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Coupled Atomistic/Continuum Simulation based on Extended Space-Time
Finite Element Method
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Abstract: A multiscale method based on the
extended space-time finite element method is de-
veloped for the coupled atomistic/continuum sim-
ulation of nanoscale material systems. Exist-
ing single scale approach such as the finite ele-
ment method has limited capability of represent-
ing the fine scale physics in both the spatial and
temporal domains. This is a major disadvantage
for directly incorporating FEM in coupled atom-
istic/continuum simulations as it results in errors
such as spurious wave reflections at the atom-
istic/continuum interface. While numerous efforts
have been devoted to eliminating the interfacial
mismatch effects, less attention has been paid to
developing fine scale, atomistic level represen-
tations within the FEM framework. In this pa-
per, we show that multiscale space-time approxi-
mations can be established within the context of
FEM. By augmenting the regular space-time fi-
nite element shape function basis with the enrich-
ment function, we demonstrate that the contin-
uum and atomistic representations can be consis-
tently linked and this naturally leads to a reflec-
tionless interfacial boundary condition. In addi-
tion, a unique feature of this approach is its ability
to achieve wave transmitting condition that is en-
ergy conservative. Realization of these properties
is illustrated through both harmonic and nonlinear
lattices in 1D.
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1 Introduction

Even with its tremendous success in modeling
material systems and devices, simulation based
on full-scale atomistic description is still an ex-
pensive technique and thus limited in the rele-
vant spatial and temporal scales it can address. In
this context, multiscale method based on coupled
atomistic/continuum simulation offers the unique
advantage of arriving at the solution with enor-
mous computational saving. It also provides a ro-
bust computing platform for applications that are
of multiscale in nature. Examples include mate-
rials with hierarchical structures and components,
crack propagation, dislocation-induced plasticity,
and many others. In implementing coupled atom-
istic/continuum simulations, one critical issue is
the development of robust representations of en-
ergy and momentum in the respective continuum
and atomistic regions. Another important chal-
lenge is the accurate account on information ex-
change between the domains across the interface.
A lack of consistent link between the continuum
and atomistic models leads to spurious phonon
reflections at the atomistic/continuum interface,
which subsequently pollutes the numerical solu-
tion.

A large amount of work has recently been devoted
to the interface in coupled atomistic/continuum
simulations. Significant developments include the
Langevin approach by Cai, de Koning, Bulatov,
and Yip (2000) for linear systems. The Bridging-
scale method (BSM) has been proposed by Wag-
ner and Liu (2003) and extended in ( Park, Kar-
pov, Liu, and Klein (2005); Qian, Wagner, and
Liu (2004); Wagner, Karpov, and Liu (2004); Kar-
pov, Yu, Park, Liu, Wang, and Qian (2006) ) based
on projection operator and Langevin type of time-
history kernel. E and Huang (2001, 2002) de-
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rived a procedure for coupling molecular dynam-
ics with linear elasticity based on the minimiza-
tion of reflections. Xiao and Belytschko (2004)
have developed a bridging domain formulation in
which the compatibility between finite element
and molecular dynamics degree of freedoms are
enforced based on constraints using Lagrangian
multipliers. The energy conserving properties of
the bridging domain formulation are presented by
Belytschko (2007) and more recently in ( Xu and
Belytschko (2008) ). To and Li (2005); Li, Liu,
Agrawal, and To (2005) proposed the perfectly
matched layer (PML) method by matching the
impedance at the atomistic/continuum interface.
Application of PML for non-equilibrium molec-
ular dynamics was demonstrated by Liu and Li
(2007).

Since the continuum description is typically based
on finite element with mesh size much larger than
the atomic spacing, the FEM approximation is
not capable of describing the phonons with length
scales smaller than the size of the mesh. As such,
the fine scale phonons that are originated from
the atomistic region get reflected at the numer-
ical interface of the FEM and atomistic simula-
tion. To remove such spurious reflections, one so-
lution is to impose damping mechanism at the in-
terface so that the fine scale phonons originated
from the atomistic simulation are effectively dis-
sipated. The corresponding boundary condition is
sometimes referred to as the reflectionless bound-
ary condition. This approach is effective if the
atomistic description is limited to a single do-
main. Considering, however, the case of atom-
istic descriptions used in multiple domains, the
damping-based methodology may have difficul-
ties as the fine scale phonons originated from each
domain need to propagate through the continuum
region to interact with each other. Although the
imposed damping eliminates the reflection, it also
dissipates the fine scale components of the wave
that need to be transmitted through the continuum
region. The lack of representation of the fine scale
behavior in the continuum region could further
lead to erroneous simulation results.

In this paper, we present a multiscale method
based on coupling the extended space-time finite

element method with atomistic simulation. We
show that the reflectionless boundary condition
can be achieved by establishing accurate repre-
sentations of the scale phonons in the continuum
region based on an enrichment method. In addi-
tion, it naturally leads to a wave transmitting con-
dition that is energy conservative. The proposed
approach has three key components: the space-
time finite element method for discrete atomic
systems, the multiscale approximation based on
enrichment and coupling with atomistic simula-
tion methods. Integrating these three components
allows us to address the fine scale phenomena in
both the spatial and temporal domains. To the
best of our knowledge, the method proposed is
the first of its kind for treating the interfaces in
coupled atomistic/continuum simulation. The de-
tails of the implementation are outlined in the rest
of the paper, which are organized as follows: The
space-time finite element formulation for discrete
atomic system is derived in section 2. The mul-
tiscale enrichment approximation for the space-
time FEM formulation is presented in section 3.
In section 4, we discuss the coupling of the ex-
tended space-time FEM method with atomistic
simulation method. Example problems are pro-
vided in section 5 and a comparison with the ex-
isting approach is made. Final conclusions are
presented in section 6.

