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A Micromechanics Analysis of Nanoscale Graphite Platelet-Reinforced
Epoxy Using Defect Green’s Function

B. Yang1,2, S.-C. Wong3 and S. Qu3

Abstract: In the modeling of overall prop-
erty of composites, the effect of particle interac-
tion has been either numerically taken into ac-
count within a (representative) volume element of
a small number of particles or neglected/ignored
in order for efficient solution to a large system
of particles. In this study, we apply the point-
defect Green’s function (GF) to take into account
the effect of particle interaction. It is applicable to
small volume fractions of particles (within 10 %).
The high efficiency of the method enables a simu-
lation of a large system of particles with generally
elastic anisotropy, arbitrary shape and composi-
tion, and arbitrary spatial distribution. In partic-
ular, we apply the method to study the nanoscale
graphite platelet reinforced polymers, guided by
some preliminary experimental observations. We
first verify the method by comparing the predic-
tion with a full-field model in the case of a regular
lattice of particles. The comparison has demon-
strated that the method is a considerable improve-
ment over the classical Eshelby’s method employ-
ing the regular GF and thus ignoring the effect of
particle interaction. Upon the verification, we ap-
ply the method to examine the effect of a number
of parameters on the overall composite behavior.
The effect of particle interaction is shown to be
strongly dependent on particle arrangement due
to the strong elastic and geometrical anisotropy
in graphite platelets. The strongest effect occurs
when the platelets are orientated uniformly and
stacked in a simple cubic lattice. However, the
(overall) effect becomes trivial when the platelets
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are randomly orientated, which is expected. The
effect of platelet aspect ratio is also studied. Fi-
nally, a thin soft layer is inserted between the
platelets and the matrix material in order to simu-
late a partial bonding condition between them. It
is shown to play a significant role in determining
the overall composite behavior. The present work
sets up a base for further large-scale simulations
of micro-damages (microcracks, particle debond-
ing, etc.) under interaction, as well as provid-
ing insights to further experimentation in graphite
platelet nanocomposites.
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1 Introduction

Various micromechanics models have been de-
veloped to estimate the overall elastic property
of particle-reinforced composites (Mura, 1987;
Nemat-Nasser and Hori, 1999). They are exclu-
sively based on the average stress and strain over a
representative volume element (RVE), which sup-
posedly contains a sufficiently large number of
particles. These models may be classified in two
categories: (a) analytical, based on approximate
but efficient solutions of stress and strain fields
in a large RVE; (b) numerical, based on numer-
ical full solutions of stress and strain fields in a
small RVE. For an accurate evaluation, the full
stress and strain fields are in general needed. The
numerical methods commonly used to solve the
problem include the finite element (FE) method
and the boundary element (BE) method. The
FE method has so far been limited to a small
RVE of a few tens of particles with the current
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computing powers (LLorca and Segurado, 2004).
The BE method is based on a boundary-integral-
equation formation employing Green’s functions
(GFs) (Brebbia et al., 1984). The BE method
based on analytical/semi-analytical GFs reduces
problem dimensionality by one and holds flexibil-
ity for further mesh reduction and efficiency im-
provement by realizing certain features of a prob-
lem (Pan et al., 2001). For example, if the parti-
cles are rigid, the number of degrees of freedom
(DOFs) can be cut by one half. Depending on the
characteristics of a GF, a fast multipole scheme
may be devised to accelerate the solution. There-
fore, the BE method has been ably extended to
handle a RVE of thousands of fibers on parallel
computers (Liu et al., 2005). However, it is yet
unclear how to extend the approach to a more
complicated case of generally elastic fibers and
particles where the above analytical treatments
may not be readily available.

Due to the limitation of numerical methods, vari-
ous analytical methods have been developed and
favored historically for the estimate of overall
elastic property of particle-reinforced composites
(Mura, 1987; Nemat-Nasser and Hori, 1999). In
the early studies, a uniform stress or a uniform
strain field was assumed throughout the entire
composite system. These approaches were later
proved to provide an upper and a lower bound of
overall elastic stiffness, respectively. In a more
accurate approach, namely, the Eshelby’s method,
the full stress and strain fields are approximated
by the sum of those due to individual particles
separately in an infinite matrix (Eshelby, 1961;
Mura, 1987). The problem may be analytically
dealt with as an equivalent inclusion problem and
solved conveniently with GFs. It is applicable
to composites of dilute particles since it does not
take into account the effect of particle interaction.
The self-consistent method (Budiansky and Wu,
1962) takes into account the effect of particle in-
teraction in a plausible way by considering the
problem of particles embedded in an assumed ho-
mogeneous matrix. The overall elastic property
of the assumed matrix plus the particles is eval-
uated by the Eshelby’s method. If there appears
to be little change in the overall elastic property,

