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Abstract: Molecular modeling has established
itself as an important component of applied re-
search in areas such as drug discovery, cataly-
sis, and polymers. Algorithmic improvements to
these methods coupled with the increasing speed
of computational hardware are making it possi-
ble to perform predictive modeling on ever larger
systems. Methods are now available that are capa-
ble of modeling hundreds of thousands of atoms,
and the results can have a significant impact on
real-world engineering problems. The article re-
views some of the modeling methods currently in
use; provides illustrative examples of applications
to challenges in sensors, fuel cells, and nanocom-
posites; and finally discusses prospects for future
modeling approaches.
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1 Introduction

Molecular modeling is playing an increasingly
important role in the design of new materi-
als. Recent developments in catalysis [Cat-
low, French, Sokol, and Thomas (2005)], poly-
mer membranes [Wescott, Qi, Subramanian, and
Capehart (2006)], alloys [Woodruff and Robin-
son (2003)], carbon nanotubes [Li and Zhang
(2007)], and electronic materials [Vanhellemont
and Simeon (2007)] have been aided by com-
putational approaches. Engineering CAD/CAM
methods will be familiar to many readers. Those
approaches assume that the fundamental proper-
ties and behavior of the materials (compressibil-
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ity, tensile strength, conductivity, etc.) are well-
characterized and use macroscopic engineering
principles to compute the behavior of structures.
Typical examples are the design of aircraft to re-
duce drag, or the testing of large scale structures
like oil rigs and bridges for stability.

By contrast, in this article we consider the meth-
ods of quantum mechanics, molecular mechanics,
and mesocale modeling that are used to predict
fundamental properties and behavior of materials
at much smaller length and time scales. The in-
formation obtained from such simulations may be
used to generate parameters for engineering-scale
calculations or it may directly provide answers
that can be used in the search for new materials.

The idea of creating methods to span these scales
is, of course, not new. The ICEM’2K confer-
ence in 2000, for example, recognized the limi-
tations of finite element methods (FEM) and con-
tinuum mechanics for describing the behavior of
materials at the micron level. It was recognized
that a combination of approaches would be nec-
essary to provide realistic simulations of nano-
and micro-mechanics of materials [Ghoniem and
Cho (2002)]. Progress is already being made in
combining these scales, and we note just a few
of many examples here. For example, a com-
bination of continuum Green’s function methods
and molecular dynamics was introduced and used
to model Au nanoclusters on Cu(001) [Tewary
and Read (2004)]. More recently, a combination
of molecular dynamics, mesoscale modeling and
continuum methods was used to study nanoinden-
tation on Cu(111) [Ma, Liu, Lu, and Komanduri
(2006)] at both 0°K and finite temperatures. Fi-
nally, a combination of molecular mechanics and
FEM was used to model bending and shearing
in carbon nanotubes [Theodosiou and Saravanos
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(2007)].

This article focuses on how the methods of molec-
ular modeling are being used to solve engineer-
ing problems, despite the fact that they typically
operate on comparatively short length and time
scales. These approaches offer the chance to per-
form simulations with high accuracy as well as the
ability to include electronic and quantum effects,
essential in nanoscale materials.

We begin by providing an overview as to how
molecular modeling is employed in materials re-
search and development. We then discuss the
methods employed and the levels of approxima-
tion involved in addressing research problems
across increasing time and length scales span-
ning electronic structure to the engineering level.
We provide illustrative examples of how model-
ing can provide insight, help design new materi-
als, and lead to improved products. Finally, the
paper concludes with a discussion of new meth-
ods under development and their potential impact.

2 Molecular Modeling in Commercial R&D

The premise of modeling is that it provides in-
formation that supplements or complements that
available from experiment. In some cases it might
provide a very straightforward property, such as
heat of formation, in much less time than ex-
periment [Dewar, Zoebisch, Healy, and Stewart
(1985); Curtiss, Raghavachari, Redfren, Rasslov,
and Pople (1998); Delley (2006)]. In other cases,
modeling provides fundamental information that
would be very difficult to obtain experimentally,
such as the degree of back-bonding that takes
place when a reactant is adsorbed on the sur-
face of a catalyst [ Yamagishi, Jenkins, and King
(2002)]. This detailed level of information can be
used to provide a rational basis for the develop-
ment of new materials and improved processes.

Because of the speed of contemporary modeling
methods, we can expect to screen a large number
of materials more rapidly with modeling than with
experiment alone. In a typical approach, materi-
als will be screened in the computer (in silico) for
desirable properties (e.g., catalytic activity, corro-
sion resistance, electrical conductivity) and only
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the most promising leads are actually synthesized
and tested in the laboratory. This fundamental ap-
proach has led, for example, to the development
of improved OLEDs [Thompson (2007)] at much
lower cost than with experiment alone.

