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Application of Local MQ-DQ Method to Solve 3D Incompressible Viscous
Flows with Curved Boundary

Y.Y. Shan1, C. Shu1,2 and Z.L. Lu3

Abstract: The local multiquadric-based differ-
ential quadrature (MQ-DQ) method proposed by
[Shu, Ding, and Yeo (2003)] is a natural mesh-
free approach for derivative approximation, which
is easy to be implemented to solve problems with
curved boundary. Previously, it has been well
tested for the two-dimensional (2D) case. In this
work, this mesh-free method was extended to sim-
ulate fluid flow problems with curved boundary
in three-dimensional (3D) space. The main con-
cern of this work is to numerically study the per-
formance of the 3D local MQ-DQ method and
demonstrate its capability and flexibility for sim-
ulation of 3D incompressible fluid flows with
curved boundary. Fractional step method was
adopted for the solution of Navier-Stokes (N-S)
equations in the primitive-variable form. Flow
past a sphere with various Reynolds numbers was
chosen as a test case to validate the 3D local MQ-
DQ method. The computed solution was com-
pared well with available data in the literature.
The numerical solution shows that the local MQ-
DQ method can be applied to solve incompress-
ible viscous flow problems with curved boundary
in 3D space effectively.

Keyword: Local MQ-DQ method; Error esti-
mate; Flow past a sphere

1 Introduction

Radial basis functions (RBFs) are a powerful tool
for function interpolation, especially for interpo-
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lation of multidimensional scattered data points.
Due to their “mesh-free” nature, in the past
decade, RBFs have received an increasing at-
tention for solving partial differential equations
(PDEs). The first trial of such exploration was
made by [Kansa (1990a), Kansa (1990b)]. Sub-
sequently, [Fasshauer (1997)], [Chen, Brebbia,
and Power (1998)], [Chen and Tanaka (2002)],
[Chen and Hon (2003)], [Larsson and Fornberg
(2003)], [Atluri, Han, and Rajendran (2004)],
[Ling and Kansa (2005)], [Atluri, Liu, and Han
(2006a)], [Atluri, Liu, and Han (2006b)], [Han,
Liu, Rajendran, and Atluri (2006)], [Sarler and
Vertnik (2006)], [Divo and Kassab (2007)], [Wen
and Hon (2007)], [Mai-Duy, Mai-Cao, and Tran-
Cong (2007)], [Mai-Duy, Khennane, and Tran-
Cong (2007)] also made great contributions in
this development. It should be noted that most
of above works related to the application of RBFs
for the numerical solution of PDEs are actually
based on the function approximation instead of
derivative approximation. In other words, these
works directly substitute the expression of func-
tion approximation by RBFs into a PDE, and then
change the dependent variables into the coeffi-
cients of function approximation. The process is
very complicated, especially for non-linear prob-
lems. That may be the reason why the method has
not so far been extensively applied to solve prac-
tical problems.

To resolve this problem and make RBF methods
more feasible in solving PDEs, a local method
named “local radial basis function-based differ-
ential quadrature method (Local RBF-DQ)” has
recently been proposed by [Shu, Ding, and Yeo
(2003)]. This method adopts the idea of direct
derivative approximation through the differential
quadrature (DQ) [Bellman and Casti (1971), Bell-
man, Kashef, and Casti. (1972)] technique, thus
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can be consistently well applied to linear and non-
linear problems. Multiquadric (MQ) RBF [Hardy
(1971), Franke (1982)] is selected from the RBFs
available to date as the base functions in local
RBF-DQ method due to its excellent performance
in function interpolation. Thus it is regarded as
local MQ-DQ method. In the local MQ-DQ ap-
proach, any spatial derivative at a knot is ap-
proximated by a linear weighted sum of all the
functional values in the local supporting region
around the reference knot. The weighting coef-
ficients in the derivative approximation are de-
termined by the function and linear vector space
analysis. The local MQ-DQ method is very flex-
ible, and has been applied to solve various kinds
of fluid flow problems, such as inviscid compress-
ible flow [Shu, Ding, Chen, and Wang (2005)]
and incompressible viscous flows [Shu, Ding, and
Yeo (2005), Ding, Shu, Yeo, and Xu (2006), Ding,
Shu, Yeo, and Lu (2005)].