the assumed matrix is regarded as equivalent to
the composite under consideration. That is that
the elastic property of the composite is obtained.
An iterative scheme is necessary to solve the self-
consistent problem starting with the original ma-
trix. In the approach the stress and strain fields
are captured remote to each particle in an average
sense. However, they are in serious question in the
vicinity of each particle. Therefore, it is difficult
to estimate the accuracy of the method. The em-
bedded cell method (Dong and Schmauder, 1996)
advances over the original self-consistent method,
which resolves the stress and strain fields in the
vicinity of individual particles in a cell of origi-
nal matrix while wrapping the cell with a homo-
geneous material of the same (initially unknown)
elastic property of the composite. The problem is
solved iteratively, the same as in the original self-
consistent method. It offers an accurate evaluation
of the overall elastic property of the composite.
However, the method would normally require the
use of a numerical solver, limiting its application
to small RVEs (Okada et al., 2004).

In this paper, a novel analytical method is de-
veloped to estimate the overall elastic property
of particle-reinforced composites by using defect
GF. The defect GF is basically the field due to
a unit point force in a matrix containing inho-
mogeneous particles, namely, defects (Yang and
Tewary, 2004). In contrast, the regular GF is re-
ferred to the field due to a unit point force in a ho-
mogeneous matrix. When the defect GF is applied
to derive the stress and strain fields, the effect of
particle interaction is taken into account. An ef-
ficient scheme has been developed for evaluation
of the defect GF of point-like inhomogeneities (in
a multilayered matrix in general) (Yang, 2004).
By assuming particles being point-like and ap-
plying the point-defect GF, an analytical method
is obtained, capable of simulating a large system
of particles. It allows for efficient and accurate
examination of the effects of various parameters,
such as particles geometry and orientation, on the
overall property of the composite.

The present modeling work is motivated by
our recent attempt to develop a novel graphite
platelet-reinforced polymer system (Zheng et al.,
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2002; Zheng and Wong, 2003; Zheng et al.,
2004; Wong et al., 2004, 2005; Wong and
Yang, 2005). The concept was novel because
little was understood on dispersing exfoliated
graphite platelets in polymers. Graphite interca-
lated compounds (GICs) have been studied for a
few decades (Chung, 1987; Toyoda and Inagaki,
2000; Yoshida et al., 1991). New patents (Bar-
sukov and Zaleski, 2004; Jang et al, 2004) and
research findings (Qu and Wong, 2005; Wong et
al., 2006) on novel processing methods to produce
highly expanded graphite continue to emerge.
However, the advantages of dispersing GIC in
polymers to formulate novel nanocomposites are
not well understood. Widespread interests arose
in dispersing various nanoscale fillers including
carbon nanotubes (Gong et al., 2000; Thostenson
and Chou, 2002) and organomodified smectite
clays (Kojima et al., 1993; Giannelis et al., 1999)
in polymers. Little has been reported on dispers-
ing nanoscale graphite platelets (NGPs), which
consist of stacks of sp2 graphene sheets in poly-
mers, and their treatment methods. Such an NGP-
based polymer nanocomposites are distinctly dif-
ferent from those obtained from conventional sp3

carbon black, carbon nanotube and nanoclay re-
inforcements. Instead of developing the lower-
cost processes for fabrication of nanotubes, we
studied experimentally the use of platelet-shaped
graphite, which exists abundantly in our planet
earth, coupled with mechanical attrition processes
(Wong et al., 2006) to produce low-cost nanoscale
substitutes that provide attractive functional prop-
erties when dispersed in polymer matrices. The
functional properties include improved mechani-
cal stiffness, ductility, electrical conductivity, di-
electric and piezoresistive properties that are the
focus of our research (Zheng et al., 2002; Zheng
and Wong, 2003; Zheng et al., 2004; Wong et al.,
2004, 2005; Wong and Yang, 2005; Wong et al.,
2006). The general advantages of nanoscale re-
inforcements in polymer matrices are threefold:
(1) when nanoscale fillers are finely dispersed in
the matrix, the tremendous surface area developed
could contribute to polymer chain confinement ef-
fects which could lead to higher glass transition
temperature, stiffness and strength; (2) nanoscale
fillers provide an extraordinarily zigzagging, tor-

tuous diffusion path that leads to enhanced barrier
performance for gas, moisture and oxygen trans-
missions; and (3) nanoscale fillers can also en-
hance the controlled electrical and thermal con-
ductivities to finely tune insulating, dielectric and
semi-conductive properties. Advantage (3) can-
not be effectively obtained from nanocomposites
derived from layered silicates. In this paper, we
focus on the elastic mechanical properties.

