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FDMFS for Diffusion Equation with Unsteady Forcing Function

S.P. Hu1 , D.L. Young2 and C.M. Fan1

Abstract: In this paper, a novel numerical
scheme called (FDMFS), which combines the fi-
nite difference method (FDM) and the method
of fundamental solutions (MFS), is proposed to
simulate the nonhomogeneous diffusion problem
with an unsteady forcing function. Most mesh-
less methods are confined to the investigations of
nonhomogeneous diffusion equations with steady
forcing functions due to the difficulty to find an
unsteady particular solution. Therefore, we pro-
posed a FDM with Cartesian grid to handle the
unsteady nonhomogeneous term of the equations.
The numerical solution in FDMFS is decomposed
into a particular solution and a homogeneous so-
lution. The particular solution is constructed us-
ing the FDM in an artificial regular domain which
contains the real irregular domain without bound-
ary conditions, and the homogeneous solution can
be obtained by the time-space unification MFS
in the irregular domain with boundary conditions.
Besides, the Cartesian grid for particular solution
is very simple to generate automatically. Our pa-
per is the first time to propose an algorithm to
solve nonhomogeneous diffusion equations with
unsteady forcing functions using MFS to solve
homogeneous solutions and FDM to calculate the
particular solutions. Numerical experiments are
presented for 2D problems in regular and irregu-
lar domains to show the high performance of this
proposed scheme. Moreover, the stabilities of ex-
plicit and implicit FDM for particular solution are
analyzed. Numerical studies suggest that the pro-
posed FDMFS can speed up the simulation and
save the CPU time and memory storage substan-
tially.
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1 Introduction

The diffusion equations are very important sub-
jects for sciences and engineering and usually
applied to describe the problems of heat trans-
fer, pollution transports, chemical processes, etc.
Some external input of energy is represented in
the form of a forcing function by the nonhomoge-
neous term. Classical numerical methods, such
as FDM, finite element method (FEM) and fi-
nite volume method (FVM), had been extensively
adopted to simulate the diffusion equations. How-
ever, all of them are mesh-dependent methods
which need mesh generation. The FDM needs the
coordinate transformations to treat irregular do-
main problems. The associated bookkeeping of
the elements and nodes is also cumbersome and
expensive in the CPU time and computer mem-
ory for the FEM and FVM. Recently, there are a
lot of researchers developed the simpler meshless
or meshfree methods to solve the diffusion equa-
tions.

Meshless numerical method is a new developed
tool for solving irregular domain and homoge-
neous problems. As the name implies, the mesh-
less methods only require nodes for boundary and
initial conditions instead of mesh. The MFS,
also known as F-Treffz method or singularity
method was originally presented by Kupradze and
Aleksidze (1964). In previous studies, the MFS
was applied widely to simulate a lot of physical
problems, for example the Helmholtz equations
[Chen, Fan, Young, Murugesan and Tsai (2005),
Young and Ruan (2005), Chen, Chen and Kao
(2006)]; potential problems [Liu, Nishimura and
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Yao (2005), Young, Chen, Chen and Kao (2007)];
Stokes flows [Tsai, Young and Cheng (2002),
Young, Chiu, Fan, Tsai and Lin (2006), Young,
Jane, Fan, Murugesan and Tsai (2006)] and diffu-
sion problems [Young, Tsai and Fan (2004), Hu,
Fan, Chen and Young (2005)].

There are a lot of researches on meshless meth-
ods for diffusion problems, such as radial ba-
sis functions (RBFs) collocation method or the
Kansa’s method [Kansa (1990)]; indirect ra-
dial basis function network (IRBFN) method
[Mai-Cao and Tran-Cong (2005)]; meshless lo-
cal Petrov-Galerkin (MLPG) method [Lin and
Atluri (2000), Sladek, Sladek and Tanaka (2005)]
and the MFS [Chen, Golberg and Hon (1998a),
Young, Tsai, Murugesan, Fan and Chen (2004),
Cho, Golberg, Muleshkov and Li (2004)]. MFS
utilizes the fundamental solutions of PDEs and
can reduce one dimensionality of the problem.
Therefore, it is very popular and powerful in the
realm of computational sciences.