Despite the success of local MQ-DQ method in
solving fluid flow problems, most work up to now
only focused on the two dimensional cases. Very
little work has been done to explore its capability
of solving three dimensional (3D) fluid flow prob-
lems, especially with curved boundary. [Ding,
Shu, Yeo, and Xu (2006)] applied the local MQ-
DQ method to solve a classical driven cavity flow
problem in 3D space and proved the feasibility of
this method for 3D fluid flow problems. How-
ever, the case they studied is very simple and the
geometry of the problem is quite regular (cubic).
As we know, the main advantage of RBF-based
schemes is their mesh-free property and their flex-
ibility for handling problems with curved bound-
ary. Adopting the local MQ-DQ method to solve
the 3D driven cavity flow problem, however, can-
not reflect its advantage.

In this paper, we will extend the local MQ-DQ
method to solve 3D fluid flow problems with
curved boundary. At this time, the theoretical er-
ror analysis for derivative approximation by RBF
is not available. Thus, firstly, we will make an er-
ror estimate for the derivative approximation by
the 3D local MQ-DQ method to provide a use-
ful guidance for implementation of this method.
Actually, this work is the 3D counterpart of that

by [Ding, Shu, and Tang (2005)]. In [Ding, Shu,
and Tang (2005)], Ding et al. found the influence
of shape parameter and supporting points on nu-
merical accuracy of the 2D local MQ-DQ method
through numerical experiments. In this work,
while applying the 3D local MQ-DQ method to
solve fluid flow problems, we will select shape pa-
rameter and supporting points based on the results
of the error estimates. The 3D flow past a sphere
will be solved by the local MQ-DQ method to
demonstrate its capability and flexibility in solv-
ing 3D flow problems with curved boundary. This
problem has been studied by a number of re-
searchers, thus can be selected as a model prob-
lem to test a new numerical method.

The rest of the paper is structured as follows. In
Section 2, we will give a description of the local
MQ-DQ method. An error estimate of derivative
approximation by this method through numeri-
cal experiments is made in Section 3. Section 4
shows the problem of flow past a sphere and rele-
vant numerical procedures. The numerical results
for the flow past a sphere are discussed in Section
5. Section 6 gives some concluding remarks.

2 Description of Local MQ-DQ Method

As its name implies, the local MQ-DQ method is
based on the MQ RBFs and DQ technique. The
concept of DQ was first proposed by [Bellman
and Casti (1971), Bellman, Kashef, and Casti.
(1972)] to approximate the derivative of a smooth
function. From the viewpoint of derivative ap-
proximation, the essence of the DQ method is that
the partial derivative of any dependent variable
can be approximated by a weighted linear sum of
functional values at all discrete points within its
support. In other words, the DQ approximation
of the mth order derivative of a function f (x) at xi

can be expressed as

∂ m f
∂xm

∣∣∣∣
x=xi

=
Ni

∑
j=1

w(m)
i, j f (x j), (1)

where x j denotes the coordinates of discrete
points in the support of reference node i, f (x j)
and w(m)

i, j are the function values at these points
and the related weighting coefficients. It should
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be noted that the subscript i is a global nodal in-
dex which represents the nodes in the domain,
while the subscript j is a local index which repre-
sents the supporting points for the reference node
i. Since the reference node is also one of its sup-
porting points, we define (·)i,1 = (·)i for simplic-
ity. Ni is the number of supporting points within
the support for the reference node i. To determine
the weighting coefficients w(m)

i, j in Eq. (1), a set
of trial functions are required. In the present local
MQ-DQ method, the MQ RBFs are selected for
its mesh-free nature and super convergence.

di ij

i

Figure 1: Supporting points around a reference
point

Consider a sub-domain Ωxi as shown in Fig. 1,
which forms the neighborhood or support of a ref-
erence point xi and denotes as the domain of func-
tion approximation at xi by the trial functions. To
approximate the function u in Ωxi over a num-
ber of randomly-distributed supporting points, the
RBF approximant uh(x), can be defined by a lin-
ear sum of MQ RBFs as

uh(x) =
Ni

∑
j=1

λ jϕ(
∥∥x,x j

∥∥), (2)

where ϕ(
∥∥x,x j

∥∥) =
√

r2
j +c2 denotes the MQ

RBF at x j , and x j, j = 1, 2, . . . , Ni, are the sup-
porting points in Ωxi . r represents the Euclidean
norm and c is a positive free shape parameter
given by the end-user. Ni denotes the total number
of supporting points in Ωxi . λ j denotes the corre-
sponding constant coefficients. Eq. (2) can be
considered to construct an Ni dimensional linear
vector space VNi . Obviously, the set of MQ RBFs
ϕ(

∥∥x,x j
∥∥), j = 1, 2, . . . , Ni, form the base func-

tions (vectors) in the linear vector space. It can be
seen that if all the base functions ϕ(

∥∥x,x j

∥∥) sat-
isfy a linear relationship like Eq. (1), so does any
function in VNi . Therefore, Eq. (1) can be well ap-
plied to discretize the derivatives of function u(x).
In the following, the first-order derivative is taken
as an example to show the procedure for the de-
termination of weighting coefficients.

