid (filled
symbols). (a) Coefficients c1 (circles) and c2

(squares). (b) Coefficients c3 (triangles).

on both the cavity and the particle surface. It is
by essence not restricted to a spherical cavity but
requires to put a great deal of nodes on a cavity
of medium or large size to ascertain a sufficient
accuracy. The second method appeals to a spe-
cific Green tensor obtained in Oseen (1927) for
a spherical boundary, i. e is not valid for non-
spherical cavities, but solely requires to mesh the
particle surface and yields at a quite reasonable
cpu time cost very accurate results even for a large
spherical cavity. The computations, performed
with the second approach and for spheroidal or
ellipsoidal particles, show that the net hydrody-
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Figure 6: Normalized coefficients ti and sl for
the sphere (clear symbols) and the ellipsoid (filled
symbols). (a) Coefficients t1 (circles), t2 (squares)
and t3 (triangles). (b) Coefficients s1 (circles) and
s2 (squares).

namic force and torque experienced by a particle
together with its settling velocity deeply depend
upon both the particle location inside the cav-
ity and the particle shape. So-called ’equivalent’
spheroid (which have identical settling velocities
for a specific gravity direction in an unbounded
fluid) are for instance seen to adopt slighltly dif-
ferent gravity-driven motion when inside and not
at the center of a spherical cavity whilst a sphere
and an ellipsoid of identical volume clearly ex-
hibit different settling translation and rotations.

As explained in the introduction, this work makes

it possible to examine the sedimentation of a di-
lute suspension by neglecting particule-particule
interactions. This latter approximation of course
breaks down for non-dilute suspensions for which
close particules strongly interact. The analysis of
such circumstances where both particle-particle
and particle-boundary interactions play a role re-
quires to extend the present theory to the general
case of a N− particle cluster in a spherical cavity.
Such a work, however non trivial and therefore
postponed to a further investigation, might be ad-
equately handled for a large number of interacting
particles by employing the fast multipole method
proposed by P. B. Wang and Z. H. Yao (2005) and
P. B. Wang and Z. H. Yao and T. Lei (2006).

Acknowledgement: The author thanks Dr. R.
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