2 The Space-time Finite Element Method

2.1 Basic Formulation

The idea of developing approximations in time
using FEM shape functions is first proposed in (
Argyris and Scharpf (1969); Fried (1969); Oden
(1969); Gurtin (1964) ), and among others. De-
tailed studies for wave propagation in continuum
systems using space-time method can be found
in ( Hughes and Stewart (1996); Li and Wiberg
(1996); Hulbert and Hughes (1990) ). Recently,
Chessa and Belytschko (2004) have developed a
space-time version of the extended finite element
method for capturing arbitrary discontinuities in
continuum systems. Similar to ( Chessa and Be-
lytschko (2004) ), the formulation to be described
below is also based on the enrichment approach.
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We have, however, limited our attention to the
application to discrete atomic systems and cou-
pling with atomistic simulations. A discontinuous
Galerkin approach ( Hughes and Stewart (1996);
Zienkiewicz, Taylor, Sherwin, and Peiro (2003)
) has been employed in this work, i.e., the space-
time domain is decomposed into sub-domains and
then variational principles are established within
each sub-domain. While we have focused on con-
tinuous approximations, the formulation also al-
lows for discontinuous representations in space
and time.

Compared with the semi-discrete schemes, an im-
portant difference in the space-time formulation
is that the approximations are built simultane-
ously in space and time. If finite element method
is used, we have the following approximation in
the space-time description for a general three-
dimensional case

u(x, t) = ∑
I

NI(x, t)dI (1)

in which NI(x, t) is the finite element shape func-
tion defined at the space-time node indexed by I
and evaluated at spatial coordinate x and time t.
dI is the corresponding space-time nodal degree
of freedom. Note that although NI and dI look
similar to the ones in the semi-discrete scheme,
they are defined on a space-time grid as opposed
to space only. For the purpose of simplicity, we
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Figure 1: An illustration of a typical space-time
grid used for a one-dimensional problem

will use the 2D space-time grid plotted in Figure
1 as a reference. The derived formulation, how-
ever, is not restricted to 2D. We consider a space-
time domain Q, which is the Cartesian product
of space domain Ω and time duration (0,T), i.e.,
Q = Ω× (0,T). The time domain is subdivided
into time slabs with the n-th time slab given as
Qn = Ω× (tn, tn+1). The space time grid is dis-
continuous in time and t± = t ± ε represents the
discontinuity at time t, ε being an infinitesimal
perturbation in time. The discontinuity in a vari-
able u at time t is given by:

�u(t)� = u(t+)−u(t−) (2)

We consider an atomistic system in which the mo-
tion of the atoms obeys Newton’s second law, i.e.,

Gδ̂ (x−xα) = 0 (3)

where G = fext + fint −mü is a vector function of
space coordinate x and δ̂ is the Dirac delta func-
tion. For the α-th atom, fext

α and fint
α are the exter-

nal and internal forces respectively. mα , xα and
üα correspond to the mass, position and acceler-
ation of the α-th atom. The internal forcing term
in Eq.(3) is governed by the inter-atomic poten-
tial W , i.e., fint

α = −∂W/∂xα . Similar to the con-
tinuum case in ( Hughes and Stewart (1996) ), a
space-time weak form employing discontinuous
Galerkin formulation for the atomic system can
be derived as:

0 = B(δuh,uh)n −L(δuh)n

=
∫

Qn

δ u̇h ·G
Na

∑
α=1

δ̂ (x−xα)dQn

−
∫

Ω
δ u̇h(t+n ) ·

�
mu̇h

Na

∑
α=1

δ̂ (x−xα)

�
t=tn

dΩ

+
∫

Ω
δuh(t+n ) ·

�
fint

Na

∑
α=1

δ̂ (x−xα)

�
t=tn

dΩ

+
∫

Ω
δuh(t+n ) ·

�
fext

Na

∑
α=1

δ̂ (x−xα)

�
t=tn

dΩ (4)
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with

B(δuh,uh)n

=−
∫

In

∫
Ω

δ u̇h

(
müh

Na

∑
α=1

δ̂ (x−xα)

)
dΩdt

+
∫

In

∫
Ω

δ u̇h

(
fint

Na

∑
α=1

δ̂ (x−xα)

)
dΩdt

−
∫

Ω
δ u̇h(t+n )

[
mu̇h

Na

∑
α=1

δ̂ (x−xα)

]
t=t+n

dΩ

+
∫

Ω
δuh(t+n )

[
fint

Na

∑
α=1

δ̂ (x−xα)

]
t=t+n

dΩ (5)

L(δuh)n

=−
∫

In

∫
Ω

δ u̇h

(
fext

Na

∑
α=1

δ̂ (x−xα)

)
dΩdt

−
∫

Ω
δ u̇h(t+n )

[
mu̇

Na

∑
α=1

δ̂ (x−xα)

]
t=t−n

dΩ

+
∫

Ω
δuh(t+n )

[
fint

Na

∑
α=1

δ̂ (x−xα)

]
t=t−n

dΩ

−
∫

Ω
δuh(t+n ) ·

�
fext

Na

∑
α=1

δ̂ (x−xα)

�
t=tn

dΩ

(6)

in which δuh is the test function, δ is the vari-
ational sign and In = (tn, tn+1). Na is the total
number of atoms in the domain. Superscript h in-
dicates the numerical approximation. The three
terms on the right hand side of Eq.(4) represent
the enforcement of momentum balance, veloc-
ity and displacement continuity condition, respec-
tively. The direct substitution of the space-time
FEM approximation into the bilinear weak form
leads to a stiffness equation in the form of,

Kndn+1 = Lndn +(Lext)n (7)

where

Kn = Kkin +Kint +K
+
kin +K

+
int (8)

Ln = L
−
kin +L

−
int (9)