Substituting the set of MQ RBFs into Eq. (1),
the determination of corresponding coefficients
for the first-order derivative is equivalent to solv-
ing the following linear equations:

∂ϕk(xi)
∂x

=
Ni

∑
j=1

w(1x)
i, j ϕk(x j) k = 1, 2, . . ., Ni. (3)

For simplicity, the notation ϕk(x) is adopted to re-
place ϕ(‖x,xk‖) in Eq. (3).

The above equations can be further written in the
matrix form,⎡
⎢⎢⎢⎢⎣

∂ϕ1(xi)
∂x

∂ϕ2(xi)
∂x
...

∂ϕNi (xi)
∂x

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸{
∂ϕ(xi)

∂x

}

=

⎡
⎢⎢⎢⎣

ϕ1(x1) ϕ1(x2) · · · ϕ1(xNi)
ϕ2(x1) ϕ2(x2) · · · ϕ2(xNi)

...
...

. . .
...

ϕNi
(x1) ϕNi

(x2) · · · ϕNi
(xNi

)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
[A]

⎡
⎢⎢⎢⎢⎣

w(1x)
i,1

w(1x)
i,2
...

w(1x)
i,Ni

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
{w}

(4)

Clearly, there exists a unique solution only if the
collocation matrix [A] is non-singular. The non-
singularity of the collocation matrix [A] depends



102 Copyright © 2008 Tech Science Press CMES, vol.25, no.2, pp.99-113, 2008

on the properties of used RBFs. According to the
work of [Micchelli (1986)], matrix [A] is con-
ditionally positive definite for MQ RBFs. This
fact cannot guarantee the non-singularity of ma-
trix [A]. [Hon and Schaback (2001)] showed that
cases of singularity are quite rare. Therefore, the
coefficient vector {w} can be obtained by

{w} = [A]−1{∂ϕ(xi)
∂x

}. (5)

Now, we can use the coefficient vector {w} to
approximate the first-order derivative in the x-
direction for any unknown function at node xi.
The calculation of weighting coefficients for other
derivatives can follow the same procedure.

From the procedure of DQ approximation for
derivatives, it can be observed that the weight-
ing coefficients are only dependent on the se-
lected RBFs and the distribution of the support-
ing points in the support domain Ωxi . During
the process of numerical simulation, they are only
computed once, and stored for all numerical dis-
cretization. Once the coefficients are computed,
they will be stored and used to discretize the par-
tial differential equation in a similar manner as
in the traditional finite difference (FD) method.
It should be noted that the computed coefficients
can be consistently well applied to linear and non-
linear problems. Therefore, it is very convenient
to use local MQ-DQ method to solve complex
non-linear problems such as Navier-Stokes equa-
tions in fluid mechanics. From the above, we can
also see that the implementation of local MQ-DQ
method is very simple and straightforward.

3 Error Estimates of Local MQ-DQ Method
in Three-dimensional Space

During the implementation of local MQ-DQ
method, it is interesting to know the order of ac-
curacy for the derivative approximation by the 3D
local MQ-DQ method. Furthermore, the number
of supporting points and free shape parameter c
need to be determined by end-users. However,
due to the lack of theoretical analysis, there is
no error estimate available for derivative approx-
imation by this method to date. Thus, how to de-
termine the number of supporting points and free

shape parameter c poses a challenging issue for
the end-users.

In this section, we mainly focus on error estimates
of the derivative approximation by the 3D local
MQ-DQ method to explore the relationship be-
tween the approximation error, the number of sup-
porting points and free shape parameter c. Based
on the study, we can provide a useful guidance
for the implementation of the 3D local MQ-DQ
method. The performed analysis of error esti-
mates is based on numerical experiments. In fact,
this study is the extension of the work by [Ding,
Shu, and Tang (2005)]. In [Ding, Shu, and Tang
(2005)], Ding et al. performed error estimates of
the second order derivative approximation by the
local MQ-DQ method in 2D space through the so-
lution of 2D Poisson equation. They found the
relationship between the approximation error, the
number of supporting points and free shape pa-
rameter c. In this work, numerical experiment is
also made to find the relationship between the nu-
merical error of the second order derivative ap-
proximation and the two factors.

