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Evaluation of Effective Material Parameters of CNT-reinforced Composites
via 3D BEM

F.C. Araújo1 and L.J. Gray2

Abstract: In recent years, carbon nanotubes
(CNTs) have been widely employed to build ad-
vanced composites. In this work, a Boundary El-
ement Method (BEM) is applied to 3D represen-
tative volume elements (RVEs) to estimate me-
chanical properties of CNT-based composites. To
model the thin-walled nanotubes, special integra-
tion procedures for calculating nearly-strongly-
singular integrals have been developed. The
generic BE substructuring algorithm allows mod-
eling complex CNT-reinforced polymers, con-
taining any number of nanotubes of any shape
(straight or curved). The subregion-by-subregion
strategy, based on Krylov solvers, makes the in-
dependent generation, assembly, and storage of
the many parts of the complete BE model possi-
ble. Thus, significant memory and CPU-time re-
ductions are achieved in avoiding working with
an explicit global system of equations. Further
CPU-time reduction is obtained by employing a
matrix-copy option for repeated subregions. Sev-
eral applications will illustrate the ability of this
algorithm to analyze CNT-based composites.

Keyword: CNT-based composites, 3D BE for-
mulations, singular and quasi-singular quadra-
tures, subregion-by-subregion techniques, the
boundary element method.

1 Introduction

Due to their exceptionally good physical prop-
erties, carbon nanotubes (CNTs) have been ex-
tensively exploited to develop a new generation
of materials. Reported results show that they
substantially improve the physical characteristics
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of polymeric matrices, e.g. stiffness, strength,
thermal conductivity. Physically, CNTs consist
of covalently bonded carbon atoms; geometri-
cally, they are hollow, seamless, cylindrical tubes
formed by a single or several graphene layers.
In structural engineering, CNTs have been em-
ployed as reinforcing elements (fibers) to manu-
facture advanced light-weight composites. Qian,
Dickey, Andrews, and Rantell (2000) report that
with a weight increase of 1%, a gain between 36%
and 42% in stiffness, and of approximately 25%
in tensile strength can be achieved. In fact, at-
tracted by the technological importance of nano-
materials, a surge of research in nanomechan-
ics has taken place, generally beginning in the
early 90s, when CNTs were discovered [Iijima
(1991)]. Srivastava1 and Atluri (2002) give a brief
review of computational nanotechnology, high-
lighting its relevance in engineering and compu-
tational approaches. Ghoniem and Cho (2002)
discuss the available formulations and their valid-
ity in the light of the different scales, going from
atomistic to continuum models. Taking into ac-
count the dimensions of nanosystems, it is evi-
dent that molecular dynamics (MD) formulations,
which directly deal with the interatomic interac-
tion, should be considered. Nevertheless, em-
ploying atomic-level-based methods is, even for
the present-day computers, limited to very small
models, over very short times. In Namilae, Chan-
dra, Srinivasan, and Chandra (2007), information
is given about the computational effort for run-
ning molecular-dynamics-based models. In gen-
eral, this fact (computational effort) has led to at-
tempts to use continuum-mechanics (CM) mod-
els.

In Yakobson, Brabec, and Bernholc (1996), MD
simulations and simple continuum shell models
were employed to predict buckling properties in
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single-walled CNTs. The results revealed that
continuum shell formulations can be satisfactorily
applied to CNTs. More recently, continuum cylin-
drical shell models [He, Kitipornchai, and Liew
(2005); Kitipornchai, He, and Liew (2005)], and
a shell FE-based approach [Pantano, Parks, and
Boyce (2004)] have been applied to single and
multi-walled CNTs. Again, results in very good
agreement with MD simulations were obtained.
Wang, Ma, Zhang, and Ang (2006) also showed
that solid shell finite elements are applicable to
model CNTs. In case of multi-walled CNTs, they
adopted spring-like models to simulate the van
der Waals forces between the nanotubes. CM-
based formulations applied to nanosolids are also
reported by Chen, Dorgan Jr, McIlroy, and As-
ton (2006). Based upon experiments in silver
nanowires, they concluded that classical beam
and 3D FE analyses can accurately describe their
bending behavior, as long as the boundary con-
ditions are realistically enforced. Finally, Lau,
Chiparab, Linga, and Hui (2004) review the valid-
ity of different approaches to estimating the me-
chanical properties of carbon nanotubes for ad-
vanced composite structures.

In Chen and Liu (2004), a CM-based strategy
has been applied to study CNT-reinforced com-
posites. They employed a 3D quadratic solid
(brick) finite element to model representative vol-
ume elements containing a single CNT (single-
unit-cell RVEs), and a 2D quadratic 8-node finite
element to model multi-unit-cell RVEs (contain-
ing many CNTs). In the present work, single-unit
and multi-unit cells are also considered to char-
acterize CNT-reinforced composites, however 3D
boundary element techniques are employed. In
general, the strategy has two main parts: a robust
subregion-by-subregion (SBS) technique, neces-
sary for coping with heterogeneous materials, and
efficient integration procedures, needed for eval-
uating the singular and nearly-singular integrals
that arise. The SBS technique [Araújo, Silva,
and Telles (2006)] is based on the use of Krylov
solvers, allowing the treatment of composites
consisting of a large number of components (e.g.
matrix-material substructures and fibers). Here,
the diagonal-preconditioned biconjugate gradient

solver (J-BiCG) is employed. Moreover, to ef-
ficiently model composites containing geomet-
rically and physically identical substructures, a
matrix-copy option is considered in this study.
The matrices for repeated subregions are immedi-
ately obtained simply by copy and rotation trans-
formations. Finally, the SBS technique utilizes
discontinuous boundary elements [Araújo, Silva,
and Telles (2006, 2007)], which enormously sim-
plify the modeling of complex coupled subre-
gions.

An additional challenge in applying boundary-
element methods (BEM) to composites is the ac-
curate and efficient evaluation of singular and
nearly-singular integrals. These integrals result
not only from modeling thin-walled components
but also from employing discontinuous elements.
For weakly-singular and nearly-weakly-singular
integrals, numerical quadratures that combine tri-
angle and polynomial coordinate transformations
have proven to be efficient [Chen and Liu (2005);
Araújo, Silva, and Telles (2006)]. In case of
the nearly-strongly-singular integrals, the line-
integral approach proposed by Liu (1998) is em-
ployed. This method is based on employing the
Stokes’ theorem to convert surface integrals to
1D integrals. In Chen and Liu (2005), quadra-
tures that combine triangle and polynomial trans-
formations were also applied to improve the accu-
racy of the surface integrals involved in the line-
integral approach. In Araújo and Gray (2008), the
line-integral approach was improved by applying
a cubic polynomial transformation [Telles (1987)]
to the nearly-strongly-singular line integrals. In
this work, additional speed and accuracy are pro-
vided by using analytical integration where possi-
ble. This considerably increases the effectiveness
of the SBS technique for composites and other en-
gineering systems.