Here Kn is the space-time stiffness for the n-th
time slab and is contributed by the kinetic and

internal energy terms. The factor of Ln repre-
sents the information flux coming from the pre-
vious time slab and (Lext)n represents the contri-
bution from the external forces during the nth time
slab. We consider the case of a one-dimensional
harmonic lattice and assume nearest neighbor in-
teraction only, with a spring constant of k. By
introducing indices β and γ to denote the nearest
neighboring atoms of atom α , the specific terms
in Eqs.(8) and (9) are given as

Kkin =−
∫

In

(
Na

∑
α=1

mα ṄT
αN̈α

)
dt (10)

Kint =
∫

In

Na

∑
α=1

k
2

(
ṄT

αNα + ṄT
β Nβ + ṄT

γ Nγ

)
dt

(11)

K
+
kin =−

Na

∑
α=1

mα
(
ṄT

α(t+n )Ṅα(t+n )
)

(12)

K
+
int =

Na

∑
α=1

k
2

(
NT

α(t+n )Nα(t+n )+NT
β (t+n )Nβ (t+n )

+NT
γ (t+n )Nγ(t+n )

)
(13)

L
−
kin =−

Na

∑
α=1

mα
(
ṄT

α(t+n )Ṅα(t−n )
)

(14)

L
−
int =

Na

∑
α=1

k
2

(
NT

α(t+n )Nα(t−n )+NT
β (t+n )Nβ (t−n )

+NT
γ (t+n )Nγ(t−n )

)
(15)

(Lext)n =−
∫

In

(
Na

∑
α=1

ṄT
α fext

α

)
dt

−
Na

∑
α=1

Nα(t+n ) ·�fext
α

�
t=tn

(16)

where

Nα = N(xα , t),Nβ = N(xβ , t),Nγ = N(xγ , t)
(17)

Nα = Nβ +Nγ −2Nα (18)

Nβ = Nα −Nβ (19)

Nγ = Nα −Nγ (20)

In numerical implementation, the evaluation of
the terms in Eqs.(8) and (9) can be further sim-
plified using the virtual atom cluster (VAC) model
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developed in ( Qian, Wagner, and Liu (2004) and
Qian and Gondhalekar (2004) ). In this model, the
original discrete summation over the atoms is re-
placed by quadrature. At each quadrature point, a
basic repeating unit of virtual atom cluster is im-
posed and the potential energy density and its de-
pendence on the deformation mapping are evalu-
ated based on the cluster representation. For the
1D chain of atoms with nearest neighbor interac-
tion only, the virtual atom cluster consists of 3
atoms, α being the atom imposed on the quadra-
ture point, β its neighbor to the left and γ its
neighbor to the right. The corresponding terms in
the space-time FEM equation further reduce to:

Kkin =−
∫

In

ρm

(
ng

∑
g=1

ṄT
αN̈α |Jx|wg

)
dt (21)

Kint =∫
In

ρk

(
ng

∑
g=1

(
ṄT

αNα + ṄT
β Nβ + ṄT

γ Nγ

)
|Jx|wg

)
dt

(22)

K
+
kin =−ρm

ng

∑
g=1

(
ṄT

α(t+n )Ṅα(t+n )
) |Jx|wg (23)

K
+
int =ρk

ng

∑
g=1

(
NT

α(t+n )Nα(t+n )+NT
β (t+n )Nβ (t+n )

+NT
γ (t+n )Nγ(t+n )

)
|Jx|wg (24)

L
−
kin =−ρm

ng

∑
g=1

(
ṄT

α(t+n )Ṅα(t−n )
) |Jx|wg (25)

L
−
int =ρk

ng

∑
g=1

(
NT

α(t+n )Nα(t−n )+NT
β (t+n )Nβ (t−n )

+NT
γ (t+n )Nγ(t−n )

)
|Jx|wg (26)

where

ρm =
mα

ha
(27)

ρk =
k

2ha
(28)

in which ng are the number of quadrature points,
wg are the quadrature weights, Jx represents the
Jacobian for the spatial quadrature and ha is the
inter-atomic spacing.

2.2 Space-time FEM without Enrichment

In this section, we first compare the performances
of the space-time FEM approach developed in the
last section with the standard molecular dynam-
ics. We consider a 1D chain of atoms which is
fixed at both ends. The two ends are located at x =
−1 and x = 1. The number of atoms in this chain
is 1001. Thus the atomic spacing ha is 0.002. The
mass of each atom mα = 1 and the value of k for
the harmonic potential between the neighboring
atoms is 2. For the space-time simulation, the spa-
tial discretization is done by placing a spatial node
at each of the atomic location. Therefore the total
number of spatial nodes is the same as the total
number of atoms, i.e. nc = Na = 1001 and the
nodal spacing he = ha = 0.002. Quadratic inter-
polation in time is used. An initial displacement
of A = 2ha

3 is applied to atoms in the region from
x = ±Lc and Lc = 0.2.

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

Position

D
is

pl
ac

em
en

t/A
m

pl
itu

de

Initial Displacement

Figure 2: Initial step wave profile for the space-
time FEM simulation

Shown in Figure 2 is the initial imposed wave pro-
file. The time history of the wave is simulated us-
ing both MD and space-time methods. The stan-
dard Verlet algorithm is employed in the MD sim-
ulation and the time step used is δ t = 0.96

√ma
k .

In the space-time method, we have employed two
different time step sizes, i.e., Δt is 5 times that of
MD in the first case and 10 times for the second
case.

Figures 3 and 4 shows the positions of the atoms
resolved from MD and space-time method at the
end of 200 MD steps. The analytical solution is
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Figure 3: Comparison of space-time FEM so-
lutions with analytical and MD solutions at Δt =
5δ t

also plotted for reference. As can be seen from
figures 3 and 4, the space-time method produces
far less oscillations compared with the MD solu-
tion and the jump in the displacement is well cap-
tured. Figure 4 indicates that the space-time so-
lution remains stable even with the use of a larger
time step (Δt = 10δ t), though there is some minor
reduction in accuracy in the vicinity of the region
where the jump in the displacement of the atoms
takes place.