3 Multi-scale modeling: length and time
scales

We break modeling down into four broad cate-
gories: quantum mechanical, molecular mechan-
ical, mesoscale, and bulk scale. Figure 1 shows
roughly the size of systems that are modeled in
each domain and the length of time for which
a dynamic process can be simulated. Generally
speaking, as one moves to larger systems, more
approximations are employed and the methods are
less precise.

Seconds

Mesoscale

Microseconds

Nangseconds

Picoseconds

P Distance
1nm 10nm 1006m 1 micron

Figure 1: Length and time scales employed in
modeling

As arule, the cost of performing a simulation with
quantum mechanical accuracy increases rapidly
with the number of atoms in the system, any-
where between N! [Skylaris, Haynes, Mostofi,
and Payne (2006)] and N8[Lee, Kucharski, and
Bartlett (1984)], where N is the number of atoms.
Most practical approaches scale in the neighbor-
hood of N?-N3. To keep the calculations man-
ageable, modelers introduce successive levels of
approximations into the methods. While these re-
duce the computational cost, they also potentially
compromise the accuracy of the results.

The modeling of systems at the nanoscale, say
10-100 nm, poses special challenges. Because
of the size of these systems, modelers typically
would use approximate methods in order to keep
the computational requirements (CPU time, disk
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space, memory) reasonable. Calculations on
nanomaterials, however, require a high degree of
accuracy. Furthermore, electronic and quantum
mechanical effects play an important role even
at the scale of ~100nm. Consequently, compu-
tationally expensive quantum mechanical-based
calculations — or approximate methods that can
reproduce quantum mechanical accuracy — are of-
ten necessary to study these materials

The development of methods capable of treating
systems with 1,000’s of atoms with the greatest
possible accuracy represents an area of active re-
search. The various approaches that are currently
being employed are discussed in the next section.

3.1 Quantum scale

Methods based on quantum mechanics are the
most accurate, and they are capable of predicting
a large number of electronic, optical, and struc-
tural properties such as crystal structure [Milman
and Winkler (1999); Le Page, Saxe, and Rodgers
(2002)], optical spectra [Zerner, Loew, Kirch-
ner, Mueller-Westerhoff (1980); Schmidt, Seino,
Hahn, Bechstedt, Lub, Wang, and Bernholc
(2004)], and catalytic activity [Catlow, French,
Sokol, and Thomas (2005)]. These methods are
also the most time-consuming. As already men-
tioned, some of the most accurate methods scale
as N®. In the last decade or so, density functional
theory (DFT) [Parr and Yang (1989)] has emerged
as the method of choice in modeling materials, of-
fering an excellent compromise between cost and
accuracy and scaling on the order of N?-N>,

The so-called semiempirical quantum mechanical
methods [Dewar, Zoebisch, Healy, and Stewart
(1985)] work by replacing the most computation-
ally demanding portions of a quantum mechanical
calculation with empirical parameters. Using this
approach calculations on enzymes with 1,000s of
atoms have been performed [Stewart (1997)]. The
methods are limited in their accuracy, however,
and more importantly do not work with all ele-
ments.

Another approximate quantum mechanical ap-
proach is DFT Tight-Binding (DFTTB) [Hors-
field and Bratkovsky (2000); Elstner, Porezag,
Jungnickel, Elsner, Haugk, Frauenheim, Suhai,

and Seifert (1998)]. Here, parameters are deter-
mined by fitting to DFT calculations rather than to
arange of empirical data. The method has proved
its strengths in a number of biomedical applica-
tions, but also works for a number of transition
metals, and can be applied to solid materials [El-
stner, Frauenheim, McKelvey, Seifert (2007)].

3.2 Molecular scale

Molecular scale modeling encompasses systems
roughly one to two orders of magnitude larger
than the quantum scale. Molecular mechanics ap-
proximates the interatomic interactions with em-
pirically derived analytical expressions and pa-
rameters. Owing to the simplicity of these func-
tional forms, calculations are very fast and can
be performed on systems containing tens of thou-
sands - or even hundreds of thousands - of atoms.

The atomic interactions may be divided into long-
range and short-range terms. Behavior of cova-
lently bonded systems will be dominated by short
range interactions due to chemical bonds. Com-
monly, the energy is represented as a quadratic
function of bond distances, bond angles, torsional
rotations, and out of plane bends. In many cases,
coupling terms among bonds, angles, and tor-
sions are included in order to improve the re-
sults. Materials that are not dominated by cova-
lent interactions frequently require more compli-
cated short-range potentials, such Morse, Buck-
ingham, Lennard-Jones, or Axilrod-Teller poten-
tials [Axilrod and Teller (1943)], to name just a
few. A recent review covers these various poten-
tials in more detail [Hill, Freeman, and Subrama-
nian (2000)].