3D simulations of CNT-composites based on
square-packed and hexagonal-packed fiber arrays
are considered for verifying the robustness of the
strategy. Possible future developments are also
commented upon.
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2 3D BE modeling of CNT-reinforced com-
posites

Assuming that continuum mechanics models can
satisfactorily describe the deformation of carbon
nanotubes (CNT) under stress, analysis methods
for regular solids can be applied to yield insights
into the micromechanics of CNT-reinforced com-
posites. Thereby, the prediction of their effective
constants, the construction of appropriate failure
theories, and their design for achieving particu-
lar performance can be accomplished. Here, a
3D boundary element technique is employed to
model general CNT-based composites. The key
new techniques required are special integration
procedures for coping with nearly-singular inte-
grals, and a robust generic substructuring strat-
egy. The special integration procedures can ac-
curately and efficiently handle the thin-walled do-
mains present in the composite, while the sub-
structuring technique is essential for dealing with
the complex heterogeneity. Moreover, the sub-
structuring technique can be easily exploited for
developing parallel codes, essential for solving
large-scale composite models.

2.1 Special integration quadratures

In applying boundary integral methods to solids
containing thin-walled domains, e.g. composites
consisting of discrete reinforcing elements or par-
ticles in a polymer matrix, the efficient computa-
tion of singular and nearly-singular integrals de-
mand special attention. Standard numerical in-
tegration procedures lead to either high matrix-
assembly CPU time and/or inaccurate solutions.
In 3D elasticity boundary-element formulations,
the surface integrals are of the form

∫
Γe

p∗ik(χ ;ξ )ui(χ)dΓ(χ), (1a)∫
Γe

u∗ik(χ ;ξ )pi(χ)dΓ(χ), (1b)

where u∗ik and p∗ik are the Kelvin fundamental ker-
nels, ui and pi are the boundary displacement
and traction respectively, and Γe is the surface
of the e-th boundary element. In this study,
a quadrature based on combining triangle-polar

and polynomial coordinate transformations is em-
ployed to compute weakly-singular and nearly-
weakly-singular surface integrals. The nearly-
strongly-singular integrals are evaluated by the
line-integral approach proposed in Liu (1998)
and Chen and Liu (2005). These procedures
are described below. Note too that the strongly-
singular integrals (Cauchy principal value inte-
grals), are calculated indirectly by means of rigid-
body displacements; their accuracy will there-
fore depend upon the accurate evaluation of the
weakly-singular and nearly-weakly-singular inte-
grals.

2.1.1 Weakly-singular and quasi-singular inte-
grals

Previous studies [Chen and Liu (2005); Araújo,
Silva, and Telles (2006, 2007)] have shown
that quadratures derived by combining triangle-
polar and polynomial coordinate transformations
are more efficient than the corresponding pure
coordinate-transformation-based quadratures for
evaluating weakly-singular and nearly-weakly-
singular surface integrals. These strategies are
therefore employed in this study.

Assuming that f ∗ik is a generic singular ker-
nel, a combined coordinate-transformation-based
quadrature procedure can be expressed as
[Araújo, Silva, and Telles (2006, 2007)]∫

Γe

f ∗ik(χ ;ξ )hqdΓ(χ)

=
∫ 1

−1

∫ 1

−1
f ∗ik [(η1,η2);ξ ]hq(η1,η2)J(e)(η1,η2)

dη1dη2

=
1
4

nt

∑
g=1

∫ 1

−1

∫ 1

−1
f ∗ik [(ζ1(γ),ζ2);ξ ] hq [ζ1(γ),ζ2]

×J(e) [ζ1(γ),ζ2] [1+ζ1(γ)]AgJp(γ)dγdζ2,

(2)

where J(e) is the element Jacobian, hq is the ele-
ment interpolation function, nt the number of tri-
angular subdomains, Ag the area of the g-th tri-
angular subdomain, and ζ1(γ) defines the poly-
nomial transformation adopted for the ζ1 direc-
tion. For the cubic coordinate transformation em-
ployed in the application calculations in section 4,



106 Copyright c© 2008 Tech Science Press CMES, vol.24, no.2, pp.103-121, 2008

the mapping and its Jacobian are given by

ζ1 = ζ1(γ) =
(γ − γ )3 + γ(γ2 +3)

(1+3γ2)
, (3a)

Jp (γ) =
3(γ − γ)3

(1+3γ2)
, (3b)

with

γ =
(

ζ 1ζ ∗ + |ζ ∗|
) 1

3
+
(

ζ 1ζ ∗ −|ζ ∗|
) 1

3
+ζ 1,

(3c)

ζ ∗ = ζ
2
1 −1, (3d)

ζ 1 being the ζ1 natural abscissa of the singu-
lar point [Telles (1987)]. Note that no polyno-
mial transformation is needed in the ζ2 direc-
tion, and after applying the triangle polar co-
ordinate transformation in the ζ1 direction, ζ 1 =
−1. [Araújo, Silva, and Telles (2006, 2007)].
In the combined coordinate-transformation-based
quadrature, higher-order polynomials may be eas-
ily considered [Chen and Liu (2005); Araújo,
Silva, and Telles (2006)]. The corresponding nu-
merical quadrature will be denoted by I(2)(n1,n2),
where n1 and n2 are the numbers of integration
points in ζ1 and ζ2 directions respectively.

2.1.2 Strongly-quasi-singular integrals

Nearly-strongly-singular integrals arise in discon-
tinuous BE formulations and in the modeling of
thin-walled domains. These integrals pose special
difficulties and may lead to inaccurate response if
not handled correctly. Here, the line-integral ap-
proach presented by Liu (1998) for elastostatics
is employed to evaluate this type of integral. The
integral (1a) is first regularized in the form∫

Γe

p∗ik(χ ;ξ )ui(χ)dΓ(χ)

=
∫

Γe

p∗ik(χ ;ξ )[ui(χ)−ui(ξ ′)]dΓ(χ)

+ui(ξ ′)
∫

Γe

p∗ik(χ ;ξ )dΓ(χ), (4)

where ξ ′ is the projection of ξ onto Γe [Liu
(1998); Chen and Liu (2005)]. As the first inte-
gral on the right-hand side of (5) is at most nearly-
weakly-singular, the combined-transformation-
based quadrature for surface integrals discussed

above can be applied. To indicate that this
quadrature is applied to the surface integral inside
the line-integral approach, it will be denoted by
L(2)(n1,n2). The last integral in (5) can be con-
verted into a line integral by applying Stokes’ the-
orem [see Liu (1998)], resulting in

∫
Γe

p∗ik(χ ;ξ )dΓ(χ)

=
δik

4π

∮
Ce

[
r′3(χ)
r(χ)

−1

]
(ρ̂mν̂m)(t̂nη̂n)

ρ
dC(χ)

− 1
4π

eikl

∮
Ce

(
1
r

)
dsl(χ)

+
1

8π(1−υ)
eiml

∮
Ce

r,kmdsl(χ). (5)

Here Ce is the contour of the element, s(χ) its tan-
gent vector, υ is the Poisson’s ratio, eikl is the per-
mutation tensor, r = ‖r‖ = ‖χ −ξ‖, ρρρ is the pro-
jection of r onto the x′1x′2-plane, ρ̂ρρ the unit vector
along ρρρ, t̂ the tangent unit vector along Ce, η̂ηη the
unit vector along the projection vector of t̂onto the
x′1x′2-plane, and ν̂νν the unit vector along η̂ηη × e′3,
e′3 being the unit vector along x′3. To evaluate the
first integral on the right-hand side of (6), a lo-
cal x′1x′2x′3 reference system, with origin at ξ and
x′3-axis along the vector ξ ′ −ξ , is considered. De-
tails of the integration variables are shown in Fig.
1. The last two integrals in (6) refer to the global
x1x2x3 system.