Since the space-time approximation in this exam-
ple is established using the regular FEM shape
functions, the coarse scale approximation based
on FEM could be problematic if one attempts
to couple it with atomistic simulations. A simi-
lar issue has been discussed in (Wagner and Liu
(2003)) in the context of semi-discrete scheme.
Here we demonstrate the mismatch effects in the
context of coupling space-time FEM with MD.
In this approach the MD is limited to certain re-
gions of interest. We consider the same mass and
spring constant as in the last example and the do-
main now extends from x = −L to x = L with
4001 atoms and L = 2. The spatial domain is dis-
cretized using 161 nodes. The atomic spacing is
thus ha = 0.001 and the space-time FEM spatial
nodal spacing is he = 0.025. The FEM descrip-
tion exists everywhere in the domain including
the regions where MD is applied. In this exam-
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Figure 4: Comparison of space-time FEM so-
lutions with analytical and MD solutions at Δt =
10δ t

ple, the MD description is limited to two regions.
The first MD region stretches between x = ±3L

16
and is referred to as the central MD region. The
second region extends from x = 0.3L to x = 0.6L
and is called peripheral MD region. We first im-
plement a handshake approach for the coupling of
the space-time FEM with MD. This is schemat-
ically illustrated in Figure 5. In this approach,

Figure 5: Coupling space-time FEM with
molecular dynamics using handshake approach

the handshake coupling is mainly implemented
through the so-called ‘ghost atoms’. By defini-
tion, these are the atoms located just outside the
interfacial boundary of the MD-FEM region i.e.
they lie in the FEM region. The displacement for
these atoms is interpolated from the space-time
FEM and it is supplied as boundary condition for
the MD simulation. In addition, for the atoms in
the MD regions that are located on the MD-FEM
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interfacial boundary, we also enforce the veloc-
ities of these atoms to be interpolated from the
space-time FEM method. This is also referred
to as the velocity matching condition in ( Wag-
ner and Liu (2003) ). To take advantage of the
large time step that can be used in the space-time
FEM, the coarse scale time step for the coupled
space-time/MD simulation is Δt = 600δ t, where

δ t = 0.1
√

k
ma

is the MD time step.
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Figure 6: Spatial discretization scheme of cou-
pling MD with space-time FEM

Figure 6 is a schematic description for the spa-
tial discretization of the domain. The initial dis-
placement is applied in the region extending from
x = −Lc to x = Lc, where Lc = L/10. The form

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

Position

D
is

pl
ac

em
en

t/A
m

pl
itu

de

Initial Displacement

Spatial FEM mesh
Central MD atoms
Peripheral MD atoms

Figure 7: Initial displacement in the coupled
space-time FEM/MD simulation

of the initial displacement contains a combination

of coarse plus fine scale wave, which is given as
follows:

u =

{
0 if | x |> Lc

A
[
cos
(

πx
2 Lc

)
+0.1cos

(
Bπx
2 Lc

)]
if | x |≤ Lc

(29)

where A = 2 ha
3 and B is a parameter that controls

the fine scale portion of the displacement. For the
results that are presented over here, the parameter
B = 69.

The initial displacement is plotted in Figure 7 only
for the positive half of the domain due to sym-
metry. As we observe from Figure 7, only the
atoms in the first MD region are subjected to the
prescribed displacement, while those in the sec-
ond MD region are initially at rest. As the sim-
ulation proceeds, the initial coarse plus fine scale
displacement field shall pass through the central
atoms and propagate into the second MD region
according to the analytical solution.
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Figure 8: Spurious wave reflection from the di-
rect handshake approach at 9000 MD step

In the coupled simulation based on the direct
handshake approach, however, only the coarse
scale portion of the imposed displacement passes
through the interface while the fine scale portion
gets reflected. This can be clearly identified from
the displacement field for the atoms located in the
central MD region in Figure 8. Note that only pos-
itive half of the domain is plotted in Figure 8 due
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to the symmetry of the solution. The observed
spurious reflection is mainly due to the mismatch
in the FEM mesh size and atomic spacing. A
more quantitative evaluation of the reflection is
to compute the total energy of the atoms in the
two MD regions. The total energy is calculated
by considering the kinetic as well as the internal
energy of all the atoms in the corresponding MD
regions. Figure 9 plots the energy histories for
the central and peripheral MD regions based on
the handshake coupling approach. For compar-
ison purpose, the corresponding energy histories
from the full-scale MD simulation are also com-
puted and plotted in Figure 9. All the energy val-
ues are normalized with respect to the initial en-
ergy. We observe from Figure 9 that over 60%
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Figure 9: A comparison of normalized energy his-
tory from the handshake case with the full-scale
MD simulation

of the energy is reflected at the interface and re-
tained in the first MD region. The second MD
region gets only a small fraction (<2%) of the to-
tal energy. This energy mainly corresponds to the
coarse scale portion of the displacement that gets
transmitted through the FEM region into the pe-
ripheral MD region. One could further perform a
parametric study by changing the value of B as it
controls the fine scale feature of the imposed dis-
placement. As B increases, the ratio of the energy
transmitted into 2nd MD region to the total ini-
tial energy decreases. In other words, with the in-

crease in the fineness of the fine scale component,
the amount of the spurious reflection increases
and the peripheral region receives smaller portion
of the total energy. Figure 10 quantitatively shows
this dependence. To eliminate the interface reflec-
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Figure 10: The ratio of transmitted energy vs total
energy as a function of the parameter B

tion, we have applied the technique of Bridging
Scale Method (BSM) ( Wagner and Liu (2003) ).
The readers are referred to the reference ( Wagner
and Liu (2003) ) for the details. The implemen-
tation in this paper follows a similar procedure,
with the exception that the FEM solutions are ob-
tained from the space-time framework instead of
semi-discrete scheme. Here we plot in Figure 11
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Figure 11: Displacement plot indicating elimi-
nation of reflection

for the wave profile at the same time as Figure
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8 after BSM is applied. We observe that the re-
flections are effectively eliminated. However, we
also observe that only the coarse scale portion of
the displacement is propagated into the peripheral
region through the FEM region. Figure 12 illus-
trates that the energy associated with the fine scale
is dissipated and thus no longer retained in the
central MD region. Compared with the solution
for the peripheral MD region based on full-scale
MD, one clearly sees that the total energy is not
conserved. This phenomenon is mainly due to the
lack of fine scale representation in the space-time
FEM approximation.
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Figure 12: Normalized energy plot for the BSM
simulation