In Section 2, some preliminary experimental re-
sults of graphite platelets epoxy nanocomposites
are described. They provide guiding parameters
for the following modeling and simulations. In
Section 3, the novel defect GF-based analytical
method is described. In Section 4, the present
method is first verified to predict accurately com-
pared to the full-field solution in the case of a
regular lattice of particles. Then, a parametric
study is carried out to investigate the role of a
number of parameters in determining the over-
all elastic property of composite. It is found that
the particles orientation, geometry and distribu-
tion all play a significant role in general. The ef-
fect of particle interaction is significant when the
graphite platelets are aligned with their c-axis and
in a simple cuboidal lattice. However, it becomes
trivial overall when the platelets are randomly ori-
entated. High aspect ratio of platelets is desired
for better stiffening effect. In addition, the effect
of a soft thin layer simulating partial bonding con-
dition between the particles and matrix material is
studied. In Section 5, conclusions are drawn.

2 Experiments

Scanning Electron Microscopy (SEM) was used
to examine the expanded and undispersed
graphite platelets. Samples were placed on alu-
minum sample studs using double sided carbon
tape. To avoid electron charging and ensure qual-
ity imaging SEM samples were sputter coated
with gold prior to observation. Dispersed graphite
in epoxy was examined using a transmission light
microscope (Fisher Scientific Micromaster I) of
microtomed sections.

A Nicomp 380 Submicron Particle Size Analyzer
was used to measure the sizes of the undispersed
graphite platelets. The instrument uses Dynamic
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Light Scattering (DLS), also known as the Pho-
ton Correlation Spectroscopy (PCS), to obtain the
particle size distribution for samples with parti-
cles that can range from 1 nm to 5 μm. According
to the manufacturer, the proprietary Nicomp anal-
ysis algorithm is able to analyze complex multi-
modal distributions with the industrial highest res-
olution and reproducibility available. It is an ab-
solute measurement, where knowledge of compo-
sition of the suspended particles is not required.
Graphite platelets were dispersed in distilled wa-
ter and methyl alcohol solution at a 50:50 ratio.
The solution was then diluted with more water-
alcohol solution so that the solution had only
a slight gray tint, but yet transparent. The di-
luted graphite solution in a glass tube was placed
into the particle size analyzer sample cell. Re-
sults were plotted using the Nicomp 380 Analyzer
module.

The early work by Wong and coworkers (Zheng
et al., 2002; Zheng and Wong, 2003; Zheng et al.,
2004; Wong et al., 2004, 2005; Wong and Yang,
2005; Wong et al., 2006) focused on the chem-
ical treatments required to expand and exfoliate
graphite sublayers (plates or stacks of graphene
planes) in generating nanoscale fillers. It was
found that the percolation threshold for electri-
cal conductivity was markedly reduced with acid
treatment as a function of acid treatment time.
Natural graphite materials provide good electri-
cal conductivity (106 S/m at ambient temperature)
and layered structure with a c-axis lattice con-
stant, which indicates interplanar spacing, of 0.34
nm (Cao et al., 1996) when expanded. Using a
proper design of acid treatment, graphite sublay-
ers could be greatly expanded. Figure 1a shows
original, untreated graphite flakes under the scan-
ning electron microscope (SEM). After acid treat-
ment, the electron beam focuses on the nanoscale
feature of the sheet edge of graphite platelet, as
shown in Figure 1b. Evidently, the graphitic
domains have been drastically reduced in thick-
ness, from several micrometers to 100 nanome-
ters and less. Note that Figure 1a shows the
well-known expanded graphite morphology that
is undispersed. The structures produced as shown
in Figure 1 can be ground to smaller platelets us-

ing ball milling (Wong et al., 2006) or homoge-
nizer.

Graphite platelet edge 

A thick stack of 

unexpanded graphite 

(b)

(a)

Figure 1: (a) SEM photomicrograph of a natu-
ral flake graphite; (b) enlarged nanoscale feature
(∼100 nm): sheet edge.