The first integral in (6) is a measure of the solid
angle Φ(ξ ,e) subtended by the boundary element
Γe at ξ . This integral is well-behaved and can be
conveniently computed by regular Gauss quadra-
ture. The other line integrals are nearly-strongly-
singular and again require special integration pro-
cedures. In Araújo and Gray (2008), a cubic poly-
nomial transformation has been applied to im-
prove the efficiency of integration algorithm for
these integrals. Mapped in the interval −1 ≤ γ ≤
1, Eq. (6) becomes

fki =

(
Φ(ξ ,e)

4π

)
δik − 1

4π
eiklAl

+
1

8π(1−υ)
eimlBlkm, (6)



Effective Material Parameters of CNT-reinforced Composites 107

eΓ

ξ

ξ ′

1x

2x

3x

1x′

2x′3x′

r

eC

Φ

θ

θd

χ
t̂

ˆ
ˆ

ˆ

Figure 1: Integration variables for computing
Φ(ξ ,e)

with

Φ(ξ ,e) =
ns

∑
j=1

∫ 1

−1
f1[ζ (γ)]J( j)

Ce
[ζ (γ)]JP(γ)dγ , (7)

Al =
ns

∑
j=1

∫ 1

−1

(
1
r

)
∂x( j)

l

∂ζ
JP(γ)dγ , (8)

Blkm =
ns

∑
j=1

∫ 1

−1
(r,km)

∂x( j)
l

∂ζ
JP(γ)dγ , (9)

where in expressions (8)-(10) ns is the number of
edges of the boundary element (3 or 4, each edge
with a single integration element), JP is the Jaco-
bian of the polynomial transformation, J( j)

Ce
is the

Jacobian of the j-th edge element (2- or 3-node
1D elements), and

f1(ζ ) = [
r′3(ζ )
r(ζ )

−1] · [ρ̂m(ζ )ν̂m(ζ )][t̂n(ζ )η̂n(ζ )]
ρ(ζ )

.

(10)

Note that for cubic polynomial transformation,
ζ1 and Jp are given by Eqs. (4a) and (4b) re-
spectively. If no coordinate transformation is ap-
plied, ζ1(γ) = γ and Jp (γ) = 1. In the integra-
tion algorithm, the coordinate transformation is
applied only for the nearly singular edges. In-
tegration over the well-behaved edges is carried

out by standard Gauss quadrature. The 1D nu-
merical quadrature obtained by employing rela-
tion (7) will be denoted by numL(1)(m), where m
is the number of integration points adopted, and
the superscript num indicates that closed expres-
sions are not employed for any line integral; the
evaluation is exclusively numerical.

1x

2x

3x

ξ

)(sr

ξ

0ξ
⋅

)1(
jC

)( ln
jC

)( jtv

)(t
jC

)( jtr)( jtd

)(t
jC

)( jt
ax

)( jt
bx)( jts

Figure 2: Integration variables for the line inte-
grals

Observing that the strongly-singular kernels in
Eq. (6) (involved in the two last integrals) are sim-
ple expressions, analytical integration over linear
geometrical segments can be easily carried out.
To accomplish this, the integration variables de-
picted in Fig. 2 are considered. Moreover, by sub-
dividing the boundary-element contours (edges)
in nl subelements, the strategy can be applied to
higher-order boundary elements. The integrals in
Eq. 9 and (10) become

Al =
∮

Ce

(
1
r

)
dsl(χ) =

ns

∑
j=1

nl

∑
t=1

v( jt)
l I( jt)

1 , (11)

Blkm =
∮

Ce

r,kmdsl(χ)

= δkmAl

−
ns

∑
j=1

nl

∑
t=1

v( jt)
l

[
amkI( jt)

2 +bmkI( jt)
3 +cmkI( jt)

3

]
,

(12)
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with

I( jt)
1 =

∫ s2

s1

ds

(d2 + s2)1/2
, (13)

I( jt)
2 =

∫ s2

s1

ds

(d2 + s2)1/2
, (14)

I( jt)
3 =

∫ s2

s1

sds

(d2 + s2)3/2
, (15)

I( jt)
4 =

∫ s2

s1

s2ds

(d2 + s2)3/2
. (16)

Here d =
∥∥d( jt)

∥∥, s =
∥∥s( jt)

∥∥, and the integration
limits s1 and s2 are determined as a function of
the position of ξ0, the projection of ξ onto the line
containing the t-th subelement on the j-th edge of
the boundary element. Furthermore, by defining
the scalar α by means of the relationship

ζ0 −x( jt)
a = αv( jt), (17)

where v( jt) is the unit vector in the direction of
the integration subelement and x( jt)

a its initial node
(see Fig. 2), the closed-form expressions for the
definite integrals (13)-(16) are given according to
the three cases below.

Case I : α ≤ 0.

Here, s1 = min(l1, l2), s2 = max(l1, l2), with

l1 =
∥∥∥x( jt)

a −ξ0

∥∥∥ ,

l2 =
∥∥∥x( jt)

b −ξ0

∥∥∥ .
(18)

One has:

I( jt)
1 =

∣∣∣ln[(d2 + s2
2)

1
2 + s2]− ln[(d2 + s2

1)
1
2 + s1]

∣∣∣ ,
(19)

I( jt)
2 =

1
d2

∣∣∣∣ s2

(d2 + s2
2)1/2

− s1

(d2 + s2
1)1/2

∣∣∣∣ , (20)

I( jt)
3 =

∣∣∣∣ 1

(d2 + s2
1)1/2

− 1

(d2 + s2
2)1/2

∣∣∣∣ , (21)

I( jt)
4 =

∣∣∣∣I( jt)
1 +

s1

(d2 + s2
1)1/2

− s2

(d2 + s2
2)1/2

∣∣∣∣ . (22)

Case II : α ≥
∥∥∥x( jt)

b −x( jt)
a

∥∥∥.