For solving homogeneous diffusion equations by
MFS, it is usual to employ the finite difference
discretization or Laplace transform to deal with
the time derivative. Golberg and Chen (1998)
used the MFS based on modified Helmholtz fun-
damental solution to simulate the nonhomoge-
neous term via associating with the dual reci-
procity method (DRM). The Chebyshev interpo-
lation functions [Golberg, Muleshkov, Chen and
Cheng (2003)] are also suggested to approxi-
mate the right-hand side of modified Helmholtz
equations for diffusion problems. Instead of us-
ing the finite difference scheme or the Laplace
transform to deal with the time derivative term
in diffusion equation, the time-dependent diffu-
sion fundamental solution can be used directly by
the MFS for the homogeneous diffusion solutions
[Young, Tsai, Murugesan, Fan and Chen (2004),
Hon and Wei (2005)].

In fact, the MFS is only effective at solving
homogeneous PDEs. In order to extend the
MFS to solve nonhomogeneous PDEs, we have
to combine MFS with other discretized numer-
ical schemes such as stated in the followings.
When the PDEs have steady forcing functions,
Burgess and Mahaherin (1987) constructed the

particular solutions by direct numerical domain
integration. Besides, Chen (1995) and Chen,
Golberg and Hon (1998b) employed the quasi-
Monte Carlo (QMC) quadrature as numerical in-
tegration to find the particular solutions. Gol-
berg (1995) suggested the MFS to solve Pois-
son’s equation by approximating the forcing func-
tion using thin plate splines (TPSs). There-
after the MFS is extended to nonhomogeneous
PDEs with steady forcing function commonly
by combining the DRM where the steady forc-
ing function is approximated by a finite series of
RBFs [Balakrishnan and Ramachandran (2001),
Alves and Chen (2005), Wang, Qin and Kang
(2005)]. Young, Tsai and Fan (2004) extended
the time-dependent diffusion MFS-DRM model
to solve multidimensional nonhomogeneous dif-
fusion problems and they also gave a compari-
son between their proposed scheme and Golberg
and Chen’s researches (1998). Recently, Young,
Chen, Fan and Tsai (2006) proposed another nu-
merical scheme (MFS-MPS-EEM), which com-
bines the MFS, the method of particular solu-
tions (MPS) and eigenfunction expansion method
(EEM), to simulate the diffusion equation. Unfor-
tunately, all of these methods can not be applied
directly for nonhomogeneous diffusion problems
with time-dependent forcing functions.

As far as the unsteady force functions are con-
cerned there is still no literature available. We
thereby in this paper first propose the time-
dependent MFS for nonhomogeneous diffusion
equation and combined with FDM to take care un-
steady forcing functions. The solution of a non-
homogeneous PDE can be split into the summa-
tion of a particular solution and a homogeneous
solution by the linear superposition theory. We
will use the FDM to solve the particular solu-
tion in an artificial Cartesian grid which contains
the physical domain without considering bound-
ary conditions; and the time-dependent diffusion
MFS to solve the homogeneous solutions with
boundary conditions in physical domain. In other
words, the FDM is performed in an artificial reg-
ular domain to handle the unsteady forcing func-
tion; in the meantime, the homogeneous diffu-
sion equation can be analyzed by the MFS free
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from mesh generation and numerical quadrature
in an irregular physical domain. Those are the
strong features respectively for both the meshless
MFS and mesh FDM. The concept is similar to
the research of Chantasiriwan (2004) who com-
bined the FDM and MFS to solve the steady Pois-
son problem. If we directly use the FDM to solve
the nonhomogeneous diffusion equations we have
to face a difficulty to handle the irregular domain
problem which is not a trivial task as far as co-
ordinate transform is concerned, see the Section
4.2 and appendix for details. In other words we
have made use of both the advantages of mesh-
less method to solve the homogeneous solution
and the discretized FDM to calculate the particu-
lar solution in order to deal with the more compli-
cated nonhomogeneous diffusion equations with
unsteady forcing functions.

The aim of this study is to demonstrate the ca-
pability of the proposed FDMFS for nonhomo-
geneous diffusion equation with unsteady forcing
functions. The governing equations and numeri-
cal methods will be explained in sections 2 and 3,
respectively. We also give a detailed discussion
on processing for forcing function for irregular-
domain problem in section 3.2. The numerical
results and conclusions will be provided sepa-
rately in sections 4 and 5. There are six problems
adopted in the paper and the numerical results are
compared well with the analytical solutions.