Figure 2 shows the platelet size distributions plot-
ted by the Nicomp 380 Submicron Particle Size
Analyzer after a ball milling process. The parti-
cle sizing uses DLS and works by first measur-
ing the scattered light intensity at one angle. The
intensity of light scattered in a particular direc-
tion by dispersed particles tends to periodically
change with time. These fluctuations in the in-
tensity vs. time profile are caused by the con-
stant changing of particle positions brought on by
the Brownian motion. DLS instruments obtain,
from the intensity vs. time profile, a correlation
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function. This exponentially decaying correla-
tion function is analyzed for characteristic decay
times, which are related to the diffusion coeffi-
cients and then by the Stokes-Einstein equation,
to the particle radius. The DLS approach is able
to identify particles ranging from 1 nm to 5 mi-
crons reliably and reproducibly. It is also better
than other laser light scattering techniques avail-
able. It is noted that two major distributionsoccur.
This is attributed to two contributing factors: (1)
there exist two dimensions (edge thickness and
platelet width) being targeted in the analyzer and
(2) the distribution of submicron-sized particles in
addition to nanoscale particles. It is clear that the
edge thickness dimension is in the range of 100
nm while the platelet width is over 400 nm. The
size distribution is generally consistent with the
platelet shape as examined by microscopic tech-
niques. The modeling dimensions reported here-
with are aligned with the experimental observa-
tion we made after ball milling.
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Figure 2: Bimodal distribution of micron-sized
and nano-sized dimensions of nanoplatelets and
their agglomerates.

The platelet dispersion in epoxy without ball
milling but with homogenizing sonication was
also examined. Figure 3 illustrates the dispersion
of homogenized graphite flakes in epoxy resins.
The dispersion of graphite platelets in thermoset-
ting polymers appears uniform. The optimization
in dispersion uniformity and mechanical proper-
ties can be further enhanced by other experimen-
tal techniques such as chaotic mixing (Sau and

Jana, 2004) and surface treatment using UV/O3

(Li et al., 2005) in our future work.

Dispersed graphite 

platelets

100 μm

Figure 3: Optical micrograph of uniformly dis-
persed graphite platelets following sonication in
an epoxy coating.

3 Defect Green’s Function Method

Polymer nanocomposites reinforced by exfoli-
ated nanoclay platelets and CNT were modeled
by other investigators in recent years (Wu et
al., 2004; Zhu and Narh, 2004; Fornes and
Paul, 2003; Thostenson and Chou, 2003). The
challenges for modeling polymer nanocomposites
generally include: (a) characterization of molec-
ular structure of the nanoscale fillers; (b) predic-
tion of effective mechanical properties; (c) iden-
tification of optimized nanoscale configurations;
(d) prediction of bulk mechanical properties of
the composites; (e) modeling of the interfaces be-
tween nanoscale fillers and the matrix material;
and (f) development of the models that bridge the
hierarchy of length scales. In this paper, a novel
micromechanical model is developed for estimate
of the overall elastic property of graphite platelet-
reinforced epoxy nanocomposite. The graphite
platelets are assumed to be dilute and modeled
as point-like inhomogeneous inclusions perfectly
bonded to the matrix. The defect GF recently de-
veloped by Yang and Tewary (2004) and Yang
(2004) is employed to solve the stress and strain
fields and hence predict the overall elastic prop-
erty of the composite. The method takes into ac-
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count the effect of particle interaction. It is capa-
ble of dealing with arbitrary particles, including
interfacial damage, point defects, etc., which may
play an important role in determining the overall
elastic property of nanocomposites with a large
surface-to-volume ratio.

Nanoscale Graphite Platelets

Figure 4: Schematic of a representative volume
element (RVE) filled with and surrounded by par-
ticles.

In the modeling effort, two systems are consid-
ered: (a) a reference matrix, and (b) a compos-
ite material with embedded inhomogeneous par-
ticles. The composite material is schematically
shown in Figure 4. The GF of the matrix in the
absence of particles is termed as the reference GF,
GGG. The GF of the composite system is termed
as the defect GF, GGG∗. Yang and Tewary (2004)
showed that these two GFs can be related through
the continuum Dyson’s equation. In the case of
inhomogeneous particles, it is given by

G∗
pi(XXX , xxx) = Gpi(XXX , xxx)+

∑
n

∫
Dn

G∗
pk, j(XXX , xxx′)ΔCjkst(xxx′)Gsi,t(xxx′,xxx)dV(xxx′),

(1)

where XXX and xxx are the source and field points, re-
spectively, Dn is the subdomain of the nth parti-
cle, and ΔCCC(n)(≡ CCC0 −CCC(n)) is the difference of
elastic constants between the nth particle and the

matrix material. CCC0 and CCC(n) are the elastic stiff-
ness matrices of the matrix and the nth particle,
respectively. Let us impose identical remote load-
ing upon the reference and the defect systems. By
multiplying the loading on both sides of Equation
(1) and differentiating the resulting displacement,
one may derive the following equation:

εpq(XXX) = ε∞
pq +∑

n

1
2

∫
Dn

(
G∗

pg,hq(XXX, x)+

G∗
qg,hp(XXX , x)