When considering ionic materials, the Coulomb
interaction is by far the dominant term and can
typically represent up to 90% of the total en-
ergy. The summation is most efficiently achieved
through the Ewald method [P. Ewald, (1921)].
Dispersion energy constitutes the next largest
long-range interaction, arising from dipole-dipole
and higher-order terms. The long-range Coulomb
and dispersion terms are not exclusive to ionic
materials, but must also be accounted for in cova-
lent systems, particularly when considering inter-
molecular interactions.
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A given set of functions and parameters is called
a force field. These force fields are empirical
and are derived by fitting to experiment or to ac-
curate quantum mechanical calculations [Dauber-
Osguthorpe, Roberts, Osguthorpe, Wolff, Gen-
est, and Hagler (1988); Sun (1998)]. A force
field will be applicable only to systems similar
to those used in the fitting. Hence, many dif-
ferent force fields can be found in the litera-
ture. Force fields have been developed for organic
molecules (CVFF [Dauber-Osguthorpe, Roberts,
Osguthorpe, Wolff, Genest, and Hagler (1988)]),
zeolites [Schroder, Sauer, Leslie, Catlow, and
Thomas (1992)], microporous materials (CVFF-
AUG [Hill, Freeman, and Subramanian (2000)]),
organic-inorganic interactions (COMPASS [Sun
(1998)]) and metal oxides (GULP [Gale and Rohl
(2003)]).

Molecular mechanics is commonly used for
the design of new pharmacological compounds.
Force fields such as CHARMM [Brooks, Brucco-
leri, Olafson, States, Swaminathan, and Karplus
(1983); MacKerell, Brooks, Brooks, Nilsson,
Roux, Won, and Karplus (1998)] and Amber
[Case, Cheatham, Darden, Gohlke, Luo, Merz,
Onufriev, Simmerling, Wang, and Woods (2005)]
have been developed specifically for this purpose
and are in wide use in the pharmaceutical indus-
try.

One serious limitation of force fields is their in-
ability to study chemical reactions. The func-
tional forms being employed in classical force
fields are not able to describe the formation or
breaking of chemical bonds. Recently, however,
force fields have emerged such as REBO [Bren-
ner, Shenderova, Harrison, Stuart, Ni, and Sin-
nott (2002)] and ReaxFF [van Duin, Dasgupta,
Lorant, and Goddard (2001)] that are capable
of this. ReaxFF, for example, has been used
to model transition-metal-catalyzed nanotube for-
mation. At the current time, however, quantum
mechanical methods remain the best option for
studying reactions.

3.3 Mesoscale

The mesoscale approaches introduce an addi-
tional level of approximation on top of those
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used in molecular mechanics. Dissipative Par-
ticle Dynamics (DPD) is essentially a coarse-
grained molecular dynamics method in which
the fundamental variables are the positions and
momenta of fluid droplets rather than individual
atoms (see Figure 2). Droplets interact via three
forces: a conservative force, a dissipative force,
and a random force. The latter two forces are
generated to satisfy a state of detailed balance,
which conserves the temperature of the system.
All forces between beads are pairwise, imply-
ing linear and angular momentum conservation
and therefore implicit inclusion of hydrodynamic
forces. This approach [Hoogerbrugge and Koel-
man (1992); Groot and Warren (1997)] is derived
from molecular dynamics simulations and lattice
gas automata, and effectively opens up the meso-
scopic length and time regimes in complex fluids
to simulation. With this approach, systems with
upwards of 1,000,000 atoms can be represented.
Perhaps more importantly the coarse graining in
DPD extends the effective time step so that sev-
eral microseconds to even a millisecond of real
time becomes feasible to simulate.

Figure 2: An atomistic representation of a
polystyrene polymer showing regions that could
potentially be abstracted into beads for a
mesoscale level calculation

An alternative mesoscale approach is based on
self-consistent field theory. In this field approach,
a material is not seen as a collection of atoms or
particles, but rather as density fields of the vari-
ous components. Hence DPD is the explicit par-
ticle representation of the system, and the field
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methods are the statistical mechanics representa-
tion expressed in terms of free energy equations.