2 Governing Equations

The diffusion equation with unsteady forcing
function over the problem domain Ω with bound-
ary Γ can be written as follows:

∂T (�x, t)
∂ t

= k∇2T (�x, t)+F(�x, t) (1)

where �x is the general spatial coordinate, t is
the time coordinate, k is the diffusion coeffi-
cient, F(�x, t) is the unsteady forcing function, and
T (�x, t) is the scalar variable to be determined. The
initial condition of the problem is

T (�x, t0) = f1(�x) in Ω (2)

with the Dirichlet and Neumann boundary condi-
tions.

T (�x, t) = f2(�x, t) in Γ1 (3)

∂
∂n

T (�x, t) = f3(�x, t) in Γ2 (4)

where Ω is the problem domain, Γ1 + Γ2 is equal
to the boundary Γ, n is the outward normal direc-
tion and f1(�x), f2(�x, t), f3(�x, t) are known func-
tions. t0 is the initial time.

Through the MPSMFS [Young, Tsai and Fan
(2004)] or the MFS-MPS-EEM models [Young,
Chen, Fan and Tsai (2006)], the diffusion equa-
tion with steady forcing function can be solved di-
rectly. However, both of this two time-dependent
MFS schemes can not simulate the diffusion
equation with unsteady forcing function. There-
fore, we propose the FDMFS to analyze the diffu-
sion problem with unsteady forcing function.

3 Numerical Method

3.1 Basic numerical scheme

The solution T (�x, t) can be written as the linear
combination of a homogeneous solution Th(�x, t)
and a particular solution Tp(�x, t) shown as fol-
lows:

T (�x, t) = Th(�x, t)+Tp(�x, t) (5)

The particular solution is obtained from the non-
homogeneous equation as shown below:

∂Tp(�x, t)
∂ t

−k∇2Tp(�x, t) = F(�x, t) (6)

No boundary condition has to be satisfied and ini-
tial condition can be set as an arbitrary function;
the homogeneous solution is obtained from the
following homogeneous equation:

∂Th(�x, t)
∂ t

−k∇2Th(�x, t) = 0 (7)

with the modified initial condition

Th(�x, t0) = f1(�x)−Tp(�x, t0) in Ω (8)
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and the modified Dirichlet and Neumann bound-
ary conditions.

Th(�x, t) = f2(�x, t)−Tp(�x, t) in Γ1 (9)

∂
∂n

Th(�x, t) = f3(�x, t)− ∂
∂n

Tp(�x, t) in Γ2 (10)

The numerical procedures start from the particu-
lar solution. First of all, as shown in Fig. 1 (a)-(b),
we need to distribute a Cartesian grid (ΩC) which
has to contain the problem domain (Ω).

   (a)                            (b)                             (c) 

Figure 1: (a) Problem domain (Ω), (b) Carte-
sian mesh for FDM (ΩC), (c) node distribution for
MFS

Next, we can use the fully explicit FDM to simu-
late the particular solution by Eq. (6).

T n+1
p (�x, t) = T n

p (�x, t)+Δt·[
k

(
T n

p,i+1, j(�x, t)−2Tn
p,i, j(�x, t)+T n

p,i−1, j(�x, t)
(Δx)2

)]

+Δt·[
k

(
T n

p,i, j+1(�x, t)−2Tn
p,i, j(�x, t)+T n

p,i, j−1(�x, t)

(Δy)2

)]

+Δt (Fn(�x, t))
(11)

where Δt = Δtp is the time step size for particular
solution, Δx is the mesh size in x direction and Δy
is the mesh size in y direction. Indeed, the implicit
FDM also can be adopted to obtain the particular

solution

T n+1
p (�x, t)−Δt·{
k

(
T n+1

p,i+1, j(�x, t)−2Tn+1
p,i, j (�x, t)+T n+1

p,i−1, j(�x, t)
(Δx)2

)}

−Δt·{
k

(
T n+1

p,i, j+1(�x, t)−2Tn+1
p,i, j (�x, t)+T n+1

p,i, j−1(�x, t)

(Δy)2

)}

= T n
p (�x, t)+Δt (Fn(�x, t))

(12)

The initial condition of the particular solution
is assumed to be an arbitrary function and the
boundary condition of the particular solutions is
not required. By the advantages of explicit FDM,
the particular solution can be obtained in a very
short time and no matrix solver is needed.