)
ΔC(n)

ghst(xxx)ε∞
st dV(xxx), (2)

which relates the strain field εεε in the defect sys-
tem to the strain field εεε∞ in the reference sys-
tem. The (infinitesimal) strains εεε are related to
displacement uuu by εpq ≡ 1

2 (up,q +uq,p). Since the
reference system is homogeneous, εεε∞ is uniform.
It may be worthwhile mentioning that there may
be eigenstrain/eigenstress in the particles due to
thermal residual stress and/or nonlinear deforma-
tion. However, its addition must not alter the over-
all elastic stiffness of the composite material un-
der the small-strain condition and hence it is not
considered here.

The overall elastic property of the composite is
evaluated by averaging the stress and strain fields
over a RVE containing a sufficiently large number
of particles, as shown in Figure 4. It is supposedly
surrounded by a sufficiently large number of par-
ticles as well. The effective strain is defined to be
the volume average of strain within the RVE,

〈
εpq

〉
= ε∞

pq +
1
V

∫
V
∑
n

1
2

∫
Dn

(
G∗

pg,hq(XXX , x)+

G∗
qg,hp(XXX , x)

)
ΔC(n)

ghst(xxx)ε∞
st dV (xxx)dV(XXX), (3)

with

〈
εpq

〉
=

1
V

∫
V

εpqdV (4)

where V is the volume of the RVE. By applying
the divergence theorem, Equation (3) is rewritten
as

〈
εpq

〉
= ε∞

pq +
1
V

∫
S
∑
n

1
2

∫
Dn

(
G∗

pg,h(XXX, x)nnnq(XXX)+

G∗
qg,h(XXX , x)np(XXX)

)
ΔC(n)

ghst(xxx)ε∞
st dV (xxx)dS(XXX), (5)
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where S is the RVE surface, and nnn is the outward
normal vector at a point on S. Assuming that XXX (a
point on the RVE surface) is remote to all particles
and that these particles are remote to each other,
the above equation can be reduced as

〈
εpq

〉
= ε∞

pq +∑
n

I∗(n)
pqgh

∫
Dn

s(n)
ghk jΔC(n)

jkstε
∞
st dV , (6)

with

I∗(n)
pqgh =

1
V

∫
S

1
2

(
G∗(−n)

pg,h (XXX , x(n))nq(XXX)+

G∗(−n)
qg,h (XXX , x(n))np(XXX)

)
dS(XXX), (7)

where xxx(n) is the location of the nth particle, given
in the average sense, e.g., the centroid of the par-
ticle, G∗(−n)

pg,hq (XXX , x(n)) is the less-defect GF in the

presence of all particles but the nth one, and s(n)
ghk j

is a tensor transforming the field at point xxx before
and after the insertion of the nth particle. The ten-
sor s(n)

ghk j satisfies the following equation,

s(n)
ghil(xxx) = δgiδhl+∫

Dn

s(n)
gh jk(xxx

′)ΔC(n)
jkst(xxx

′)G(
si,ltxxx

′,xxx)dV(xxx′). (8)

The less-defect GF G∗(−n)
pg,h (XXX, x(n)) satisfies the

following equation,

G∗(−m)
pi,l (XXX , xxx(m)) = Gpi,l(XXX , xxx(m))+

∑
n �=m

G∗(−n)
pg,h (XXX , xxx(n))T (n)

ghstG
(
si,ltxxx

(n),xxx(m)), (9)

with

T (n)
ghst =

∫
Dn

s(n)
gh jkΔC(n)

jkstdV . (10)

Given GGG, these equations can be solved to find
s(n)

ghk j and G∗(−n)
pg,h (XXX , x(n)) (Yang, 2004).

The effective stress is evaluated by averaging the
traction over the RVE surface S in each axis (in-
stead of by averaging the stress field over the RVE
volume). The present definition of effective stress
is consistent with how the stress tensor is typi-
cally defined over an infinitesimal material ele-
ment. It quantifies the amount of forces transmit-
ted through the element surfaces. Similarly to the

above, by assuming that all the particles are re-
mote to S as well as remote to each other, the ef-
fective stress may be derived from Equation (2)
as

〈
σpq

〉
= C0

pqstε∞
st

+C0
pquv ∑

n
J∗(n)

uvgh

∫
Dn

s(n)
ghk jΔC(n)

jkstε
∞
st dV , (11)

with

〈
σpq

〉
=

1
2Sp

∫
S

np(XXX)nr(XXX)σrq(XXX)dS(XXX)

(no summation over p), (12)

C0
pquvJ

∗(n)
uvgh =

1
2Sp

∫
S

np(XXX)nr(XXX)C0
rquvG

∗(−n)
ug,hv (XXX ,xxx(n))dS(XXX)

(no summation over p), (13)

where Sp is the projected area of the RVE in the

plane normal to thepth axis, and G∗(−n)
pg,hq (XXX , x(n))

can be obtained by differentiating Equation (9)
and solving the resulting equation. The RVE is
chosen such that there is no particle exposed on
its surface S. Consequently, the matrix stiffness
CCC0 can be applied to evaluate the traction over the
entire RVE surface S.