The same integration limits and expressions in
case I above are obtained, except for I( jt)

3 , here
given by

I( jt)
3 = −

∣∣∣∣ 1

(d2 + s2
1)1/2

− 1

(d2 + s2
2)1/2

∣∣∣∣ . (23)

Case III : 0 < α <
∥∥∥x( jt)

b −x( jt)
a

∥∥∥.

In this case, s1 = l1, s2 = l2, while l1 and l2 are
given by relations (18), and the following expres-
sions result:

I( jt)
1 = ln[(d2 + s2

1)
1/2 + s1]+ ln[(d2 + s2

2)
1/2 + s2]

−2ln(d), (24)

I( jt)
2 =

1
d2

[
s2

(d2 + s2
2)1/2

+
s1

(d2 + s2
1)1/2

]
, (25)

I( jt)
3 =

[
1

(d2 + s2
1)1/2

− 1
(d2 + s2

2)1/2

]
, (26)

I( jt)
4 =

∣∣∣∣I( jt)
1 −

[
s1

(d2 + s2
1)

1/2
+

s2

(d2 + s2
2)

1/2

]∣∣∣∣ .
(27)

The 1D quadrature that employs the analytical
expressions for computing Al and Blkm, relations
(11) and (12) (associated with the strongly singu-
lar kernels) will be denoted by clL(1)(m), where
m is the number of integration points adopted
for evaluating the solid angle, Φ(ξ ,e); regular
numerical quadratures can be conveniently ap-
plied for this integral. Note that the complete
quadratures based on the line-integral approach,
which include surface and line integrals, will
be denoted by either [L(2)(n1,n2), numL(1)(m)] or
[L(2)(n1,n2), clL(1)(m)].

2.1.3 Integration tests

Araújo and Gray (2008) demonstrated the effi-
ciency of the [L(2)(n1,n2), numL(1)(m)] quadra-
ture. To see the improvement brought about
by analytically computing the nearly-strongly-
singular integrals, both line-integral approaches
discussed previously are employed to calculate
the diagonal-block terms of the H matrix result-
ing from modeling the cube shown in Fig. 3. In
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this test the side length is a = 1 and discontinu-
ous boundary elements, generated by displacing
the nodes of d = 5.0×10−5 at all its surfaces, are
used. The coefficient values evaluated by employ-
ing the two different line-integral approaches are
contrasted with high-precision values calculated
by the combined coordinate-transformation-based
quadrature with 20×20 integration points and 20
integration subelements. L(2)(n1,n2) quadratures
with n1 = n2 = 6, 8, and 10 are employed for
the quasi-singular surface integrals. As virtually
no difference is observed for these different in-
tegration orders, only results for n1 = n2 = 6are
shown in Fig. 4. This shows that the quadra-
ture based on the combined coordinate transfor-
mation is appropriate for calculating these sur-
face integrals. For the numerical evaluation of
the line integrals, integration points varying from
m = 5 to m = 100 are adopted. As one sees from
Fig. 4(a), integration convergence for the diago-
nal terms, cii +hii, is already attained with 5 inte-
gration points employing either numL(1) and clL(1)

quadratures. However, for the off-diagonal terms,
ci j +hi j, i �= j, a high number of integration points
(m ≥ 20) is needed for the numL(1)quadrature to
converge. Even for m = 40, the diagonal block
matrices are not symmetric. On the other hand,
the clL(1) procedure has already converged to the
high-precision values with 5 integration points.
Moreover, if no polynomial transformation is ap-
plied to derive numL(1), unacceptable ci j +hi j val-
ues are obtained for d = 5.0× 10−5, even with
m = 100. Based on these partial results, one
can conclude that employing analytical expres-
sions substantially increases the efficiency of the
integral-line approach. Therefore, in the applica-
tions later in this paper, only clL(1)-based quadra-
tures are considered along with the line-integral
approach.

2.2 Subregion-by-subregion technique applied
to solids with repeated parts

To have insight into the micromechanics of com-
posites that consist of fibers scattered in a ma-
terial matrix (see Fig. 5), the analysis method
must have the ability to effectively model the
many parts of this coupled, sometimes multi-

d

d

shifted boundary element node

1.0

1.0

1.0

1x
2x

3x

Figure 3: Cube with discontinuous boundary ele-
ments
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(a) On-diagonal terms 
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high-precision computation
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(b) Non-zero off-diagonal terms 

Figure 4: H diagonal-block coefficients (d =
5.0×10−5)

scale, physical system. For example, the compos-
ite could consist of many thin-walled reinforcing
fibers and void spaces. Here, the subregion-by-
subregion technique proposed in Araújo, Silva,
and Telles (2006) is employed to model this type
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of composite. This technique is similar to the
element-by-element technique, widely applied to
solve large-scale engineering problems with fi-
nite elements (FEM) [Hughes, Levit, and Winget
(1983); Hughes, Ferencz, and Hallquist (1987);
Fried (1994)]. Its main idea is to use an iterative
solver. This allows working with smaller parts
of the system of equations without explicitly as-
sembling the global matrix. As a consequence
of overlapping coefficients in the FEM stiffness
matrices, edge-based data structures have been
employed to minimize CPU time and memory
requirements [Coutinho, Martins, Sydenstricker,
and Elias (2006); Elias, Martins, and Coutinho
(2006)]. By contrast, in the boundary-element
subregion-by-subregion technique (SBS), no fur-
ther data-structure optimization is needed, as co-
efficients belonging to edges shared by different
subregions do not overlap.

For ns subregions, after introducing the boundary
conditions, the BE global system of equations can
be written as

i−1

∑
m=1

(Himumi −Gimpim)+Aiixi

+
n

∑
m=i+1

(Himuim +Gimpmi) = Biiyi, i = 1,ns,

(28)

where Hi j and Gi j denote the usual BE matrices
obtained for source points pertaining to subregion
Ωi and associated respectively with the boundary
vectors ui j and pi j at Γi j . Note that if i �= j, Γi j

corresponds to the interface between Ωi and Ω j;
Γii is the outer boundary of Ωi.

In the SBS data structure, the subsystems in Eq.
(28) are then separately stored and manipulated.
Thus, the many zero blocks, unavoidably present
in the global system matrix, are completely ex-
cluded. Moreover, as discontinuous boundary
elements are employed, the fiber-matrix perfect
bonding interfacial conditions, given by{

ui j = u ji

pi j = −p ji
, at Γi j (29)

can be imposed pairwise. This enormously sim-
plifies the treatment of edges and corners at sub-
region interfaces.