Field methods such as MesoDyn® have been used
successfully, in particular, in the area of block-
copolymer phase behavior. Notably, the kinetics
of phase transitions in nanostructured fluids have
been simulated and found to agree very well with
AFM observations, covering length scales from
the nanometer to the micro scale, and timescales
up to several hours [Knoll, Lyakhova, Hor-
vat, Krausch, Sevink, Zvelindovsky and Magerle
(2004)]

3.4 Bulk scale

Bulk scale methods like CAD/CAM are most
familiar to engineers. These are entirely phe-
nomenologically based and use well-understood
engineering approaches to model problems such
as fluid flow, structural stability, or the efficiency
of chemical manufacturing plants. In some re-
cent examples [Maiti, Wescott and Kung (2005);
Maiti, Wescott, and Goldbeck-Wood (2005)] en-
gineering parameters were computed from the re-
sults of mesoscale simulations, establishing a con-
nection all the way from the quantum level to the
bulk level. Other approaches, mentioned in the in-
troduction, have also been used to link the atomic
and engineering scales.

4 TIllustrative applications

4.1 Design and selection of molecules for
biosensors

Although conventional force fields and DFT
methods are limited to relatively small length and
time scales, they are nevertheless able to make
significant contributions to problems at the en-
gineering level. Take, for example, recent work
done by Dr. Richard Gilbert at e2v technologies
[Gilbert (2004)].

The electrochemical reaction chamber of a lab-
on-a-chip device needs to provide several key
properties and functions in order to be a success-
ful product. These include:

* The formation of an organic monolayer on
the gold electrode surface (to prevent dena-

turing of the proteins in the chamber);

¢ Efficient electron transfer from the electrode
to a ‘shuttle’ molecule;

¢ Short diffusion times of this molecule to the
proteins; and

* Docking and electron transfer to the protein.

E2V have used simulations at quantum and atom-
istic levels to great effect in the study of such
chemical and physical processes. Indeed, it has
been key to the so-called “lab-to-fab transition”
and in this case, according to Dr. Gilbert, model-
ing found a solution in less than two weeks.

In the sensor, a molecular monolayer on a gold
surface acts as a conductor. The presence of a
particular antibody affects the conductivity of the
surface, and measuring the change in conductivity
signals the presence of the antibody.

The initial work used phenanthroline for the
monolayer, since a stable monolayer on gold had
been reported previously in the literature. Cyclic
voltammetry measurements confirmed this, dis-
playing peaks for charge and discharge processes
at 21°C (Figure 3, dark blue curve). At the op-
erating temperature of 37°C, however, the system
failed (Figure 3, light blue curve). Simulations
with the COMPASS force field demonstrated that
at 37°C the monolayer was no longer stable, but
would desorb from the surface, as illustrated in
Figure 3.

Using simulations, it was possible to screen re-
lated molecules in order to identify potential re-
placements. Simulations allowed a wide range of
modifications to the starting molecule as well as
different concentrations of mixtures to be tested.
Ultimately, it was found that attaching Cgg to
a fraction of the phenanthroline stabilized the
monolayer at 37°C (Figure 4). This was verified
by subsequent experiments and led to successful
operation of the cell.

4.2 Conductivity of carbon nanotube polymer
composites

A class of nanomaterials receiving much recent
attention is that in which single and multiwalled
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Figure 3: Initial monolayer on the gold surface. Phenanthroline is stable at 21°C but not at 37°C. Subsequent
molecular modeling studies confirm that the monolayer desorbs at 37°C
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Figure 4: New monolayer designed by modeling. Modeling predicts that adding Cgg to the phenanthroline
stabilizes the monolayer. Subsequent experimental work confirms this.

carbon nanotubes (CNTs) are dispersed within
polymeric matrices [Ajayan, Scadler, and Braun
(2003)]. The overall properties of a CNT-polymer
composite material depend strongly on the unifor-
mity of CNT dispersion within the polymer. This
is especially true of electrical conductivity, which
is several (to many) orders of magnitude higher
for pure CNTs than for typical polymers. Thus,
significant enhancement of such properties is ex-
pected when a conducting pathway, i.e., a perco-
lation network, of CNTs forms between two op-
posite contacts.

Mesoscale simulations have been used [Wescott,
Kung, and Maiti (2007)] to explore how topolog-
ical patterns in block copolymer systems, such
as lamellar, bicontinuous, and discrete micellar

phases [Bates (1991)], might be exploited to cre-
ate controlled linkages of CNTs with potentially
lower critical volume fractions (CVF) as com-
pared to completely random CNT networks.

The coarse-grained representation used is
schematized in Figure 5, which for a particular
parameterization might typically correspond to
a quasi-two-dimensional slab of 61 nanometers
representing roughly one million atoms.