The overall elastic stiffness of the
RVE/composite, Cpqp′q′ is defined by

d
〈
σpq

〉
= Cpqp′q′d

〈
εp′q′

〉
, (14)

where d
〈
εp′q′

〉
and d

〈
σpq

〉
are increments of the

effective strain and the effective stress, respec-
tively. Since the system is linear, Cpqp′q′ is a con-
stant. Based on Equations (6) and (11), an incre-
ment of remote straining, dε∞

st , would result in

d
〈
εp′q′

〉
= dε∞

p′q′ +∑
n

I∗(n)
p′q′ghT (n)

ghstdε∞
st , (15)

d
〈
σpq

〉
=C0

pqstdε∞
st +C0

pquv ∑
n

J∗(n)
uvghT (n)

ghstdε∞
st . (16)

Finally, by realizing the fact that dε∞
st is arbitrary,

the above three equations yield the overall stiff-
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ness as

Cpqp′q′ =
(

C0
pqst +C0

pquv ∑
n

J∗(n)
uvghT (n)

ghst

)

·
(

δp′sδq′t +∑
n

I∗(n)
p′q′ghT (n)

ghst

)−1

. (17)

The above tensors, I∗ and J∗, which are integrals
of the less-defect GF, contain the effect of long-
range interaction between particles. The tensor,
T describes the short-range effect of local shape
and elastic properties of a particle, equivalent to
the Eshelby’s tensor. If the defect GF in Equa-
tions (7) and (13) are replaced by the reference
GF, GGG, the formulation is reduced to the classical
Eshelby’s method (Eshelby, 1961; Mura, 1987),
where the effect of particle interaction is ignored.
It may also be reduced to the case of pair-particle
interaction (Moshovidis and Mura, 1975; Yin and
Sun, 2004), triple-particle interaction, etc., simi-
lar to the treatment of interaction between atoms
by using pair and many-body potentials.

4 Analytical Results and Discussion

Given the experimental dimensions observed for
NGPs in polymer, Equation (17) is applied to
evaluate the overall elastic property of NGP
nanocomposites. The polymeric matrix is epoxy,
which is assumed to be isotropic and linearly elas-
tic with Young’s modulus E equal to 2.6 GPa
and Poisson’s ratio ν equal to 0.35. The graphite
platelets are assumed to be disk-like. The diame-
ter and thickness are set to be 400 nm and 100 nm,
respectively, according to the experimental mea-
surements as shown in Figures 1b and 2. Other
aspect ratios will also be simulated for compari-
son. The c-axis of the graphite sheet is normal to
the disk plane. The linear elastic constants of the
transversely isotropic graphite platelets (Kelly,
1981) are given by C11 = 1060 GPa, C12 = 180
GPa, C13 = 15 GPa, C33 = 36.5 GPa, and C44 =
2.25 GPa, with x3 taken to be along the c-axis.
The particles are stiffer in all directions than the
matrix.

First the present defect GF method is verified in
the case of a regular lattice of particles where the
full-field solution is available. A simulation is

carried out with a total of 729 graphite platelets.
The platelets are distributed on a 9 × 9 × 9 sim-
ple cubic lattice. Their c-axes are all orientated
along one of the base axes of the cubic lattice, e.g.
(001). First, the overall elastic constants are eval-
uated on a RVE of various numbers of particles
around the central one of the cubic lattice, from
1 × 1 × 1 to 5 × 5 × 5. The results are nearly
invariant with sampling volume size, as may be
expected in the case of periodic, uniformly ori-
entated particles. The composite overall is of
the tetrahedral anisotropy, holding six indepen-
dent elastic constants. Then, the overall elastic
constants are evaluated with various lattice spac-
ings, i.e. various volume fractions. The results are
plotted against volume fraction f in Figure 5. In
addition, the equivalent problem of a unit cell of
one particle is solved numerically by using a BE
method (Brebbia et al., 1984). The effective stiff-
ness over the unit cell is obtained under a fixed
displacement boundary condition prescribed ac-
cording to the strain field of one nonzero compo-
nent (meanwhile the other components are equal
to zero). The results as well as the predictions
by the classical Eshelby’s method are included in
Figure 5 for comparison. The Eshelby’s method
considers no particle interaction effect at all in
evaluating the overall property.