3D Poisson equation which only has the second
order derivatives is taken as a model problem,
which can be written as:

∂ 2T
∂x2 +

∂ 2T
∂y2 +

∂ 2T
∂ z2 = f (x,y, z)

in Ω = {(x,y, z)|0≤ x,y, z ≤ 1},
T = g on ∂Ω (6)

where f and g are determined in such a manner
that the exact solution T of the Poisson equation
is the given one. To study the performance of the
3D local MQ-DQ method in simulating two clas-
sical types of flow problems: periodic boundary
value problems and general boundary value prob-
lems, we take T1 = sin(πx) sin(πy) sin(πz) and
T2 = x4 +y4 +z4 as two typical solution functions.
Here, T1 can represent the solution of the periodic
boundary value problems and T2 can stand for the
solution of the general boundary value problems.

In order to estimate the approximation error, it is
necessary to understand the relationships between
the numerical error and the two factors. To ful-
fill this goal, numerical experiments are designed
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in such a manner that one factor is fixed and the
other one is variable. In this paper, we firstly
study the relationship between the numerical er-
ror and the number of supporting points. This
means that the free shape parameter c is fixed, and
through varying the number of supporting points,
we can obtain its relationship with the numerical
error. Then, we study the relationship between the
numerical error and the free shape parameter c. In
this process, the number of supporting points is
fixed. We get its relationship with numerical error
through varying the value of free shape parameter
c. The effect of boundary conditions on the ac-
curacy of numerical solution is not considered in
this work.

3.1 Relationship between numerical error and
number of supporting points

For the investigation of relationship between the
numerical error and the number of supporting
points ns, the value of free shape parameter c is
fixed as 0.2, which is suitable for all the cases
considered. For each ns, 3D Poisson equation is
solved on five different uniform meshes, i.e. 31×
31×31, 41×41×41, 51×51×51, 61×61×61
and 71× 71× 71. Thus the convergence rate of
relative error versus the mesh size h for each ns

can be studied. The numerical solutions are il-
lustrated in Figure 2 in the form of relative error
versus h in the log-log scale.

It can be observed in Figure 2 that the symbols
representing the accuracy of solution with the
same ns are in perfect alignment. This implies
that the 3D local MQ-DQ method accomplishes
the so-called super convergence, i.e. an error es-
timate of O(hn). Furthermore, from Figure 2, we
can also see that the convergence lines can be clas-
sified into two groups by the value of slope, with
the number of supporting points ranging from 6 to
36. Specifically, the convergence rate is approxi-
mately 2.0 for the scheme with less than 31 sup-
porting points and 3.9 for the scheme with 32 and
36 supporting points. Therefore, an error estimate
with respect to the mesh size h and the number of
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Figure 2: Numerical errors versus mesh size for
various number of supporting points

supporting points can be written as

‖ε‖ ∼ O(hn) and n ≈
{

2.0 for 6 ≤ ns ≤ 31

3.9 for 32 ≤ ns ≤ 36

(7)

The above results show that the accuracy of the
second order derivative approximation can be
greatly improved at some critical number of sup-
porting points. The mean values of convergence
rate for each ns are listed in Table 1. From Ta-
ble 1, it can be seen that the convergence rates are
independent of solution functions. In our work,
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Table 1: Mean value of convergence rate with shape parameter c = 0.2

Number of supporting points T = sin(πx) sin(πy) sin(πz) T = x4 +y4 + z4

ns = 6 2.06 1.97
ns = 18 2.02 1.91
ns = 26 2.00 1.89
ns = 30 1.97 2.32
ns = 31 1.94 2.20
ns = 32 3.95 3.87
ns = 36 3.92 3.95

the maximum ns tested is 36. This is because in
practical applications, the ns value is usually taken
below 36.

3.2 Relationship between numerical error and
free shape parameter c

To study the relationship between numerical er-
ror and the free shape parameter c, the number
of supporting points is fixed at 32, based on the
above observation. Five different values of free
shape parameter c are tested, ranging from 0.1 to
0.3. For each c, 3D Poisson equation is solved on
five different uniform meshes. The numerical so-
lutions are shown in Figures 3(a)-(b) for the two
solution functions, respectively. In each figure,
the numerical results are plotted in the form of
relative error versus mesh size in the log-log scale
and a group of convergence lines are drawn ac-
cording to the same value of shape parameter c.
The mean values of convergence rate of relative
error versus the mesh size h are listed in Table 2.
From Figures 3(a)-(b), it is clear to see that the
convergence lines standing for different shape pa-
rameters are parallel to each other. In other words,
they have the same convergence rate (order of ac-
curacy). This can also be confirmed by the mean
value of convergence rate listed in Table 2. There-
fore, from the viewpoint of convergence rate, we
can say that the contributionsof shape parameter c
and mesh size h are utterly independent. From Ta-
ble 2, it can be seen that the convergence rates for
the different solution functions with various shape
parameter c almost have the same value (≈ 3.9).
This confirms our previous finding for the conver-
gence property with respect to mesh size h, i.e.
the convergence rate with respect to mesh size h