3 Extended Space-time Finite Element
Method based on Multiscale Enrichment

The discussions in the previous section clearly il-
lustrate the need for introducing multiscale space-
time approximations into the regular space-time
FEM. In this paper we have developed an enrich-
ment method based on a new generation of nu-
merical approach called extended finite element
method (XFEM) (Dolbow, Moes, and Belytschko
(2000a,b); Sukumar, Moes, Moran, and Be-
lytschko (2000); Chessa and Belytschko (2004)),
which is also sometimes referred to as the Gen-
eralized FEM (GFEM) (Duarte, Babuška, and
Oden (2000)). Both methods are derived based

on the partition-of-unity approach introduced in
(Melenk and Babuška (1996)).

We start describing the enrichment formulation by
defining φ (x, t) as a function that represents cer-
tain fine scale physics in both space and time. In
the enriched formulation we multiply the regular
FEM shape function defined at the node J with
(φ (x, t)−φ (xJ, tJ)) to obtain the enriched basis,
where (xJ, tJ) is the space-time coordinate of node
J. The total displacement at any point in space
and time is given as:

u =
n

∑
I=1

NI(x, t)dI +
ne

∑
J=1

ÑJ(x, t)aJ (30)

where ne is the number of enriched nodes and it is
a subset of the total number of space-time nodes
n. aJ are the additional degrees of freedom at the
enriched nodes. NI represents the regular space-
time FEM shape function with the corresponding
nodal degree of freedom dI , while ÑJ represents
the enrichment shape function. The enrichment
shape function ÑJ(x, t) is given by:

ÑJ(x, t) = NJ(x, t) ·ψ(x, t) (31)

where,

ψ(x, t) = (φ (x, t)−φ (xJ, tJ)) (32)

The definition of ψ(x, t) in Eq.(32) ensures that
the nodal values dI at the node I equals the dis-
placement evaluated at the corresponding node.

In a time dependent problem, the local character
changes with time and the domains that need to
be enriched are constantly changing. As a result,
the enrichment function at a particular location in
space can be different at different times. For the
1D implementation in this paper, the enrichment
degrees of freedom are present in the entire do-
main. This reduces the need of tracking the local
character, but the trade-off is the increase in the
number of degrees of freedom that we solve. We
expect, however, future improvement can be made
by using an enrichment scheme that is limited to
the region of the local character. Let N represent
the total shape function matrix, N = [N Ñ]. The
displacement can be obtained by:

u = Nd+ Ñ a = Nd (33)



194 Copyright c© 2008 Tech Science Press CMES, vol.24, no.3, pp.185-202, 2008

where d = [d,a]T .
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Figure 13: Regular FEM shape function

0

0.5

1

SpaceTime

S
h

a
p

e
 F

u
n

ct
io

n
 V

a
lu

e

Figure 14: Enrichment FEM shape function

Figures 13 and 14 shows the regular FEM shape
function N and the enrichment shape function Ñ
for a single space-time finite element. In this case,
the three-node quadratic function is used for in-
terpolation in time and linear function is used in
space for the regular FEM shape function. A har-
monic cosine function corresponding to the fine
scale portion of the displacement from Eq.(29),
with B = 69 is used as the enrichment function .
As mentioned earlier, the effect of enrichment on
the shape function basis is expected to vanish at
the corresponding enriched node. The multiscale
approximation constructed from Eq.(33) is simi-
lar in form to the approximation in a regular FEM,
with the exception of enrichment basis. For a lin-
ear lattice, a stiffness equation in the same form

as Eq.(7) can be derived

Kndn+1 = Lndn +(Lext)n (34)

where

Kn = Kkin +Kint +K
+
kin +K

+
int (35)

Ln = L
−
kin +L

−
int (36)

and the specific terms are given as

Kkin = −
∫

In

ρm

ng

∑
g=1

[
Ṅ

T

α

( ˙̃Nα)T
n

][
N̈α ( ¨̃Nα)n

]
|Jx|wg dt (37)

Kint =
∫

In

ρk

ng

∑
g=1

([
Ṅ

T

α

( ˙̃Nα)T
n

][
Nα (Ñα)n

]

+

[
Ṅ

T

β

( ˙̃Nβ )T
n

][
Nβ (Ñβ )n

]

+

[
Ṅ

T

γ

( ˙̃Nγ)T
n

][
Nγ (Ñγ)n

])|Jx|wg dt (38)

K
+
kin = −ρm

( ng

∑
g=1

[
Ṅ

T

α(t+n )
( ˙̃Nα)T

n (t+n )

]
[
Ṅα(t+n ) ( ˙̃Nα)n(t+n )

]
|Jx|wg

)
(39)

K
+
int =

ρk

ng

∑
g=1

([
N

T
α(t+n )

(Ñα)T
n (t+n )

][
Nα(t+n ) (Ñα)n(t+n )

]

+

[
N

T
β (t+n )

(Ñβ )T
n (t+n )

][
Nβ (t+n ) (Ñβ)n(t+n )

]

+

[
N

T
γ (t+n )

(Ñγ)T
n (t+n )

][
Nγ(t+n ) (Ñγ)n(t+n )

])|Jx|wg

(40)

L
−
kin = −ρm

ng

∑
g=1

[
Ṅ

T

α(t+n )
( ˙̃Nα)T

n (t+n )