From Figure 5, it is seen that the prediction by
the present defect GF method matches very well
with the full-field solution by the numerical BE
method for volume fraction f within about 10 %.
The BE solution fully takes into account the ef-
fect of particle interaction and finite-size. Beyond
10 % of volume fraction, the two predictions start
to deviate from one another. While the BE nu-
merical model is trustworthy, the present defect
GF model seems to predict inaccurately, espe-
cially, on the elastic constant C12 at the large vol-
ume fractions. A careful examination shows that
when a graphite platelet is placed in the matrix
under a remote straining ε11 with all other com-
ponents equal to zero, it tends to suppress that
component of straining due to its much higher
stiffness in that direction than the matrix but to
induce some positive straining in the transverse
directions at the location of particle. This effect
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Figure 5 
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Figure 5: Variation of elastic constants with vol-
ume fraction f for composite of platelets uni-
formly (001)-orientated and distributed on a regu-
lar cubic lattice. The dashed lines indicate the so-
lution of the present defect GF method. The solid
lines with symbols indicate the solution of the nu-
merical BE method. The dotted lines indicate the
solution by the classical Eshelby’s method.

is well balanced by the Poisson’s effect in the
surrounding matrix material at the small volume
fractions. When the volume fraction increases,
this effect grows and becomes eventually out of
control due to the assumption of point-like parti-
cles. This phenomenon appears as well at volume
fraction of about 45 % in the Eshelby’s model pre-
diction. Second, the Eshelby’s method predicts an
overall elastic stiffness systematically lower than
the true value. The difference increases dramat-
ically with increasing volume fraction when the
effect of particle interaction intensifies. There-
fore, the present defect GF model is validated for
small volume fractions within 10 % in the case
of disks of diameter-to-thickness ratio equal to
4 and distributed on a cubic lattice. This num-
ber varies with aspect ratio and arrangement of
particles. Hopefully, if the finite-size effect of
neighboring particles can be taken into account,
the present method based on defect GF can im-
prove to predict well the overall elastic property
at higher volume fractions.

The present method employing defect GF takes
into account the effect of particle interaction on
the overall composite behavior. It enables us to
simulate a composite system with various parti-

cle patterns and to examine the effects. To show
the effect of particle distribution and orientation,
the previous model system is modified by uni-
formly re-orientating the graphite platelets into
the (111) direction of the lattice. It is equivalent to
change the previous simple cubic lattice system to
a BCC one where the graphite platelets are more
loosely packed in the graphite basal plane. The
overall elastic constants are evaluated and trans-
formed in the coordinate system with z-axis along
the particle c-axis. The results are plotted with
the previous ones in Figure 6. It is shown that
the re-orientation of particles leads to a remark-
able change in the dominant elastic constant, i.e.,
C11 (=C22), in the basal plane. It is understood as
a result of particle interaction effect because the
disk-like particles now are more loosely arranged
with longer distance in the basal plane than pre-
viously, which is the strongest stiffening direction
by the graphite platelets. Therefore, the particle
arrangement, including both special distribution
and orientation, may play a significant role in de-
termining the overall elastic property due to the
effect of particle interaction in graphite platelet
composites.
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Figure 6: Variation of elastic constants with vol-
ume fraction f for composite of platelets uni-
formly (111)-orientated and distributed on a regu-
lar cubic lattice, compared to the results from Fig-
ure 5.

To further show the effect of particle arrange-
ment, a random system of graphite platelets is
simulated. The platelets are randomly distributed
as well as randomly orientated, both with equal
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probability in the space. The overall elastic prop-
erty is found to converge with increasing sam-
pling volume size. It is (nearly) isotropic as ex-
pected. The results, obtained with a RVE of 729
platelets windowed in the middle of a volume of
2197 platelets, are shown in Figure 7. The cor-
responding results taking into account no effect
of particle interaction are also shown in the figure
for comparison. It is seen that the effect of parti-
cle interaction is trivial in this case. Previously it
has been shown that the graphite platelets interact
strongly with each other when they are aligned in
their c-axis and on top of one another. The effect
decreases when either condition is altered. There-
fore, in the case of randomly distributed and ran-
domly orientated platelets, the effect of particle
interaction in total disappears.
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Figure 7: Variation of elastic constants with vol-
ume fraction f for composite of platelets ran-
domly orientated and randomly distributed. The
solids lines indicate the solution of the present de-
fect GF method. The dashed lines indicate the so-
lution of the classical Eshelby’s method.