The miscibility of components with one another is
governed by an interaction parameter Aa, which
can be related to the Flory-Huggins )y parameter
[Groot and Warren (1997)]. x can be estimated
from experimental sources if they are available or
by using appropriate force-field based models to
compute energies of interaction.
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Figure 5: Schematic of the DPD model em-
ployed to represent thin slabs of polymer-CNT
composite material. Polymers are represented by
coarse-grained flexible chains of 20 beads. CNTs
are rod-like particles constructed from 13 beads
whose flexibility is restrained [Maiti, Wescott,
and Goldbeck-Wood (2005)]

The evaluation of electrical conductivity, o, from
the composite morphologies used a continuum
finite-element modeling (FEM) approach [Gusev
(2001)] as implemented in the MESOPROP soft-
ware. Averages of o were taken to sample the
many possible arrangements of CNTs explored in
the long DPD simulations.

By assuming the case of perfectly insulating
and miscible homopolymers and by simply vary-
ing the concentration of CNTs, a clear perco-
lation threshold can be identified at about 0.5
vol% of CNT (Fig. 6). This is consistent with
experimental and theoretical predictions of ran-
domly oriented percolating rods [Wang, Chatter-
jee (2003); Foygel, Morris, Anez, French, and
Sobolev (2005); Rahatekar, Hamm, Shaffer, and
Elliott (2005)], although for actual CNTs with
much larger aspect ratios percolation conduction
at fractions down to less than 0.1 vol% have been
reported.

The work then considered the case of a diblock
copolymer matrix of the form A,B»p_, in which
the CNT is preferentially miscible in the A com-
ponent while A and B are strongly incompatible.
The incompatibility of A and B drives the ex-
pected block copolymer phase separation, but the

100 -
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0o 1 2 3 4 5 6 7 8
CNT loading Ivol%

Figure 6: Plot of conductivity of polymer-CNT

composite as a function of CNT loading. (Inset:

typical arrangement of CNTs at 0.5, 0.75, 1.0, 2.0,

4.0 and 6.0 vol%.) The percolation threshold is

somewhere between 0 and 0.5% for this model

way in which this impacts the electrical conduc-
tivity when CNTs are introduced turned out to be
quite non-trivial, at least at the low CNT loading
of most interest (Fig. 7).

Figure 7: Left pane shows representative configu-
rations from the simulations for 0.75 vol% CNTs
in A,B(30_,) block copolymers. Polymer density
fields shown using white (A material) and blue (B
material). Instantaneous positions of the CNTs
beads are shown in red. Right pane shows con-
ductivity of the composite vs. n. Conductivity is
expressed as a fraction of the conductivity in pure
A-polymer.

In fact, a non-monotonic behavior of conductivity
persists for CNT loading up to 2% or 3%, but at
higher loadings, where CNTs saturate the model,
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the conductivity becomes again a simple function
of the CNT concentration

4.3 Particle size/shape control of molecular
solids

It is a reoccurring theme in nanotechnology that
nanosized particles have a dramatically enhanced
surface area relative to their bulk volume. On the
one hand this often poses challenges as enhanced
interface energies can hinder efficient dispersion
of these particles in, e.g., a polymer matrix. On
the other hand this enhanced surface area is at
the very heart of many nanotechnology applica-
tions. The shape and size of finite (nanoscale)
particles produced from molecular crystals — so
called crystallites — add other dimensions to this
technological challenge as the underlying crys-
tal lattice fundamentally affects the particle shape
and surface chemistry. The particle shape — also
called crystal habit — dictates which functional
groups are exposed to the environment and there-
fore tunes the interactions of the crystallites with
the surrounding environment. Applications of this
class of materials include pharmaceutical solid
delivery forms and pigments in paints and coat-
ings.

Modeling and simulation tools allow rationaliza-
tion of these crystal habits in terms of energetic
considerations. Computer algorithms can be used
to cleave a virtual crystal, analogous to the proce-
dure that would be followed for a real-world ex-
periment. The resulting surface energies give rise
to an idealized crystal habit, the so-called equi-
librium morphology of a crystal. Alternatively,
layers of material can be attached to surface ori-
entations, and the energy released by this process
can be used to construct a habit referred to as the
growth morphology of the crystal.

Since the crystal lattice pins the molecular build-
ing blocks onto a rigid array, the surface orienta-
tions and their relative abundances dictate which
functional groups of the molecule are predomi-
nantly exposed to the environment. This knowl-
edge can be used as a guideline to design coating
agents to improve the dispersion of the crystal-
lites in the surrounding polymer matrix. For ex-
ample, researchers at BASF investigated the habit
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of perylene red pigments and designed a series of
derivative perylene molecules with features that
allowed strong bonding onto the predominant sur-
faces while at the same time maximizing favor-
able interactions with the surrounding polymer
matrix [Erk, Hetzenegger, and Béhm (1997)].