]
[

Ṅα(t−n ) ( ˙̃Nα)n(t−n )
]
|Jx|wg (41)
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L
−
int =

ρk

ng

∑
g=1

([
N

T
α(t+n )

(Ñα)T
n (t+n )

][
Nα(t−n ) (Ñα)n(t−n )

]

+

[
N

T
β (t+n )

(Ñβ )T
n (t+n )

][
Nβ (t−n ) (Ñβ)n(t−n )

]

+

[
N

T
γ (t+n )

(Ñγ)T
n (t+n )

][
Nγ(t−n ) (Ñγ)n(t−n )

])|Jx|wg

(42)

(Lext)n = −
∫

In

Na

∑
α=1

[
Ṅ

T

α

( ˙̃Nα)T
n

]
fext
α dt

−
Na

∑
α=1

[
N

T
α(t+n )

(Ñα)T
n (t+n )

]�
fext
α

�
t=tn

(43)

Eq.(34) represents the equation that we solve in
the extended space-time finite elements to ob-
tain dn+1 from the knowledge of dn. This gen-
eral form is independent of the choice for the
enrichment function. Note that the enrichment
shape function Ñ is a function of time and there-
fore a subscript n is used. Depending upon the
problem under analysis φ (x, t) will change result-
ing in a different Ñ matrix for different prob-
lems. This will obviously impact the final form
for Kn and Ln that would be used to program the
enriched space time finite element formulation.
This choice is further discussed in the case of cou-
pling the extended space-time FEM with molecu-
lar dynamics to be presented in the next section.

4 Coupling of the Extended Space-time FEM
with Molecular Dynamics

The coupling scheme in the enriched case is sim-
ilar to the case of coupling the regular space-time
FEM with MD, i.e., the space-time FEM spans the
entire domain and the MD is limited to only a por-
tion of the domain. As MD typically employs an
explicit time integration scheme with small time
step size, we will develop a multi-time stepping
algorithm. In this algorithm, the coarse scale sim-
ulation associated with the space-time FEM is ad-
vanced first. For every coarse scale time step, m
sub-cycles are carried out for the MD simulation.

In the following description, we use superscript
j for the time step number of the MD sub-cycle
and n for the time step number of the extended
space-time FEM simulation. The specific imple-
mentations for the MD and space-time FEM are
described in the following sections.

4.1 MD Solution Procedure

Let q represent the atomic displacement vector
and MA be the atomic mass matrix for the lo-
cal MD region, the governing equation of MD is
given as

MAq̈ = fint + fext (44)

where fint = −∂W
∂q is the internal force, W is the

interatomic potential and fext is the external force
vector.

For the j-th sub-cycle within the n-th space-time
FEM time step, we define q j

n, p j
n and q̈ j

n as the
corresponding MD displacement, momentum and
acceleration vectors. To proceed with the MD
simulation sub-cycle j + 1, boundary conditions
shall be specified based on the extended space-
time FEM simulation. Denote ΓFE/MD as the in-
terfacial boundary where the ghost atoms are lo-
cated, the boundary condition for the MD sub-
cycle is given as

q j+1
n |ΓFE/MD

= q(x, t j+1
n )|ΓFE/MD

= N(x, t j+1
n )d|ΓFE/MD

(45)

in which t j+1
n stands for the time corresponding

to the ( j + 1)-th sub-cycle of the n-th step. With
Eq.(45), the Verlet algorithm is used to advance
the MD simulation:

q j+1
n = q j

n + δ t M−1
A ṗ j

n +
1
2

δ t2 q̈ j
n (46)

q̈ j+1
n = M−1

A f(q j+1
n ,q j+1

n |ΓFE/MD
,θ ) (47)

p j+1
n = p j

n +
1
2

MA δ t (q̈ j+1
n + q̈ j

n) (48)

in which θ represents the time history kernel
(Wagner and Liu (2003)) that is evaluated for the
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atoms at the boundaries of MD, δ t is the time step
size used for the sub-cycle. The set of equations
(Eq.(45)-(48)) are used to update the MD sim-
ulation. As can be seen, the boundary informa-
tion for the MD simulation is obtained from the
space-time FEM simulation using the same hand-
shake approach as described in section 2. The
key difference, however, is that the positions of
the ghost atoms are interpolated based on the ex-
tended space-time FEM approximation. In addi-
tion, we no longer implement the velocity match-
ing condition.

4.2 Extended Space-time FEM Simulation

In the implementation of the extended space-time
FEM, Eq.(34) is solved to advance the coarse
scale simulation with a much larger time step size.
In the regions where the space-time mesh over-
laps with the MD, the handshake approach de-
scribed in the last section represents the informa-
tion passing from the extended space-time FEM
to MD. In addition, we note that the total scale so-
lution obtained from MD in this region is readily
available. Therefore, the space-time FEM solu-
tion in the overlap region can be obtained by pro-
jecting the MD solution onto the extended space-
time FEM shape function basis. This in turn rep-
resents the information passing from MD to the
extended space-time FEM.

We define na as the number of atoms in the cou-
pled region and nac as the number of spatial nodes
in the coupled region. If the atomistic DOFs in
the coupled region are directly interpolated using
the extended space-time FEM shape functions, we
have

q̂(x, t) = N̂(x, t)D (49)

in which q̂ is the atomistic DOF in the coupled
region that is interpolated from the space-time
shape function matrix N̂(x, t) that contains both
the regular and enrichment shape functions for
the atoms in the coupled region. The nodal DOF
D are defined in the same coupled region. The
projection operator is obtained by minimizing the
difference e between the MD solution q and the
interpolated value q̂ in a weighted least-square
sense ( Wagner and Liu (2003) ). This error is

expressed as

e = (q− q̂)TMA(q− q̂) (50)

MA is diagonal mass matrix corresponding to the
atoms in the coupled region. Considering the mul-
tiscale approximation in Eq.(49), the minimiza-
tion of e yields

N̂D = N̂(N̂TMAN̂)−1N̂TMAq = Pq (51)

in which we defined the projection operator
P = N̂(N̂TMAN̂)−1N̂TMA. This in turn gives

D = (N̂TMAN̂)−1N̂TMAq (52)

which is used to update the extended space-time
nodal DOFs.