After the particular solution is obtained, the mesh-
less MFS is considered to solve the homogenous
solution. The homogeneous solution satisfies the
linear diffusion equations, Eq. (7), and the mod-
ified initial and boundary conditions, Eqs. (8)-
(10). In the MFS, the diffusion solution can be
represented as the linear combination of the diffu-
sion fundamental solutions with different intensi-
ties. The fundamental solution of the linear diffu-
sion equation is governed by

∂G
(
�x, t;�ξ ,τ

)
∂ t

= k∇2G
(
�x, t;�ξ ,τ

)
+δ

(
�x−�ξ

)
δ (t −τ) (13)

where G
(
�x, t;�ξ ,τ

)
is the fundamental solution of

the diffusion equation. �x = (x,y) and �ξ = (ξ ,η)
are the spatial coordinates of the field point and
source point, as t and τ are the temporal coordi-
nates of the field point and source point. δ () is
the well-known Dirac delta function.

By using the integral transform theory of the
above equation, the free-space Green’s function
or the fundamental solution of the diffusion equa-
tion can be obtained [Kythe (1996)]:

G
(
�x, t;�ξ ,τ

)
=

e−
(|�x−�ξ|)2

4k(t−τ)

(4πk(t−τ))d/2
H(t −τ) (14)



FDMFS for Diffusion Equation with Unsteady Forcing Function 5

where d is the spatial dimension and equal to two
in this study. H () is the Heaviside step function.

Based on the time-dependent MFS, the homoge-
neous solution can be expressed as the linear com-
bination of the diffusion fundamental solutions

Th(�x, t) =
Nh

∑
j=1

α jG
(
�x, t;�ξ j,τ j

)
(15)

where Nh is the number of source points. In
our numerical experiments, the numbers of field
points and source points are chosen as the same,
N = Nh, so that a square matrix equation can be
formed. α j are the unknown coefficients which
denote the source intensities of the corresponding
fundamental solutions.

The initial and boundary conditions of homoge-
neous solution are modified by the particular so-
lution:

Th(�x, t0) =
T (�x, t0)−Tp(�x, t0) = f1(�x)−Tp(�x, t0) in Ω (16)

Th(�x, t) =
T (�x, t)−Tp(�x, t) = f2(�x, t)−Tp(�x, t) in Γ1 (17)

∂
∂n

Th(�x, t) =
∂
∂n

T (�x, t)− ∂
∂n

Tp(�x, t)

= f3(�x, t)− ∂
∂n

Tp(�x, t) in Γ2

(18)

Applying the concept of the MFS, we obtain a ma-
trix equation as follows:

⎡
⎢⎢⎢⎣

G
(
�x, t0;�ξ j,τ j

)
G
(
�x, t;�ξ j,τ j

)
∂

∂n G
(
�x, t;�ξ j,τ j

)
⎤
⎥⎥⎥⎦{α j

}
=

⎧⎨
⎩

f1(�x)−Tp(�x, t0)
f2(�x, t)−Tp(�x, t)

f3(�x, t)− ∂
∂n Tp(�x, t)

⎫⎬
⎭ (19)

Solving the above matrix equation, the coeffi-
cients α j are obtained, and then the homogeneous
solutions can be acquired by Eq. (15). Finally, the
numerical solutions can be obtained by summing

(a)                                 

 (b) 

Figure 2: Schematic diagram of source and field
points for the MFS based on diffusion fundamen-
tal solution (a) in a time-space coordinate (b) in a
space coordinate

up the particular and homogeneous solutions of
Eq. (5).

As shown in Fig. 1 (c), the meshless MFS re-
quires only field points for boundary and initial
conditions without mesh. The locations of field
and source points of MFS are illustrated as Fig. 2,
and the field and source points are located at the
same spatial positions but different time levels. In
Fig. 2 (a), the parameter, λ , is chosen as a func-
tion of the maximum distance of the spatial do-
main (R) and it can be expressed as λ (Δt) = μR.
μ is an adaptive parameter which can be chosen
by the trial and error process and is equal to 0.5 in
this study. More detailed discussions on this for-
mula can be found in a previous research [Young,
Fan, Hu and Atluri (2007)].
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C
i

2

C
e

2

I.C.:  ( , ) 0

( , )
( , ) ( , )