is independent of the solution function.
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Figure 3: Numerical errors versus mesh size for
various shape parameter c
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Table 2: Mean value of convergence rate with number of supporting points ns = 32

Shape parameter T = sin(πx) sin(πy) sin(πz) T = x4 +y4 + z4

c = 0.1 3.61 3.53
c = 0.15 3.86 3.77
c = 0.2 3.95 3.87
c = 0.25 3.99 3.91
c = 0.3 3.98 3.88

4 Numerical Procedure for Simulating Flows
past a Sphere

To demonstrate the ability of local MQ-DQ
method for simulation of a flow with curved
boundary in 3D space, we apply it to simulate
laminar flow past a sphere for 20 ≤ Re ≤ 270.
The Reynolds number Re is based on the sphere
diameter D and the free stream velocity U . The
flow of a viscous fluid past a stationary isolated
sphere may be considered as a simplified case of
a general family of immersed bluff-body flows
with widespread applications. The behavior of the
flow past a sphere at different Reynolds numbers
has been studied by a number of researchers. In
our study, we can easily compare our results with
those in the literature to validate the 3D local MQ-
DQ method.

4.1 Flow domain and grid distribution

In this case, the sphere is located at the origin of
the Cartesian coordinate system in a rectangular
box, −5 ≤ x ≤ 10, −5 ≤ y ≤ 5 and −5 ≤ z ≤ 5.
The grid distribution is shown in Figure 4, in
which 510768 nodes are used, and the minimum
and maximum distances between two neighboring
nodes are respectively 0.025 and 0.125. For the
convenience of illustration, only the grid points
on the x − y plane at z = 0 are plotted. From
this figure, it can be seen that a Cartesian mesh
is generated as the background mesh. For the do-
main around the sphere, grid points are distributed
along concentric circles to make the points or-
thogonal to the solid boundary. As shown in Fig.
4, for the region between the inner circular do-
main and outer square domain, grid points are
generated by the software “GAMBIT” to make
the grid distribution smooth.

Figure 4: Grid point distribution on the x−y plane
at z = 0

4.2 Governing equations

The three-dimensional, unsteady, incompressible
Navier-Stokes equations in the primitive variable
form are taken as the governing equations, which
are written as

∂u
∂ t

+u
∂u
∂x

+v
∂u
∂y

+w
∂u
∂ z

=

− ∂ p
∂x

+
1

Re
(

∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2 ) (8)

∂v
∂ t

+u
∂v
∂x

+v
∂v
∂y

+w
∂v
∂ z

=

− ∂ p
∂y

+
1

Re
(

∂ 2v
∂x2 +

∂ 2v
∂y2 +

∂ 2v
∂ z2 ) (9)

∂w
∂ t

+u
∂w
∂x

+v
∂w
∂y

+w
∂w
∂ z

=

− ∂ p
∂ z

+
1

Re
(

∂ 2w
∂x2 +

∂ 2w
∂y2 +

∂ 2w
∂ z2 ) (10)

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= 0 (11)

where u, v and w are the velocity components
along x-direction, y-direction and z-direction, re-
spectively.
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In order to solve the above Navier-Stokes equa-
tions, special splitting technique is required to
deal with the difficulties arising from lack of an
independent equation for the pressure, whose gra-
dient contributes to the momentum equations. In
this study, fractional step method proposed by
[Chorin (1968)] is adopted to do the job. In addi-
tion, the local MQ-DQ method is used for spatial
discretization.