Shape and size control are major challenges for
the pharmaceutical industry, as the exposed sur-
face will affect a number of properties, most
prominently the dissolution rate, which in many
cases directly relates to the bioavailability of a
drug product. A common way to reduce the parti-
cle size is via wet milling. Lee, Variankaval, Lin-
demann, and Starbuck used modeling and simu-
lation to evaluate the crystal morphology and the
associated surface energetics in order to obtain a
microscopic picture of the milling process, which
subsequently allowed them to optimize milling
conditions for problematic compounds [Lee, Var-
iankaval, Lindemann, and Starbuck (2004)]. The
authors point out that milling is not primarily af-
fected by the bulk mechanical properties under
external stress but by the propensity of a single
crystal material to break along a certain orienta-
tion. This is relevant as the bulk material typi-
cally displays poorer mechanical properties than
single crystals, and larger sheer forces are there-
fore required to achieve effective particle size re-
duction than one would estimate from bulk prop-
erties. They established that the attachment en-
ergy — the energy released as a layer of material is
attached to the growth front — provides an under-
standing of mass fracture of the crystallites.

Four different pharmaceutical compounds were
investigated. For the first three compounds the
lowest attachment energy did not vary signifi-
cantly (from -31.1 to -42.2 kcal/mol). Milling of
these compounds resulted in very similar particle
size reductions as a function of shear frequency.
The lowest attachment energy of the fourth com-
pound was substantially higher (-88.5 kcal/mol).
Milling this compound under identical conditions
as before not only yielded significantly larger par-
ticle sizes, but micrographs revealed little mass
fracture. Particle size reduction in this case, was
primarily due to the breakage of agglomerated
particles and attrition along edges. This suggested
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that milling methods that exert higher energies are
needed to effectively induce fracture of this com-
pound. In fact, switching the experimental setup
to a bead milling arrangement successfully frac-
tured the crystallites into smaller units. The au-
thors concluded that modeling of the crystal habit
not only allowed them to understand the mass
fracture process, but that the results can also be
used as a quantitative guide to milling operations.

In cases where adequate shape and size control
cannot be achieved via post-processing (milling
or other techniques), the crystal morphology can
be directly influenced by tuning the crystal growth
conditions, and in particular by changing the sol-
vent environment. Tedesco, Giron, and Pfeffer
computationally evaluated the crystal habit of a
pharmaceutical compound and determined that
the most predominant surface terminations are
the (001), (100), and (010) orientations [Tedesco,
Giron, and Pfeffer (2002)]. From evaluating
the surface topologies they concluded that each
of these surface orientations displayed a signifi-
cantly different surface polarity and that by tun-
ing the polarity of the solvent they could promote
or inhibit selectively the growth of these individ-
ual facets. In particular, formation of needle-like
shapes — which are especially unfavorable if the
drug is intended to be delivered as an inhalant —
should be inhibited by using polar solvents. These
rationalizations were confirmed experimentally,
and the powder characteristics could be improved.

4.4 Fuel cell membranes

Proton exchange membranes (PEMs) are key
components of hydrogen fuel cells, and there is
significant interest in enhancing the proton con-
ductivity of these materials, as well as increas-
ing their mechanical, thermal and chemical sta-
bility. This is required to satisfy pressing needs
for increased power density, durability, and relia-
bility of the cells, which will impact significantly
the cost of deploying fuel cells widely in the next
generation of motor vehicles and other power ap-
plications. Of key importance is knowledge of
the nanoscale structure of the hydrated polymer
membranes, since the pathways available for pro-
ton conduction and the mechanical performance

depend largely on the structure at this scale.

In the commonly used Nafion® material there has
been much debate over the exact form of the mor-
phology as a function of the water content. Exper-
imental techniques characterizing the morphol-
ogy are either indirect, such as atomic force mi-
croscopy which can only probe the surface struc-
ture, or have lead to ambiguous interpretations.
For instance, small angle scattering data has been
used to support a number of different morphologi-
cal models. Application of a multiscale modeling
approach, on the other hand, in this case atom-
istic and mesoscale simulations, are ideal for this
type of problem since with suitable parameteriza-
tion they provide a direct prediction of the phase
morphology. Such a multiscale approach was
used to investigate the development of morphol-
ogy in Nafion 117 membranes at various levels of
hydration [Wescott, Qi, Subramanian, Capehart
(2006)].

Atomistic force field parameters play an impor-
tant role in the scheme employed since they are
used to derive the interactions between the coarse-
grained (mesoscale) units or beads. This is the
dominant driving force for the phase separation
between components. Consequently, models of
hydrated membranes at the Angstrom level were
constructed and molecular dynamics employed to
ascertain the suitability of the force field. Ex-
pected features of polymer/water phase separation
were indeed observed, as were clustering of wa-
ter and hydronium molecules about the sulfonic
acid moieties of the polymer. Having ascertained
that the parameters were very likely to be an ade-
quate characterization of the interaction energies,
mesoscale parameters were developed for the sys-
tem and Materials Studio® MesoDyn® was used
to predict the morphology at hydration levels of
A=2, 4, 8 and 16, where A is the number of wa-
ter molecules per protogenic group (in this case
sulfonic acid).