Figure 5: Fiber-reinforced composite

In previous works, both unstructured (UNSMVP)
and structured matrix-vector products (SMVP)
have been employed [see Araújo, Silva, and Telles
(2006); Araújo and Gray (2008)]. In the latter
procedure, the matrix columns of a given subre-
gion are re-ordered so as to group its coefficients
into three separate blocks: one associated with in-
terfaces Γi j for which i > j, a second associated
with the outer boundary Γii, at which boundary
values are prescribed, and one associated with in-
terfaces Γi j for i < j. One works then with the
following data structure for matrices Hi and Gi,
for the i-th subregion:

Hi = [
block 1︷ ︸︸ ︷

Hi1 . . . Hi,i−1

block 2︷︸︸︷
Hii

block 3︷ ︸︸ ︷
Hi,i+1 . . . Hi,n ]

Gi = [ Gi1 . . . Gi,i−1 Gii Gi,i+1 . . . Gi,n ]
(30)

This data structure is precisely that indicated in
Eq. (28), and it has been shown to improve the
efficiency of the iterative solver [Araújo and Gray
(2008)].

The Jacobi-preconditioned BiCG solver (J-BiCG)
[Mansur, Araújo, and Malaghini (1992)] is
adopted in this study. In this algorithm, matrix-
vector products of the form (D−1A)p j and
(D−1A)T p∗

j are computed, where A and D are,
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respectively, the global matrix of the coupled
system and its diagonal matrix. Nevertheless,
other Krylov solvers can also be implemented
along with the SBS technique; recent advances in
Krylov solvers for non-hermitian matrices are re-
ported in Saad (2003), and van der Vorst (2003).

In conjunction with the SBS technique, a “matrix-
copy” option is particularly important for model-
ing fiber composites containing physically and ge-
ometrically identical reinforcement elements. In
this approach, the BE matrix is assembled for only
one substructure, and for the other repeated sub-
structures, the corresponding matrix is promptly
obtained by rotation transformations. Matrix-
assembly CPU time is then considerably reduced.

3 Evaluating effective material parameters

For understanding fiber-reinforced composite
structures on the macromechanical scale, an es-
sential step is the material characterization on the
micromechanical level. In this paper, square-
packed and hexagonal-packed arrays are consid-
ered to idealize the smearing of fibers inside the
matrix material (see Fig. 6). The boundary-
element SBS technique discussed above is applied
to analyze the 3D material specimens, representa-
tive volume elements - RVE. Long and short fibers
are considered as well as models consisting of a
single or several unit cells. Based on the evalua-
tion of displacements and stresses on the bound-
ary of the specimens for germane loading cases,
the macroscopic material constants can be evalu-
ated. In Fig. 6, the unit cells for both fiber-array
patterns [Hyer (1998)] are depicted, and in Fig. 7
the details of single-cell specimens for long-fiber-
based composites are shown. For comparison pur-
poses, rules of mixture, based on the fiber volume
fraction, will also be considered in this study to
estimate effective elasticity moduli.

3.1 Constants E1, υ12 and υ13

For these constants, one considers the specimen
under stretching (or shortening) in the 1 princi-
pal material direction (fiber direction), and bound-
ary conditions on the lateral surfaces perpendicu-
lar to the 2 and 3 directions are imposed to sim-

3

matrix
CNT-based fiber

unit cell

2 2

3

unit cell

  (a) Square-packed array  (b) Hexagonal-packed array 

Figure 6: Fiber-packing patterns

1

3

CNT-based fiber

matrix

2

1

2

3 matrix

CNT-based fiber

       (a) Square-packed array   (b) Hexagonal-packed array

Figure 7: Single-cell composite specimens

ulate the surrounding medium. Following Hyer
(1998), these in-situ boundary conditions may be
enforced by allowing the lateral surfaces of the
specimen to move freely and to change length as
long as they remain straight and free of any net
force. Although an iterative algorithm may be de-
signed to exactly enforce these boundary condi-
tions, herein a simpler strategy is adopted. First,
the solution is obtained for a prescribed axial dis-

placement δ (1)
1 and the corresponding transverse

displacements, δ (1)
2 and δ (1)

3 , are computed. A
second analysis is then carried out with the dis-

placements δ (1)
1 and δ (1)

2 = δ (1)
3 = δ (1)

t as pre-

scribed data, where δ (1)
t is a mean lateral displace-

ment value (see Fig. 8).

Note that imposing δ (1)
2 = δ (1)

3 is appropriate, as
transverse isotropy applies to the fiber-packed ar-
rays being considered. In addition, the minimum
and maximum transverse displacements at the lat-
eral surfaces of the RVE are in general about the
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Figure 8: Boundary conditions in strain state 1

same value; thus a more sophisticated method for
enforcing the zero-force condition is not required.
The overbar notation δ indicates prescribed dis-
placement, and the superscripts stand for strain
state 1, from which the material parameters E1,
υ12 and υ13 are determined. The following ex-
pressions, derived from basic strain-stress rela-
tionships, are employed for this purpose:

E1 =
(

σ (1)
1 −υ12σ (1)

2 −υ13σ (1)
3

)( l1

δ
(1)
1

)
, (31)

ν12 = ν13 = −
(

δ (1)
2

l2

)(
l1

δ (1)
1

)
, (32)

where σ (1)
i denotes the average stress over the cor-

responding RVE area. In the (approximate) calcu-
lations the net forces on the lateral surfaces are not
exactly zero; thus σ (1)

2 and σ (1)
3 are retained in Eq.

(31).

3.2 Constants E2, υ23 and υ21

For evaluating these constants, we employ the
strain state 2 shown in Fig. 9, in which σ (2)

1 = 0.
In this case, the minimum and maximum values
of the transverse displacement on the 3 surface
of the specimen, δ (2)

3 , may be substantially differ-
ent. Thus, compared to the analysis for strain state
1, a more elaborated method is needed for find-

ing the δ
(2)
3 value associated with a zero net force

condition on that surface, f (2)
3 = 0 (in-situ bound-

ary conditions). Again, a first analysis is carried

out for a prescribed lateral displacement δ (2)
2 , and

δ (2)
3 is determined. Assuming a linear variation

for f (2)
3 (the net force resultant) as a function of

prescribed values δ̃ (2)
3 on the 3 surface (see Fig.

10), δ (2)
3 is determined by

δ (2)
3 = (b)δ̃ (2)

3 −
(

(b)δ̃ (2)
3 − (a)δ̃ (2)

3

(b) f (2)
3 − (a) f (2)

3

)(b)

f (2)
3 . (33)
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Figure 9: Boundary conditions in strain state 2
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Figure 10: Net force variation of f (2)
3

Then, by taking δ (2)
2 and δ (2)

3 as boundary con-
dition, an additional analysis is carried out, from
which E2, υ23 and υ21 are calculated. Here, the
following expressions are employed for calculat-
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ing these constants:

E2 =
(

σ (2)
2 −υ23σ (2)

3

)(δ (2)
2

l2

)−1

, (34)

ν23 = −
(

δ (2)
3

l3

)(
l2

δ (2)
2

)
, (35)

ν21 = ν12

(
E2

E1

)
, (36)

where the average stress σ (2)
3 is approximately

null. More precise strategies for finding δ (2)
3 , such

as non-linear interpolations or, as already men-
tioned, iterative procedures, can also be easily de-
veloped.