4.3 Fractional step method

For convenient illustration of the fractional step
method, governing equations (8)-(11) are written
in the vector form as

∂u
∂ t

+u ·∇u = −∇p+
1

Re
Δu (12)

∇ ·u = 0 (13)

Solution of above N-S equations encounters dif-
ficulties like the lack of an independent equa-
tion for the pressure and non-existence of a dom-
inant variable in the continuity equation. One
way to circumvent these difficulties is to uncou-
ple the pressure computation from the momen-
tum equations and then construct a pressure field
so as to enforce the satisfaction of the continu-
ity equation. In this work, a two step fractional
step formulation is applied for 3D N-S equa-
tions with a collocated/ non-staggered arrange-
ment. In this scheme, the solution is advanced
from time level “n” to “n + 1” through a predict-
ing advection-diffusion step where pressure term
is dropped from the momentum equations. In
the advection-diffusion equations, convective and
diffusive terms are discretized by using Crank-
Nicolson scheme.

For a time increment Δt = tn+1−tn, the algorithm
of fractional step method consists of two steps:
Firstly, an intermediate velocity u∗ is predicted by
the advection-diffusion equation, which drops the
pressure term. That is, for each interior node in
the domain, the intermediate velocity u∗ can be
calculated by

u∗ −un

Δt
=

1
Re

1
2
(Δu∗ +Δun)− 1

2
(u∗ ·∇u∗ +un ·∇un) (14)

Secondly, the complete velocity u at tn+1 is cor-
rected by including the pressure field, given by

un+1 −u∗

Δt
= −∇pn+1 (15)

The final velocity field is subject to the continuity
constraint given by

∇ ·un+1 = 0 (16)

Substituting Eq. (15) into Eq. (16) leads to the
following Poisson equation for pressure

Δpn+1 =
∇ ·u∗

Δt
(17)

The velocity un+1 is updated by the solution of
pressure equation (17) and equation (15).

4.4 Implementation of Boundary conditions

The physical boundary conditions of the problem
are specified as follows. Free stream boundary
conditions (u= 1, v = w = 0) are applied at the
inflow and transverse boundaries. And Neumann
boundary conditions are imposed at the outflow
boundary. On the solid boundary, the non-slip
boundary conditions (u = v = w = 0) are im-
posed.

Besides the above physical boundary conditions,
some other boundary conditions are worthy of at-
tention. One of them is the enforcement of conti-
nuity equation on the solid boundary. To achieve
this, continuity equation should be accurately en-
forced on the solid boundary, i.e.

∂ (u ·n)
∂n

= 0 (18)

where n is the normal direction to the boundary
surface.

For generality and consistency, the implementa-
tion of above Neumann boundary condition is car-
ried out by using the so-called locally orthogonal
“grid”. As shown in [Shu, Ding, and Yeo (2003)],
the reason of adopting this type of grid is for easy
implementation. With the help of locally orthog-
onal “grid”, the Neumann boundary condition for
the velocity components can be discretized by
one-side finite difference scheme. Then, this dis-
cretized boundary condition is used to update the
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corresponding velocity component at immediate
interior point of the boundary knot (not the bound-
ary knot itself), since the velocity on the boundary
is already known.

The implementation of this boundary condition
is shown below. For the convenience of illus-
trating the procedure clearly, a sketch is shown
in Figure 5. For point 1, its original velocity
vector is {u1, v1} and its unit normal vector is
{ x

r ,
y
r}. Thus, Un1 = u1

x
r + v1

y
r . Then we can

get the normal and tangent velocity vector to be
{Un1

x
r , Un1

y
r}, {u1 −Un1

x
r , v1 −Un1

y
r}, respec-

tively. Similarly, Un2 = u2
x
r +v2

y
r .

1
u

1
v

1nU

1τU

1
U

Figure 5: Sketch of the enforcement of continuity
equation on the solid boundary

From the boundary condition ∂(u·n)
∂n = 0, we get

∂Un
∂n = 0. Discretizing it by one-side FD scheme,

we have

∂Un

∂n

∣∣∣∣
0
=

dr2
2 ·Un1−dr2

1 ·Un2− (dr2
2 −dr2

1)Un0

dr2
2 ·dr1 −dr2

1 ·dr2

= 0 (19)

Rearranging the above equation, we can get

Un1 =
(dr2

2 −dr2
1)Un0 +dr2

1 ·Un2

dr2
2

(20)

Since Un0 = 0, Un1 can be simplified to be

Un1 =
dr2

1

dr2
2

Un2 (21)

Thus, the normal velocity at point 1 is updated to

be U ′
n1 = dr2

1
dr2

2
Un2 and its corresponding vector be-

comes {U ′
n1

x
r , U ′

n1
y
r}. Since the tangent velocity

vector of point 1 stays unchanged, the new veloc-
ity vector is updated to be:

{
U ′

n1
x
r
, U ′

n1
y
r

}
+

{
u1 −Un1

x
r
, v1 −Un1

y
r

}
=

{
u1 +(U ′

n1−Un1)
x
r
,v1 +(U ′

n1−Un1)
y
r

}
(22)

From the above derivation, we can easily update
the velocity at point 1 by

u′1 = u1 +(U ′
n1−Un1)

x
r

(23)

v′1 = v1 +(U ′
n1−Un1)

y
r

(24)

where Un1 = u1
x
r + v1

y
r , U ′

n1 = dr2
1

dr2
2
Un2 and Un2 =

u2
x
r +v2

y
r .