It has been well understood that the aspect ratio
of particles/fibers plays a significant role in deter-
mining the overall property of composites (Mura,
1987). To show this effect quantitatively in the
case of graphite platelets, a couple of simulations
are run with different aspect ratios. The previous
simulation is repeated with platelets of radius-to-
thickness ratio equal to 4:1 and 6:1. Since the
material overall is isotropic, the Young’s modulus
and Poisson’s ratio are used instead in the follow-
ing discussion. The results together with that of

the previous case are plotted in Figure 8. It is seen
that the Poisson’s ratio does not change much with
aspect ratio of particles while the Young’s mod-
ulus increases. By increasing the platelet aspect
ratio, the stiffening effect would be very much en-
hanced, nearly linearly.
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Figure 8: Variation of Young’s modulus and Pois-
son’s ratio with volume fraction f for composite
of randomly orientated and randomly distributed
platelets of various aspect ratios.

The interfacial condition between particles and
matrix material is important in transferring load
and thus affects the overall property of compos-
ites (Liu et al., 2005). This is even more im-
portant than ever in developing nanocomposites
due to its large surface-to-volume ratio. Another
simulation is done to show how the stiffness of
a thin layer of interphase material between par-
ticles and matrix plays a role in determining the
overall behavior of composite. A thin layer 10
nm thick is wrapped around the graphite platelets,
simulating a transition zone between the particles
and the bulk matrix material. It is assumed that
imperfect bonding may exist that causes a softer
interphase in average. For Young’s modulus of
the interphase equal to 1, 0.5, 0.2 and 0.1 of that
of the bulk matrix, the overall elastic constants
of composite with randomly distributed and ran-
domly orientated particles are calculated and plot-
ted in Figure 9. It is seen that the stiffening effect
of graphite platelets quickly drops and diminishes
when the “bonding” layer softens. Note that the
simulation was done under tensile loading. If the
loading is compressive, closing of the soft layer
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needs to be considered, which would significantly
change the results. It may be worth mentioning
that a cohesive zone model may be applied to the
thin layer to simulate progressive damage around
the particles. In the present formulation, it may be
done with interaction effect taken into account in
a large system of particles. This may facilitate a
way of investigating how the particle patterns de-
termine the overall composite toughness as well
as various intrinsic length scales involved in the
multiscale damage process. It would be impossi-
ble without taking into account the particle inter-
action effect.

0

1

2

3

4

0 0.05 0.1

1
0.5
0.2
0.1

E

ν

Modulus ratio of coating 

layer to matrix = 

Volume fraction f

E
 (

G
P

a)
 a

n
d

 ν

Figure 9: Variation of Young’s modulus E and
Poisson’s ratio ν with volume fraction f for com-
posite of randomly orientated and randomly dis-
tributed platelets coated with a layer of various
ratios of modulus to the bulk matrix.

5 Conclusions

A novel micromechanics model has been devel-
oped to estimate the overall elastic property of
particle-reinforced composites with effect of par-
ticle interaction taken into account. This is done
by employing the defect GF in the presence of all
particles. The particles are assumed to be point-
like. Thus, the model is applicable to the case
of small volume fractions of particles (within 10
%). In particular the method has been applied
to examine the nanoscale graphite platelets epoxy
composites. It is a novel material system that may
lead to various important applications. The par-
ticles are modeled as disk-like. First of all, the

present model is verified with a comparison of its
prediction with the full-field solution in the case
of a regular lattice of particles. The comparison
demonstrates that it is a considerable improve-
ment over the classical Eshelby’s method employ-
ing the regular GF and hence neglecting/ignoring
the effect of particle interaction. Then, a number
of simulations are carried out to examine the ef-
fects of various parameters, including particle dis-
tribution, orientation, platelet aspect ratio, and a
bonding layer. It is found that the effect of particle
arrangement is in general significant due to the in-
teraction of particles. The particle interaction ef-
fect is the strongest in the case when the graphite
platelets are orientated uniformly and stacked one
above another. However, when the platelets are
randomly orientated, the overall particle interac-
tion effect diminishes. The effect of platelet as-
pect ratio is significant. Finally, a soft bonding
layer is inserted to simulate a partial bonding con-
dition, between particles and matrix material. It
plays a significant role in determining the over-
all elastic property of the composite. The present
study establishes a framework for modeling parti-
cle interaction in composites. One extension in
progress is to model particles undergoing dam-
age with interaction. Also the study provides in-
sight and guidance to experimental investigations
of nanoscale graphite platelets composites. It will
be cross-examined by optimized materials pro-
cessing in the future work.
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