Of course, assuming transverse isotropy in the 2-
3 plane, the shear modulus G23 is directly calcu-
lated from the constants above by

G23 =
1
2

(
E2

1+υ23

)
, (37)

Note that, in case of fully orthotropic materials, a
third strain state similar to strain state 2 (but with

some δ (3)
3 initially prescribed) can be employed to

evaluate E3, ν31 and ν32.

3.3 Rules of mixture

For comparison purposes, rules of mixture based
on the fiber volume fraction, Vf , have been em-
ployed to estimate the elasticity modulus of the
composite specimens. Particularly for intervals
with constant Vf , as for the 1 direction of RVEs
with CNT-based fibers across their whole length
l1, the effective elasticity modulus can be approx-
imated by [Hyer (1998); Chen and Liu (2004)]

E1 = E fVf +Em(1−Vf ), (38)

where E f and Em are respectively the fiber and the
matrix elasticity modulus. Note that the fiber vol-
ume fraction for CNT square-packed (V (sq)

f ) and

hexagonal-packed (V (hex)
f ) arrays are given by

V (sq)
f =

π
(
r2

0 − r2
i

)(
l2l3 −πr2

i

)
V (hex)

f =
2π
(
r2

0 − r2
i

)(
l2l3 −2πr2

i

) (39)

r0 and ri being, respectively, the outer and inner
radius of the nanotube.

For short CNTs (see Fig. 11) wherein the fiber
volume fraction is no longer constant along the
entire length l1, an expression for E1 can be ob-
tained from the stress-strain relationship for a
one-dimensional rod under axial load. This as-
sumes that the rod is composed of two parts, one
of length le consisting of pure matrix material, and
one of length lc containing polymer matrix and
CNT at some constant volume fraction Vf [Chen
and Liu (2004)]. One has

E1 =
[(

1
Em

)(
le
l

)
+
(

1
Ec

1

)(
lc
l

)(
A
Ac

)]−1

,

(40)

with l = lc + le, Ac = l2l3−πr2
i for square-packed

arrays, Ac = l2l3 −2πr2
i for hexagonal-packed ar-

rays, and Ec
1, the effective elasticity modulus of

the central part of the composite, calculated ac-
cording to expression (38).
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Figure 11: Short CNT inside the matrix

Note that the fiber volume fraction along the caps
is variable. Thus, it is reasonable to define lc as
some value in the interval [lcyl, lcyl + 2r0], where
lcyl is the length of the central cylinder (see Fig.
11). Chen and Liu (2004) consider lc = lcyl +2r0.

4 Applications and discussions

The BE SBS technique, together with the new in-
tegration procedures and matrix-copy option, has
been applied to evaluate engineering constants
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for several CNT-based composites. In the nu-
merical tests, long and short CNTs distributed in
square-packed and hexagonal-packed arrays in-
side a matrix material form the composite spec-
imens (RVEs). Single-unit-cell and multi-unit-
cell specimens are considered. The quadratures
[L(2)(8,8), clL(1)(6)], employing closed expres-
sions for the nearly-strongly-singular line inte-
grals, have been applied in all problems. For com-
parison purposes, the physical constants adopted
by Chen and Liu (2004) for the CNT and poly-
mer matrix are considered for all the calculations
in this paper:

CNT:

ECNT = 1,000 nN/nm2(GPa); νCNT = 0.30,

Matrix:

Em = 100 nN/nm2(GPa); νCNT = 0.30.

The cylindrical cross section and, when present,
the hemispherical caps of the CNT fibers have
outer radius r0 = 5.0 nm and inner radius ri =
4.6 nm. Discontinuous boundary elements, when
needed, are generated by shifting the nodes in-
terior to the elements a distance of d = 0.10
(measured in natural coordinates). Common to
all analyses is the quadratic boundary element
adopted, an 8-node quadrilateral boundary ele-
ment, and the tolerance for the iterative solver (J-
BiCG), taken as ζ = 10−6.

4.1 Square-packed long CNT arrays

RVEs based on a single, 2×2, and 3×3 unit cells
are employed for modeling long-CNT-reinforced
composites. For the long-fiber-reinforced com-
posites, the observed response does not vary along
the fiber direction (1 direction) of the specimen,
and thus, any convenient length l1 [see Figs. 7(a),
8(a)] can be taken. In the analyses here, l1 =
10 nm, which allows a single layer of boundary
elements across the fiber (see BE models below).

4.1.1 Single-unit-cell-based RVE

This RVE has dimensions l1 = 10 nm, and l2 =
l3 = 20 nm. In the BE model in Fig. 12, two

subregions are considered: one for the matrix ma-
terial, one for the CNT. Both the matrix mate-
rial and the CNT are modeled with 64 bound-
ary elements, resulting in a total of 1,824 degrees
of freedom for the global system. Discontinu-
ous boundary elements are placed on the interface
between the matrix material and the carbon nan-
otube. By solving this RVE with the loading cases
described in section 3 (strain state 1 and 2) and
applying expressions 31-32 and 34-35, the engi-
neering constants shown in Tab. 1 are calculated.
The rule-of-mixture estimate (Eq. 38) furnishes
E1/Em =1.3255, where the fiber volume fraction
is Vf = 3.617%.

2

3

1

Figure 12: BE model for single-unit-cell RVE for
long CNT square-packed arrays

Table 1: Engineering constants for single-unit-
cell RVEs (long CNT, square-packed array)

Chen & Liu (3D FE) BE SBS
E1/Em 1.3255 1.3227
E2/Em,E3/Em 0.8492 0.8323
ν12,ν13 0.3000 0.2974
ν23 0.3799 0.3757

As one sees, good agreement with the values esti-
mated according to the rule of mixture, and those
obtained by Chen and Liu (2004) using refined 3D
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FE models, is achieved. It should also be noted
that the nit/n values, where nit is the number of
iterations for the solver and n the system order
(n=1824), indicate good solver performance for
both loading cases; these numbers were 0.28 for
strain state 1 and 0.25 for strain state 2. The spar-
sity of the global matrices is 29% in both cases.

4.1.2 2×2- and 3×3- unit-cell RVE

To confirm that single-unit-cell RVEs produce ac-
curate results, RVEs containing 2× 2 and 3× 3
unit cells have also been analyzed (see Figs. 13
and 14). Each cell has the same geometry of that
in Fig. 12 above. One subregion for the matrix
material and one for each CNT is considered. For
the CNTs, the BE matrix is only assembled for
one, and as explained above, copied for the oth-
ers. For the models with 2 × 2 and 3 × 3 unit
cells the global systems have 6,990 15,504 equa-
tions, the matrix material having been modeled
with 224 elements (666 nodes) and 480 elements
(1,424 nodes) respectively. As before, each CNT
has 64 elements (192 nodes), and discontinuous
elements are employed at the polymer-CNT inter-
faces.