In computational implementation, a multiplica-
tive form is adopted for the extended space-time
FEM shape function, expressed as

N̂(x, t) = [Nt1Nx Nt2Nx Nt3Nx

Nt1Nxψ(x, t) Nt2Nxψ(x, t) Nt3Nxψ(x, t)]
(53)

In Eq.(53) we have used quadratic interpolation in
time and linear interpolation in space. Here Nt1,
Nt2 and Nt3 are the time shape functions defined
at tn, tn+1/2 and tn+1, respectively. Nx gives the
linear shape function in space. As a result of the
interpolation using Eq.(53), the enriched shape
function matrix N̂(x, t) will be of size (na×6nac).
The nodal DOF in the coupled region D is given
as

D = [Dn Dn+1/2 Dn+1 D̃n D̃n+1/2 D̃n+1]T

(54)

in which D and D̃ represent the regular and en-
riched DOFs defined at the space-time nodes.
Subscripts n, n + 1/2 and n + 1 correspond to the
time at tn, tn+1/2 and tn+1, respectively. The pro-
jection operation is performed at time tn+1/2 and
tn+1. At time tn+1/2, the shape function matrix re-
duces to:

N̂(x, t = tn+1/2) =[
0 Nx 0 0 Nxψ(x, tn+1/2) 0

]
(55)
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Thus we could define a simplified shape function
matrix Ns

tn+1/2 = [Nx Nxψ(x, tn+1/2)] at time
tn+1/2. Similarly, at time tn+1 we have Ns

tn+1 =

[Nx Nxψ(x, tn+1)]. Let qm/2
n be the MD solution

after m/2 sub-steps and qm
n be the MD solution af-

ter m sub-steps for the j-th space-time FEM time
step. Based on the projection operator defined
from Eq.(51), we have for the m-th sub-cycle,

[Dn+1 D̃n+1]T =
[
(Ns

tn+1 )T MANs
tn+1
]−1

(Ns
tn+1 )TMAqm

n (56)

Similarly at the half step, the space-time DOF can
be expressed in terms of qm/2

n as:

[Dn+1/2 D̃n+1/2]
T =

[
(Ns

tn+1/2 )T MANs
tn+1/2

]−1

(Ns
tn+1/2 )TMAqm/2

n (57)

4.3 Coupling Scheme

Based on the two-way information passing be-
tween the MD and extended space-time FEM sim-
ulation, the two approaches are tied together in
following way:

1. The MD simulation receives the information
regarding the location of the ghost atoms
from the extended space-time FEM simula-
tion.

2. The extended space-time FEM simulation
gets its initial conditions from the projec-
tion of the atomic displacements. The nodal
DOFs of the extended space-time FEM sim-
ulation that correspond to the MD region are
corrected at each coarse scale time step by
using the projection operator on the MD so-
lution at the appropriate MD sub-step.

The algorithm for the coupled extended space-
time FEM-MD simulation using projection is as
follows:

1. Apply initial displacements to the atoms in
the MD region. Obtain the projection of
these displacements onto the enriched nodal
DOF and apply it as the initial condition for
the extended space-time FEM simulation.

2. Assemble the extended space-time FEM
stiffness matrices and advance the extended
space-time FEM simulation through one
time step.

3. Advance the MD simulation through m sub-
steps. For each sub-step obtain the boundary
information for the ghost atoms by interpo-
lating the extended space-time FEM simula-
tion nodal DOFs.

4. At the end of sub-step m/2 and m obtain a
projection of the MD solution and replace
the corresponding nodal DOFs from the ex-
tended space-time FEM simulation based on
the projection.

5. Return to step 2 and continue till end of the
simulation is reached.

5 Numerical Examples

In implementing the developed approach outlined
in the last sections, we will focus on two cases.
In the first case the interaction between the atoms
is governed by a linear harmonic potential with
spring constant k. In the second case the form of
Lennard-Jones (LJ) potential is employed. The
functional form of the LJ potential is given by:

U = 4ε
[(σ

r

)12
−
(σ

r

)6
]

(58)

where r is the distance between the interacting
atoms. ε and σ are LJ potential parameters. In
this case, the stiffness value used for the coarse
scale simulation is:

k =
∂ 2U
∂ r2 = 24ε

[
26

σ12

r14 −7
σ6

r8

]
(59)

k is evaluated at r = re, where re is the equilibrium
spacing between the atoms which is re = 21/6σ .
Finally, we note that the interaction is limited to
the nearest neighbors only in both cases.

5.1 Linear Harmonic Potential

The configuration of the problem here is exactly
the same as the one described in section 2. The
discretization scheme is already shown in Figure
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6 and the same combination of coarse plus fine
scale wave profile as described by Eq.(29) is im-
posed (see Figure 7). The choice of the enrich-
ment function is based on the fact that the to-
tal displacement is due to a combination of two
waves, one traveling in the positive x direction
and one in the negative x direction. These two
waves initially overlap in a region from −Lc to Lc.
As the simulation progresses the region of over-
lap decreases. we propose to use two enrichment
functions, φ2(x, t) for the overlap case and φ1(x, t)
for the separated wave, where:

φ1(x, t) = cos(b(| x | −ct)) (| x |+ct > Lc)
(60)