The other concern is the boundary conditions for
pressure equation. In general, there is no explicit
boundary condition for pressure on the solid sur-
face. However, it can be derived from the mo-
mentum equations at the boundary node. For the
present case, the pressure gradient normal to the
boundary at the boundary nodes can be expressed
as

∂ p
∂n

= ∇p ·�n =
(

∂ p
∂x

∂ p
∂y

∂ p
∂z

)
·
⎛
⎝ x

r
y
r
z
r

⎞
⎠

=
∂ p
∂x

x
r
+

∂ p
∂y

y
r

+
∂ p
∂ z

z
r

(25)

where ∂ p
∂x = 1

Re ∇2u, ∂ p
∂y = 1

Re ∇2v and ∂ p
∂z = 1

Re ∇2w

4.5 Solution Procedure

The solution procedure of applying the fractional
step method to solve the 3D N-S equations is
shown below:



108 Copyright © 2008 Tech Science Press CMES, vol.25, no.2, pp.99-113, 2008

(1) The advection-diffusion equation (14) is
solved by SOR method to obtain the interme-
diate velocity u∗. (Boundary conditions for
the intermediate velocity are chosen to be the
same as the physical boundary conditions).

(2) The pressure Poisson equation (17) is solved
by SOR method to obtain the pressure for the
next step.

(3) Update the pressure boundary conditions (25)
on the solid boundary.

(4) Update the velocity in the domain for the next
step through equation (15). (Velocity on the
boundary is fixed)

(5) Enforce the continuity equation on the solid
boundary to update the velocity nearby the
boundary through equation (19a-19b).

(6) Go to step (1) until a solution of steady state
is reached.

5 Results and Discussion

The problem of flow past a sphere has been
studied by [Johnson and Patel (1999)] in details.
They found that when 20 ≤ Re ≤ 210, the flow
is separated, steady, axisymmetric and topolog-
ically similar. And when 210 ≤ Re ≤ 270, al-
though the flow still remains steady state, it is
non-axisymmetric. In this paper, the flows with
Reynolds numbers of 50, 100, 150 and 200 are
studied as axisymmetric case and Reynolds num-
ber of 250 as a non-axisymmetric case.

In the local MQ-DQ method, 32 supporting points
are employed for every reference node and the
shape parameter is set to be 0.18, based on the ob-
servation in Section 3. The time step for temporal
discretization is set to be 0.01. For the conver-
gence criterion of steady flow, L2 norm of veloc-
ity difference between the new and old time lev-
els, i.e.

∥∥un+1−un
∥∥, is set to be less than 10−4,

which is considered to be small enough for a con-
verged solution.

5.1 Steady axisymmetric flow

For flow in this regime, streamlines are shown in
Figure 6, which displays the streamlines on the

(x, y)-plane at z = 0 for Reynolds numbers of 50,
100, 150 and 200. In these and all the follow-
ing figures, unless otherwise noted, the flow di-
rection is from left to right. From Figure 6, it can
be seen that the flow separates from the surface of
the sphere at a separation angle and rejoins at a
point on the axis of the flow to form a closed sep-
aration bubble and a toroidal vortex. It can also
be seen from Figure 6 that the flow structure for
all the four Reynolds numbers remains topolog-
ically the same with changes only in the separa-
tion angle, the vortex’s position and the separation
bubble length. To illustrate the accuracy of the
present results, the separation bubble length Lsep

together with the drag coefficient Cd obtained by
the local MQ-DQ method is compared with those
by [Johnson and Patel (1999)]. The drag coef-
ficient is defined as Cd = Fx/( 1

2ρU2
∞πr2), where

Fx is the force in the streamwise direction. Table
3 shows good agreement between the present re-
sults and the aforementioned results.

Pressure contours for Reynolds numbers of 50,
100, 150 and 200 are shown in Figure 7. Contours
are drawn for every 0.05 increment with dashed
lines used for negative values. By comparing
the pressure contours, we can see that, within the
wake, in the vicinity of the toroidal vortex shown
in Figure 6, there is no pressure minimum in the
symmetry plane until a Reynolds number of 200.
As shown in Figure 7(d), the closed circles in the
wake indicate a pressure minimum located very
near the center of the toroidal vortex.