1

2

3

Figure 13: BE model for 2×2-unit-cell RVE for
long CNT square-packed arrays

In Tabs. 2 and 3, the composite elastic con-

1

3

2

Figure 14: BE model for 3×3-unit-cell RVE for
long CNT square-packed arrays

stants calculated employing these RVEs are pre-
sented. No considerable changes are observed
in these values, which indicates that, for the de-
termination of elastic constants, single-unit-cell-
based RVEs satisfactorily represent the compos-
ite material. Moreover, these calculations high-
light the computational efficiency of the matrix-
copy option in case of repeated substructures. The
nit/n values once again indicate good solver per-
formance. For the 2×2-cell RVE, these values are
0.21 in the strain state case 1 and 0.19 in the strain
state case 2. For the 3×3-cell RVE, nit/n =0.24
and nit/n =0.21 in the respective strain state cases
1 and 2. The global matrix sparsity for the model
in Fig. 13 (with 5 subregions) is 57% and for the
model in Fig. 14 (with 10 subregions), 63%. It
should be noted that the higher the sparsity, the
less the relative CPU time per iteration.

4.2 Hexagonal–packed long CNT arrays

For hexagonal packing of fibers, single-cell and
2 × 2-cell RVEs have been considered. Again,
l1 = 10 nm and l2 = l3 = 20 nm for each unit cell
(see Figs. 7, 8, and 9 for definitions of l1, l2, and
l3). The RVEs are modeled with 6 and 14 sub-
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Table 2: Engineering constants for 2×2-unit-cell
RVEs (long CNT, square-packed array)

Chen & Liu (3D FE) BE SBS
E1/Em 1.3255 1.3225
E2/Em,E3/Em 0.8492 0.8319
ν12,ν13 0.3000 0.2975
ν23 0.3799 0.3597

Table 3: Engineering constants for 3×3-unit-cell
RVEs (long CNT, square-packed array)

Chen & Liu (3D FE) BE SBS
E1/Em 1.3255 1.3225
E2/Em,E3/Em 0.8492 0.8319
ν12,ν13 0.3000 0.2975
ν23 0.3799 0.3597

regions, see Figs. 15 and 16. The BE models
for the subregions in Fig. 15 have the following
characteristics: 64 elements (192 nodes) for the
matrix material and central CNT, and 10 elements
(32 nodes) for each quarter CNT, giving a total
of 2,568 degrees of freedom. The model in Fig.
16 has 240 elements (712 nodes) for the matrix,
32 elements (96 nodes) for the central CNT, 64
elements (192 nodes) for the other CNTs, 18 el-
ements (56 nodes) for the half CNTs, and 10 el-
ements (32 nodes) for the quarter CNTs, result-
ing in a total of 9,864 equations. At all matrix-
CNT interfaces, discontinuous elements are em-
ployed. The material parameters obtained for this
packing-array pattern are show in Tabs. 4 and 5.
Here, a comparison was possible only for E1, es-
timated through Eq. 38 for a fiber volume frac-
tion Vf = 9.035%. Computational performance
parameters are: for the single-cell model, nit/n=
0.14 in strain states 1 and 2; for the 2 × 2-cell
model, nit/n=0.08 also in both strain states (1 and
2). These values again indicate very good solver
performance. The sparsity of the models is 53%
for the model in Fig. 15, and 66% for the one in
Fig. 16.

4.3 Square-packed short CNT arrays

Short capsule-like CNTs as those shown in the
BE models in Figs. 17 and 18 can also be used

Figure 15: BE model for single-unit-cell RVE,
long CNT, hexagonal-packed array

Figure 16: BE model for 2 × 2-unit-cell RVEs
(long CNT, hexagonal-packed array)

Table 4: Engineering constants for single-unit-
cell RVEs (long CNT, hexagonal-packed array)

BE SBS Rules of mixture
E1/Em 1.8081 1.8131
E2/Em,E3/Em 1.0889 -
ν12,ν13 0.2943 -
ν23 0.5106 -

as reinforcement. The single-cell representative
volume element in Fig. 17 has been analyzed in



Effective Material Parameters of CNT-reinforced Composites 117

Table 5: Engineering constants for 2×2-unit-cell
RVEs (long CNT, hexagonal-packed array)

BE SBS Rule of mixture
E1/Em 1.8067 1.8131
E2/Em,E3/Em 1.0839 -
ν12,ν13 0.2932 -
ν23 0.5103 -

Chen and Liu (2004). The outer dimensions of
the RVE in Fig. 17 are l1 = 100 nm, and l2 = l3 =
20 nm. The CNT is 50 nm long (including the
hemispherical caps), and the radii of its cylindri-
cal part and hemispherical caps are r0 = 5.0 nm
and ri = 4.6 nm. The model in Fig. 17 contains
two subregions, one for the matrix and one for
the CNT. The BE mesh for the matrix has 192
elements (580 nodes), and for the CNT, 160 ele-
ments (484 nodes), giving a total of 3192 degrees
of freedom for the global model. Note that dis-
continuous elements are not needed here, as all
the interfaces are smooth and the boundary con-
ditions can also be imposed employing continu-
ous elements. The model in Fig. 18, with 5 sub-
regions, has 2 × 2 unit cells, each one with the
same characteristics of that in Fig. 17. The BE
matrices for the CNTs are again calculated us-
ing the matrix-copy option, i.e. only one matrix
is in fact calculated. A multi-cell model is also
employed to verify the performance of the single-
cell results for the composite material. The re-
sults from these analyses contrasted with results
obtained by Chen and Liu (2004) are shown in
Tabs. 6 and 7. The corresponding estimates for E1

based on the rule of mixture for short-fiber com-
posite (Eq. 40 with Ec

1 =132.553 nN/nm2) yield
E1/Em =1.0396 (with lc = 40 nm and le = 60 nm),
and E1/Em =1.0500 with lc = le = 50 nm.

Table 6: Engineering constants for single-unit-
cell RVEs (short CNT, square-packed array)

Chen & Liu (3D FE) BE SBS
E1/Em 1.0391 1.0378
E2/Em,E3/Em 0.9342 0.9366
ν12,ν13 0.3009 0.2963
ν23 0.3217 0.3207

Figure 17: BE model for single-unit-cell RVE for
square-packed short-CNT array

Figure 18: BE model for 2 × 2-unit-cell RVE,
short CNT, square-packed array

Table 7: Engineering constants for 2×2-unit-cell
RVEs (short CNT, square-packed array)

Chen & Liu (3D FE) BE SBS
E1/Em 1.0391 1.0378
E2/Em,E3/Em 0.9342 0.9366
ν12,ν13 0.3009 0.2978
ν23 0.3217 0.3206

The present results show very good agreement
with numbers obtained by Chen and Liu (2004)
employing a refined finite-element mesh. The
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nit/n relations also indicate very good conver-
gence rates: for the model in Fig. 17, 0.18 and
0.20 for strain state 1 and 2 respectively, and for
the model in Fig. 18, 0.14 for strain state 1 and
0.14 for strain state 2. The sparsity of the global
matrices is 27% for the single-cell RVE, and 54%
for the 2 × 2-cell RVE. It should be especially
noted that boundary element meshes for 2×2-cell
RVE are easily constructed.