φ2(x, t) = cos(bx)cos(bct) (| x | +ct ≤ Lc)
(61)

in which c is the speed of wave propagation and is
governed by the dispersion relation. It is related
to the wave number through

c = V∞
| sin(bha/2) |

(bha/2)
(62)

with b = Bπ
2Lc and V∞ is the velocity for a wave

having infinite wavelength. As we have noted
earlier, the interference region due to overlap re-
duces in size with the passage of time. In order
to properly enrich the domain we would need to
track this interference region. All the elements
that are either completely or partially within the
interference region would need to be enriched us-
ing φ2. We first examine the ability of the de-
veloped method in eliminating the spurious wave
reflections. The displacements for the two MD
regions and the nodal displacements are plotted
in Figure 15 for the same instant as in Figure 8.
One can conclude from Figure 15 that the com-
bination of the the BSM treatment and the mul-
tiscale enrichment approximation leads to a re-
flectionless interface. In Figure 15, we also ob-
serve that the atoms in the second MD region re-
ceive the fine scale portion of the total displace-
ment due to the use of the enrichment approxi-
mation in the space-time FEM region. Figure 16
further compares the atomic displacement history
at x = 0.9 with full-scale MD and BSM with just
the regular space-time FEM coupling with MD.
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Figure 15: Enrichment solution displacement
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Figure 16: Comparison of displacement history
for an atom at x = 0.9

As can be seen, without the enrichment, only the
average response is captured with just the applica-
tion of BSM. Thus, the importance of introducing
the fine scale wave into the space-time FEM ap-
proximation is clearly demonstrated. Finally, we
present a quantitative evaluation of the method in
terms of the wave transmitting boundary condi-
tion. The energy history of the 2nd MD region
resolved from the developed method is shown in
Figure 17. Compared with the method using BSM
in the case of coupling regular space-time FEM
with MD, we observe dramatically different re-
sults. Without the enrichment, the amount of the
energy flux in the 2nd MD region is less than 1%
at its peak value. In contrast, the trajectory based
on the enrichment solution fits well with the corre-
sponding using full-scale MD, which is regarded
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Figure 17: Comparison of normalized energy
for the 2nd MD region

as the analytical solution in this case.

5.2 LJ Potential

The purpose of this case is to show that when the
magnitude of the displacement is small compared
with the lattice spacing, the proposed scheme also
works well for nonlinear interactions. One possi-
ble application is analysis of lattice vibrations due
to finite temperature effect, which consists of col-
lection of phonons that are small in magnitude.
In the current model, the LJ parameters are se-
lected as ε = 5 and σ = 1. The equilibrium spac-
ing thus becomes re = 21/6 = 1.1225. The mass of
each atoms is taken as ma = 10. The total domain
extends from −2244.924 to 2244.924 spanning
4001 atoms. The spatial domain is discretized
using 161 nodes. The initial displacement is ap-
plied to a region extending from −224.4924 to
224.4924 (i.e. Lc = 224.4924).The initial dis-
placement has the same form as Eq.(29). The
main difference is that the amplitude of the dis-
turbance, A is limited to ha/1000.

Similar to the linear harmonic case the central
MD region has 751 atoms and extends from
−420.9232 to 420.9232. The peripheral MD
region extends from 673.477 to 1346.9544 and
spans 601 atoms. Figure 18 shows the displace-
ment at 10800 MD steps. At this time, the wave
already enters the second MD region. From Fig-
ure 18, it can be seen that the fine scale portion
of the displacement passes out of the central MD
region and is transmitted to the peripheral MD re-
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Figure 18: Enrichment solution displacement for
LJ simulation

gion. In Figure 19, the displacement of an atom in
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Figure 19: Predicted displacement for an atom
at x = 1010.215

the peripheral MD region at x = 1010.215 as pre-
dicted by the proposed method is compared with
that from the full MD simulation. The observa-
tion is similar to that in the linear case. The en-
richment solution accurately predicts both the fine
and coarse scale part of the response. Normalized
energies for the two MD regions as predicted by
the two different methods are also compared and
shown in Figure 20. Here we observe some minor
reflection that takes place at the interface. This
can be attributed to linearity approximation made
while solving the coarse scale simulation. Al-
though further improvement can be made by im-
plementing BSM approach, no additional treat-
ment is carried out due to the fact that the amount
of reflection is sufficiently small. In terms of the
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Figure 20: Normalized energy comparison for
the 2 MD regions

wave transmitting condition, it can be seen that
most of the energy are conveyed to the second
MD region and it is very close to the full-scale
MD case.

6 Summary

In summary, we have presented a new ap-
proach of treating the interface in coupled atom-
istic/continuum simulation. The proposed method
is based on integrating the space-time finite el-
ement method with the enrichment approach.
The unique features of coupling the multiscale
space-time FEM with the atomistic simulation
method are as follows: First of all, it provides
a framework for representing the multiple scale
phenomenon in both the spatial and temporal
domains. Secondly, it enables one to directly
address the time scales in coupled simulations
as compared with the semi-discrete schemes.
Lastly, the enrichment methodology allows for
a more efficient representation of the particular
physics when sufficient knowledge on the struc-
ture of the solutions is available. Such knowl-
edge can be constructed from either analytical ap-
proaches or experimental observations. For in-
stance, one could establish enrichment solution
base on Green’s function approach (e.g. Tewary
and Read (2004); Yang and Tewary (2006, 2007)
) in the case of modeling the nanostructures.
It can also be combined with other multiscale
techniques, e.g., ( Ling and Alturi (2006); Ma,
Liu, Lu, and Komaduri (2006); Shen and Alturi

(2005, 2004a,b)) for resolving multiscale physics.
In the current application, we have focused on
wave propagations in small systems. The non-
dissipative nature of the proposed method is
clearly demonstrated in the example problems in-
volving both linear systems and nonlinear sys-
tems. Finally, we would like to emphasize the fact
that the framework presented is fairly general and
not limited to wave propagation problems only.
Many extensions can be made based on the devel-
opments presented in this paper. In particular, we
believe the method is unique in treating engineer-
ing problems that are governed by mechanics and
physics at multiple spatial and temporal scales.
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