The results showed that spherical water clusters
form as the water content is increased to a level
of A =4 (Fig. 8) and that above A=4, some of the
water clusters also exhibit irregular shapes (ellip-
tical or barbell shape) due to the coalescence of
smaller clusters.
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Figure 8: Inverse micelles of water density at a
water level of A=4 are shown as transparent blue
isosurfaces. A density slice shows the water mi-
celles (blue) contained within the PTFE matrix
(red), within the water-PTFE interface, mediated
by the ether-sulfonic side chain.

The small angle neutron scattering signal from the
simulated density distributions was constructed
in an attempt to produce data equivalent to that
obtained experimentally. From these curves the
dominant Bragg spacing was extracted, providing
the characteristic size of the hydrophilic domains.
A linear correspondence with hydration was ob-
served (Fig. 9). Similar experimental small-angle
X-ray scattering (SAXS) and small-angle neutron
scattering (SANS) data has previously been used
to assert that perfluorosulfonic acid (PFSA) has a
lamellar structure [Litt (1997)], but these simula-
tions, with an arrangement of nearly spherical do-
mains that swell and coalesce, provide a counter-
example to this.

In fact, the simulations appear to support the
Yeager-Steck three-phase model [Yeager and
Steck (1981)] of sulfonic side groups surround-
ing the polytetrafluoroethylene (PTFE) cavities,
and are consistent with surface morphology deter-
mined by TEM and AFM [Xue, Trent, and Osseo-
Asare (1989)].

Further simulations to model the drying of pre-
hydrated membranes showed that path-dependent
phases can also be explored with dynamic den-
sity functional theoretical calculations. In these
situations segregated water domains remained af-
ter removal of water, and were in fact lower en-
ergy structures than those generated from a direct
hydration of polymer at the same concentration.
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Figure 9: Comparison of the d-spacings of hy-
drophilic domains extracted from small angle
scattering calculations with increasing water con-
tent. Experimental work from Young, Trevino and
Tan (2002).

This suggests that a membrane cast and then dried
may have significantly different performance than
those produced by other methods.

In summary, the multiscale modeling approach
was valuable in exploring morphology develop-
ment in hydrated Nafion® membranes and cap-
tured the phase segregation at scales consistent
with those experimentally observed at increasing
levels of hydration. This has provoked additional
discussion as to the impact that membrane pro-
cessing may have on performance of the fuel cell
stack.

5 Recent developments and future outlook

In the opening section of this article, we divided
modeling into four domains. As our biosensor
design example demonstrates, some devices func-
tion on the quantum and atomistic scales, and so
existing software tools can already directly impact
the design. However, other important phenomena
occur across a continuum of scales and we have
highlighted examples where protocols to couple
domains are needed to address key materials de-
sign problems.

Whilst merely connecting scales is sufficient in
some cases, others demand high-accuracy theo-
retical models even though such calculations with
traditional methods are prohibitively expensive
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from a computational point of view. Potential
solutions to this issue are either to (a) extend
the time and length scale capabilities of currently
available methods, or (b) construct so-called hy-
brid simulations which integrate, for example,
quantum and classical methods into one coherent
approach.

Examples for the former are linear-scaling DFT
methods, including the ONETEP method [(Sky-
laris, Haynes, Mostofi, and Payne (2005)], CON-
QUEST [Gillan, Bowler, Torralba, Miyazaki
(2007)], SIESTA [Sanchez-Portal, Ordejon, Ar-
tacho, and Soler (1997)] and linear-scaling semi-
empirical codes [Stewart (1997)]. Many techni-
cal issues had to be overcome since their first
inception to make these codes work in a rela-
tively robust way for a wide range of systems.
Hence, only in the last couple of years has the
number of studies been increasing. Today the
ONETEP method, for example, enables high-
precision (quantum mechanical-based) total en-
ergy calculations for systems of several thousand
atoms, where previously calculations with this
level of accuracy were limited to on the order of
a few hundred. It brings new science and applica-
tions into the realm of quantum calculations, from
chiral nanotube systems to binding calculations of
protein-enzyme complexes.

Future developments will increase our under-
standing of how best to utilize linear-scaling
methods, provide a wider range of property anal-
ysis, and potentially develop ways in which dif-
ferent levels of accuracy can be assigned to dif-
ferent parts of a system (in time and in space),
thereby providing a kind of embedding scheme
within a single method, rather than by means of
hybrid simulations.