4.4 Hexagonal-packed short CNT arrays

In this application, a single-unit-cell RVE based
on the hexagonal-packing array is considered
(Fig. 18). The RVE is modeled with 6 subregions:
one for the matrix, one for the central CNT, and 4
for the quarter CNTs. In this case the matrix-copy
option is not exploited. The boundary elements on
the interfaces between the quarter CNTs and the
matrix are discontinuous. The BE subregion for
the matrix has 384 elements (1156 nodes), that
for the central CNT 160 elements (484 nodes),
and that for each quarter CNT 50 elements (152
nodes). The global system, after discontinuous el-
ements are generated, has 9,072 equations.

1

3

Figure 19: BE model for single-unit-cell RVEs
(short CNT, hexagonal-packed array)

The effective material constants for the CNT-
array pattern are given in Tab. 8. Here, the value
for E1 is compared with the value calculated from

Eq. 40 with Ec
1 =181.315 nN/nm2 and lc = 40

nm and le = 60 nm; this is more realistic than that
calculated by taking lc = le = 50 nm, as the load
transmission is brought about mainly through the
cylindrical lateral surface of the CNT. The spar-
sity of the global matrix is 53%, and nit/n values
are 0.11 for both strain states 1 and 2, indicating
very good solver performance. It is again empha-
sized that, by avoiding domain discretization, the
BE models are easily generated.

All the problems above have also been analyzed
for solver tolerance ζ = 10−8. In this case, the
number of iterations, nit , just increased for no vir-
tual modification in the calculated material prop-
erties. Thus, the corresponding results have not
been shown.

Table 8: Engineering constants for single-unit-
cell RVE, short CNT, hexagonal-packed array

BE SBS Rule of mixture
E1/Em 1.0777 1.0748
E2/Em,E3/Em 1.0878 -
ν12,ν13 0.2953 -
ν23 0.3621 -

5 Conclusions

A 3D linear elasticity boundary-element for-
mulation based upon a robust subregion-by-
subregion (SBS) technique has been developed,
and subsequently applied to evaluate effective
engineering constants for CNT-reinforced com-
posites. Moreover, the efficiency of the line-
integral approach for evaluating weakly-singular
and strongly-singular integrals has been substan-
tially improved by incorporating analytical inte-
grations. Numerical tests of these procedures
have shown excellent convergence for relatively
few Gauss points, even for source points as close
as d = 5.0 × 10−5 to element edges; by con-
trast, direct numerical evaluation of the nearly-
strongly-singular line integrals requires a large
number of integration points (m ≥ 20) to obtain
accurate H coefficients.

An important consequence of the improved
quadrature algorithms is that this greatly simpli-
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fies the meshing constraints for modeling com-
posites. Disproportionate boundary elements can
be employed without sacrificing accuracy, and as
demonstrated herein, relatively coarse meshes can
be used to model thin-walled solids (e.g., CNTs).
Moreover, efficient quasi-singular integration also
allows the reliable use of discontinuous boundary
elements, providing a relatively simple strategy
for modeling complex coupled domains by means
of the SBS algorithm.

As demonstrated by the numerical results, the
techniques discussed have proven to be very con-
venient for analyzing representative volume ele-
ments of CNT-reinforced composites. In addi-
tion to the special quadratures, the matrix-copy
option also increases the efficiency of the BE al-
gorithm, avoiding the repeated calculation of ma-
trices for identical substructures. This signif-
icantly reduces the total matrix-assembly time,
while the J-BiCG iterative solver has also shown
very good performance for these problems: for a
stopping criterion of ζ = 10−6, nit/n <0.20 for
most of the analyses. Moreover, BiCG variants
such as the BiCGSTAB(l) [Sleijpen and Fokkema
(1993)] and the GPBiCG [Zhang (2002)], capable
of higher convergence rates than the pure BiCG,
should be incorporated into the next version of the
SBS algorithm.

The fact that a smaller tolerance for the iterative
solver produced virtually no change in the solu-
tion raises an interesting question, namely how to
choose when to halt the iterations. Clearly, too
few may lead to a poor solution, while too many
iterations just waste CPU time without improving
accuracy. An effective stopping criterion is an es-
sential issue in using any iterative solvers, and is
especially important for mixed boundary data in
elasticity calculations. In this situation, the val-
ues of the displacement and traction unknowns
are usually quite disparate, and this may cause
some problems for iterative solvers.

As a final comment regarding efficiency, note that
the SBS approach effectively exploits the sparsity
of the global system, the memory required and the
CPU time per iteration are significantly reduced
compared to a standard algorithm. The sparsity
of BE multi-domain systems is usually high, for

most of the models analyzed in this study it was
above 50%.

The computed effective material constants from
the SBS algorithm compared very well with re-
sults from both FE calculations and the simple
rules of mixture equations. The strategy adopted
for determining the displacement boundary con-
dition for strain state 2 has been shown to be ap-
propriate. The corresponding traction resultant
in the 3 direction is less than 0.001% of that in
the 2 direction for all cases analyzed, i.e. its
relative value is approximately zero as it should
be. Note that for estimating E1 in the short-CNT-
reinforced composite employing the rule of mix-
ture, the length of the central part of the composite
(containing polymer matrix and CNT) should be
more appropriately taken as lc = lcyl, as the mech-
anism of load transmission to the fiber is basically
by shear stress along the cylindrical surface of the
CNT (see Fig. 11). In fact, values so estimated fit
much better with those evaluated by the FE mod-
els [Chen and Liu (2004)] and the BE SBS tech-
nique.

Finally, a boundary element formulation is well
suited to the study of composites. The determina-
tion of the effective elastic constants is dependent
upon the surface stress solution, and as tractions
are directly obtained from solving the boundary
integral equations, this evaluation is straightfor-
ward. Moreover, for complex composites, surface
meshes are simpler to generate than volume dis-
cretizations. Other important problems for com-
posites, e.g., matrix-fiber interfacial bond, can be
readily studied with the tools developed herein.
The strategy is also adequate to model general
anisotropic composites. Herein, special Green’s
functions for particular multilayered anisotropic
solids [Yang and Pan (2002), Yuan, Yang, and
Yang (2003), and Yang and Tewary (2006)] are
not needed. With this in mind, it should be noted
that the SBS algorithm can be promptly imple-
mented on parallel-computing platforms [Ortiz,
Shelton, Mantic, Paris, and Gray (2008)], and
this should be a useful tool for analyzing large-
scale/multi-scale composites. In Wang and Yao
(2005), a BEM algorithm is also proposed to solve
3D RVEs of composites consisting of a number of
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particles randomly dispersed inside a matrix ma-
terial. There, a fast multipole method (FMM) is
applied to accelerate the standard BEM, and fu-
ture efficiency comparisons with the strategy pre-
sented in this paper are desirable.
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