( , )
( , )

p

p
p

p
p

T x t

x

T x t
k T x t F x t

t

x

T x t
k T x t

t

=

∈Ω
∂

= ∇ +
∂

∈Ω
∂

= ∇
∂

C C
i e

2

I.C.:  ( , ) 0

 or  

( , )
( , ) ( , )

p

p
p

T x t

x x

T x t
k T x t F x t

t

=

∈Ω ∈Ω
∂

= ∇ +
∂

C
i

2

C
e

1

I.C.:  ( , ) 0

( , )
( , ) ( , )

( , ) ( , )               

p

p
p

n n
p p

T x t

x

T x t
k T x t F x t

t

x

T x t T x t+

=

∈Ω
∂

= ∇ +
∂

∈Ω

=

M1

CΩ C
iΩ

M2 M3

= +C
eΩΩ

Figure 4: The illustration of three suggestions (M1, M2 and M3) for dealing with the particular solutions

Although the time increment of FDM scheme Δtp

should satisfy the stability condition, the homo-
geneous solution does not need to be solved at
each time step. In other words, the time inter-
val for the MFS can use a large one. In this pa-
per, we adopt Δth = 10Δtp, Δth = 100Δtp or Δth =
1000Δtp. Therefore, the CPU time of the simu-
lation can be shortened. In order to demonstrate
the idea of FDMFS more simply and clearly, the
illustration of the proposed numerical procedures

is shown as Fig. 3.

3.2 Manipulation in irregular domain

The present numerical scheme can solve problems
with irregular domain directly. For solving partic-
ular solutions by FDM, we set a simple uniform
Cartesian grid (ΩC) which covers the whole prob-
lem domain (Ω) as a computational domain for
particular solution. The Cartesian grid (ΩC) can
be divided into two parts. One (ΩC

i ) is the interior
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of the problem domain (Ω). The other one (ΩC
e )

is exterior of the problem domain (Ω).The partic-
ular solution at each point is governed by Eq. (6).
However, we will encounter a problem that the
forcing function on ΩC

e is unknown in most prac-
tical problems. Therefore, we proposed three dif-
ferent schemes illustrated as Fig. 4 to overcome
this issue. The accuracy and efficiency of these
methods are compared with each other in section
4.2.

3.2.1 Method 1 (M1)

Provided that the forcing function of the problem
is spatial-independent or the forcing function on
ΩC

e is known, the governing equation, Eq. (6),
can be applied without problem. In other words,
we use the same FDM to discretize the nonhomo-
geneous diffusion equation to obtain the particular
solution on both ΩC

e and ΩC
i . The FDM scheme is

the same as the FDM for a nonhomogeneous dif-
fusion problem with a rectangular domain.

The idea of this method is simple and no ex-
tra computer code is required. This method has
high accuracy due to no unreasonable assump-
tions. The virtual Cartesian grid for particular so-
lution can be constructed automatically by known
maximum and minimum value on each coordi-
nate. This work will not affect the efficiency of
the numerical scheme. However, this method is
only suitable for the case which the forcing func-
tion is spatial-independent or the forcing function
on ΩC

e is known. Otherwise, we need to consider
M2 or M3.

3.2.2 Method 2 (M2)

We can assume that this forcing function exte-
rior the problem domain is equal to a constant,
zero or a known physical value on the boundary.
Therefore, the forcing function will appear a dis-
continuity near the boundary. Due to the nature
of the FDM, the discontinuity will produce errors
near the boundary and pollute the numerical re-
sults. Hence, we interpolate the forcing functions
on the exterior domain (ΩC

e ) in order to smooth
the forcing function on the Cartesian grid (ΩC). If
the forcing function on the computational domain
for particular solution (ΩC) is discontinuous, nu-

merical error would be produced. To put it simply
enough, the basic idea of M2 is to create a smooth
forcing function to make sure that the numerical
scheme for particular solution can be applied suc-
cessfully.

In most practical problem, the problem domain is
usually irregular and the forcing function outside
the problem domain is unknown definitely. The
M2 is developed to deal with this kind of prob-
lems. The unknown forcing function on ΩC

e is
set as a constant. The constant value can be de-
fined through the system program and interpola-
tions can be adopted to smooth the forcing func-
tion. This work needs to add computer code and
set a rule to avoid discontinuous forcing function
on the computational domain (ΩC) for the particu-
lar solution. The scheme would increase the CPU
time of the simulation. However, this approach
conforms to the practice problem mostly.