Hybrid QM/MM (Quantum Mechani-
cal/Molecular Mechanical) approaches have
traditionally been more widely applied in the
life sciences, typically with codes that have
been extensions of either QM or MM methods.
In recent years more general interfacing codes
have been developed that are able to connect a
variety of QM and MM applications, and the
methods have become more widely applied in
the materials arena. These include QMMM

[Lin and Truhlar 2007)] as well as ChemShell
[Sherwood, de Vries, Guest, Schreckenbach,
Catlow, French, Sokol, Bromley, Thiel, Turner,
Billeter, Terstegen, Thiel, Kendrick, Rogers,
Casci, Watson, King, Karlsen, and Sjgvoll
(2003)] which has been implemented in QMERA
by Accelrys. While these methods provide
the user with increasingly robust and flexible
implementations, several key issues remain; these
include the treatment of the boundary regions,
handling of long-range interactions, as well as
how to deal with cases where the QM “hot spot”
moves dynamically. Promising new approaches
such as the Learn-On-The-Fly technique [Csanyi,
Albaret, Moras, Payne, and de Vita (2005)]
offer the chance to overcome issues of boundary
regions and time dependent phenomena, but
further validation for systems with long range
interactions in particular is still required.

There are also recent advances in parameterized
simulations that help to bridge important gaps.
These include the aforementioned Density Func-
tional Tight Binding methods (DFTB) [Horsfield
and Bratkovsky (2000); Elstner, Porezag, Jung-
nickel, Elsner, Haugk, Frauenheim, Suhai, and
Seifert (1998)] and Reactive Force field meth-
ods like REBO [Brenner, Shenderova, Harrison,
Stuart, Ni, and Sinnott (2002)] and ReaxFF [van
Duin, Dasgupta, Lorant, and Goddard (2001)].
From a user perspective these methods can reach
system sizes and time scales which are close to
those otherwise reached only with pure classical
simulations, but with the major advantage that re-
active processes, changes in valency, charge trans-
fers, and so on can be handled. Crucial to the suc-
cess of these approaches will be more streamlined
and, ideally, automated parameterization meth-
ods.

A key driver for the development of such meth-
ods is not only size and time scales per se, but
the need to study hybrid systems, such as organic-
inorganic interfaces or even biological molecules
interacting with electrodes for example in a bio-
sensing device.

As the size scales that can be reached with quan-
tum and atomistic methods increase and at the
same time the feature scales of materials and de-
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vices decrease, there is also clearly the opportu-
nity and need to build bridges between the soft-
ware tools of the chemistry, physics, and engi-
neering worlds. The article has shown examples
of existing tools and approaches that already be-
gin to provide such links. Also, application ex-
amples such as the biosensor design demonstrate
that in some cases the actual device functions on
the quantum and atomistic scales, so these tools
can already impact the design directly.

In other areas such as process engineering, meth-
ods are still evolving that allow a tighter commu-
nication between fundamental chemistry on one
hand and chemical engineering on the other. In
catalytic processes, for example, the conversion
rates and so-called turn-over frequencies are mod-
eled on the engineering level by computational
fluid dynamics (CFD) and rate equation methods
that provide a mean-field result [Kee, Miller, and
Jefferson (1980)]. On the other hand, reactions
can be handled from the bottom-up by calculating
transition states and frequencies using ab initio
approaches, followed by rate constants from tran-
sition state theory [Fernandez-Ramos, Ellingston,
Garret, and Truhlar (2007)], finally followed
by kinetic Monte Carlo simulations of the pro-
cess itself [Jansen (1995); Stampfl, Ganduglia-
Pirovano, Reuter, and Scheffler (2002); Kieken,
Neurock, and Donghai (2005)]. The future trend
will be to combine these top-down and bottom-
up approaches for a more complete understanding
and more accurate predictions.

As the above examples show, the appropri-
ate methods to employ in bridging towards the
macroscale level depend very much on the ap-
plication area, with mesoscale and kinetic Monte
Carlo just two of many methodologies.

A key to successful multiscale modeling lies not
only in establishing new methods but also in
defining, implementing, and validating workflows
that combine the relevant simulations, models,
and data across all scales. In the engineering of a
new polymer, for example, this could include the
calculation of relevant polymer resin data such as
glass transition temperature and cohesive energy
densities from the molecular scale, subsequently
feeding these results into mesoscale calculations
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and engineering models, and finally focusing back
on the electronic level to study interfaces with a
method such as DFTB.

Software that improves the connections between
disparate models and data structures — together
with architectures than can handle large compu-
tational demands — is helping to drive model-
ing from quantum to molecular to mesoscale to
macroscales. The long-term outlook is hence that
of a largely data driven approach, where knowl-
edge is gained from the combination of methods
across the multiscale range.
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