5.2 Steady non-axisymmetric flow

As has been pointed out by [Johnson and Patel
(1999)], at a Reynolds number of 211, the calcu-
lated flow solution no longer exhibits axial sym-
metry. The flow does, however, remain steady
state. Although non-axisymmetric, the flow does
contain a plane of symmetry. The extent of this
steady non-axisymmetric range has been docu-
mented as approximately 210 < Re < 270. The
results within this regime were found to be essen-
tially self-similar, or topologically identical, thus
only the solution at Re = 250 is considered in the
paper of [Johnson and Patel (1999)] since the de-
parture from symmetry is quite pronounced. In
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Table 3: Comparison of recirculating length and drag coefficient for Re = 50, 100, 150 and 200

Re Source Lsep Cd

50 Present
[Johnson & Patel (1999)]

0.413 0.418 1.564 1.583

100 Present
[Johnson & Patel (1999)]

0.896 0.884 1.103 1.112

150 Present
[Johnson & Patel (1999)]

1.292 1.214 0.901 0.908

200 Present
[Johnson & Patel (1999)]

1.552 1.463 0.786 0.798

Re = 50

(a)

Re = 100

(b)

Re = 150

(c)

Re = 200

(d)

Figure 6: Calculated axisymmetric streamlines past the sphere

this study, we also only consider the case with Re
= 250 for the convenience of comparison.

Figures 8(a) and 8(b) show streamlines in the (x,
z)- and (x, y)- planes, respectively. It is clear from
Figure 8(a) that the flow field is symmetric about
the (x, z)-plane, which divides the figure across
the center. Comparatively, from Figure 8(b), it
is apparent that the toroidal vortex has tilted. It
is also clear from the difference between the top
and bottom of the vortex ring, that its size is not
constant in the azimuthal direction. Additionally,
the toroid is clearly no longer a closed separation

bubble. The upper spiral is actually fed by fluid
originating from upstream while the lower spiral
releases fluid into the wake after sending it up and
around the upper spiral.

Pressure contours for the (x, z)- and (x, y)-planes
are shown in Figure 9. Like Figure 7, the contours
are drawn in levels of 0.05. The pressure field
in the (x, z)-plane is completely symmetric and
closely resembles the contours in Figure 7(d) for
a Reynolds number of 200, although the pressure
in the core of the vortex is clearly lower owing to
the higher centrifugal acceleration of the vortex.
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Re = 50

(a)

Re = 100

(b)

Re = 150

(c)

Re = 200

(d)

Figure 7: Pressure contours for axisymmetric flow

(x, z) - plane

(a)

(x, y)-plane

(b)

Figure 8: Streamlines of projected velocity vectors at Re = 250
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(x, z) - plane (x, y) - plane

Figure 9: Pressure contours Re = 250

Pressure contours in the (x ,y)-plane are not sym-
metric. The pressure minimum in the region of
the lower focus of Figure 8(b) is lower than that
in the region of the upper focus. This azimuthal
pressure gradient propagates through the core of
the toroidal vortex inducing flow along the vortex
axis. This breakdown in axial symmetry, which
begins at Re ≈ 211, corresponds closely to the
occurrence of a global pressure minimum in the
center of the vortex. It appears, therefore, that the
instability of the axisymmetric flow is connected
to the generation, by radial acceleration around
the vortex center, of a ring of low pressure in the
wake.

6 Conclusions

In this paper, the local MQ-DQ method was ex-
tended to solve fluid flow problems with curved
boundary in three-dimensional space. An error
estimate was provided for the 3D local MQ-DQ
method to study the influence of the number of
supporting points and shape parameter on its nu-
merical accuracy. It was observed that the accu-
racy of numerical solutions can be improved by
increasing the value of shape parameter and the
convergence rate can be improved by increasing
the number of supporting points. Based on these
findings, the local MQ-DQ method is then ap-
plied to solve three-dimensional, time-dependent,

incompressible Navier-Stokes equations in the
primitive variable form. The problem of flow past
a sphere was simulated to demonstrate its capabil-
ity and flexibility in solving 3D fluid flow prob-
lems with curved boundary. The obtained numer-
ical results were compared well with data in the
literature. The numerical experiments show that
the local MQ-DQ method is a promising scheme
for solving 3D fluid flow problems with curved
boundary.
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