3.2.3 Method 3 (M3)

In M3, we divide the numerical scheme into two
parts. One is for nodes on the interior domain
(ΩC

i ). The particular solution is obtained by the
original governing equation, Eq. (6). The other
one is for nodes on the exterior domain (ΩC

e ). The
particular solution is equal to previous step with-
out calculating on ΩC

e . We do not care the par-
ticular solution on the non-real domain (ΩC

e ) in
this method. However, some numerical error is
caused by the inaccurate particular solution on the
boundary. This method can speed up the numer-
ical scheme due to not calculating the particular
solution on the non-real domain (ΩC

e ).

After the brief introduction of the three methods,
we can expect that the M1 has high accuracy; M2
is the most useful one; M3 can obtain the rough
numerical results in a short time. The detailed
comparisons of these three methods will be per-
formed in the following section.

4 Numerical Experiments and Results

To illustrate the performance of the numerical
scheme, we performed several numerical exper-
iments listed in Tab. 1. There are six testing
case studies in this paper. The former three cases
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are regular domain problems. In case 1, we con-
sidered a diffusion problem with a steady forc-
ing function. Case 2 shows the convergence of
this proposed numerical scheme and case 3 ap-
plies this method to simulate problems of k=10,
1 and 0.01. To show the advantages of mesh-
less method, the last three cases are irregular do-
main problems. All irregular domain problems
adopted these three different schemes mentioned
on section 3.2 for particular solution and the de-
tailed discussions of the three different methods
are drawn based on the numerical results. The ef-
ficiency of FDM and FDMFS are compared with
each other in problems of regular and irregular do-
mains.

4.1 Regular domains

4.1.1 Case 1: Steady forcing function

In this case, the forcing function only depends on
the spatial coordinates.

F(�x, t) = −6x+6y+2
12

(20)

The analytical solution is

T (�x, t) =2 [cos(πx)+ sin(πy)]e−kπ2t

+
x3 +y3 +x2 +y

12
+10

(21)

Here, the diffusion coefficient k is equal to 1. Fig-
ure 5 (a) shows the time variations of the max-
imum and minimum temperature in the square
domain with the explicit FDMFS (with 11× 11
Cartesian grid for particular solution, 121 MFS
nodes, time step size for particular solution Δtp =
10−3 and time step size for homogeneous solution
Δth = 10−2). This simple case can be solved by
conventional FDM and another meshless method,
MPSMFS [Young, Tsai and Fan (2004)]. Figure
5 (b) depicts the maximum relative errors of five
different numerical methods. According to those
results, all of those methods can obtain reason-
able solutions. No matter explicit or fully im-
plicit FDMFS scheme, the numerical solutions
have high accuracy and the error distributions are
very small. The efficiency of the five numerical
methods is listed in Tab. 2. Explicit FDM can give

numerical solution in a very short time; neverthe-
less, the MPSMFS spends a lot of time on solving
full matrix. In addition, the meshless MPSMFS
only can be used to solve PDEs with steady forc-
ing function. Therefore it can not be applied for
other unsteady-forcing-function cases. Although
the meshless FDMFS also needs to solve the full
matrix, the domain decomposition technique can
overcome this issue. This simple case proves that
the present numerical scheme can solve the non-
homogeneous diffusion problem successfully and
accurately.
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Figure 5: Time history of (a) maximum and mini-
mum values of T and (b) maximum relative error
for case 1
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Table 1: All numerical experiments

Domain Case Forcing function ( , )F x t

Forcing

function 

depends 

on

Issue 

Regular domains 

Case 1 ( )( , ) 6 6 2 12F x t x y= − + + yx, * The efficiency of  

different numerical 

schemes  

Case 2 ( )( , ) 2  Cos 2  F x t tπ π= t * The convergence of    

FDMFS

* Performance of the 

proposed scheme for 

problem with 

Neumann B.C.  
0 0.5 1

0

0.5

1

Case 3 ( )( ) ( )
( ) ( )

2 2

2 2

( , ) 2 1 1 Cos 2  

              2 2  Sin 2  

F x t x y t

k x y t

π π

π

= − −

− + −

tyx ,, * Tests on different 

diffusion coefficient 

Irregular domains 

Case 4 ( )( , ) 2  Cos 2  F x t tπ π= t

0 0.5 1
0

0.5

1

Case 5 ( )( ) ( )
( ) ( )

2 2

2 2

( , ) 2 1 1 Cos 2  

              2 2  Sin 2  

F x t x y t

k x y t

π π

π

= − −

− + −

tyx ,,

0.25 0.5 0.75
0

0.5

1
Case 6 ( )( ) ( )

( ) ( )

2 2

2 2

( , ) 2 1 1 Cos 2  

              2 2  Sin 2  

F x t x y t

k x y t

π π

π

= − −

− + −

tyx ,,

* Tests on the proposed 

suggestions 

(M1,M2,M3) for 

problems in  irregular 

domain  

Table 2: The comparisons for CPU time and required memory for different methods for case 1

Method
CPU

Time(sec)
Memory(KB)

Explicit FDM 0.3 1480

Implicit FDM 1.5 1576

Explicit FDMFS 1.7 1756

Implicit FDMFS 2.5 1824

MPSMFS 8.3 2344

Node Δt

N=11x11

Np=11x11 Nh=11x11

Δt=10
-3

Δtp=10
-3 Δth=10

-2
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Figure 6: Time history of (a) maximum and mini-
mum values of T and (b) maximum relative error
for case 2

4.1.2 Case 2: forcing function depends on t and
Neumann boundary condition is consid-
ered

We next consider the forcing function, which is
an oscillation function and dependent on t, as fol-
lows:

F(�x, t) = 2π cos(2πt) (22)

The analytical solution is

T (�x, t) = (sin(πx)+ sin(πy))e−kπ2t +sin(2πt)+5

(23)

Figure 6 (a) shows the maximum and minimum
solution by explicit FDMFS (with 11×11 Carte-
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Figure 7: Time history of maximum relative error
(a) with different time increments for particular
solution (b) with different time increments for ho-
mogeneous solution (c) with different number of
MFS nodes for case 2
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Figure 8: Time history of maximum relative error
for problem with Neumann boundary condition at
y=1 for case 2
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(a) t=0.10                     (b) t=0.25 

Figure 9: Contour maps of temperature for case 3
for k=1

sian grid for particular solution, 121 MFS nodes,
Δtp = 10−3 and Δth = 10−2). The numerical so-
lutions are in good agreement with analytical so-
lutions. In Fig. 6 (b), the maximum relative er-
rors of T by five different numerical schemes are
plotted. The MPSMFS is applied to this problem
by assuming the quasi-steady particular solutions.
Therefore the numerical solutions of MPSMFS
have a greater error shown in Fig. 6 (b). Yet
the results using the FDMFS are quite good, with
less than 0.03% relative error in both explicit and
fully implicit schemes. In Tab. 3, we list the CPU
time and memory cost of these simulations. As
the table shown, conventional FDM has high ef-
ficiency in regular domain problem. The advan-

tage of the FDMFS can be demonstrated in irreg-
ular domain problem, because it does not need the
coordinate transformation which the conventional
FDM needs.

The consistency and stability analysis of FDMFS
is also included in this study. Figures 7 (a)-(c) de-
pict the error histogram for different time incre-
ments and different numbers of points, in which
smaller time increments and more points will give
better results as expected. In Fig. 7 (a) we use
fixed time increments for homogeneous solutions
and change the time increments for particular so-
lutions. As the figure shows, the smaller time in-
crements induce better numerical solutions. We
can obtain the same conclusions in Fig. 7 (b) with
a changed time increments for homogeneous so-
lutions and fixed the time increments for partic-
ular solutions. Lastly the Fig. 7 (c) shows that
the number of MFS nodes will not influence the
accuracy of the proposed scheme in the studying
range.

A problem with Neumann boundary condition
is also considered to test the proposed scheme.
Let the boundary condition at y=1 is a Neumann
boundary condition:

∂T (x, t)
∂n

= −πe−kπ2t . (24)

The relative error is shown in Fig. 8 in which the
error is less than 0.05%.

4.1.3 Case 3: forcing function depends on x, y, t

In case 3, we consider the forcing function is de-
pendent on x,y, and t. The analytical solution is
shown as follows:

T (�x, t) =10+(sin(πx)+ sin(πy))e−kπ2t

+(1+x)(1−x)(1+y)(1−y) sin(2πt)
(25)

and the forcing function is

F(�x, t) =2π
(
x2 −1

)(
y2 −1

)
cos(2πt)

−2k
(
x2 +y2 −2

)
sin(2πt)

(26)

The numerical results (black solid line) at t=0.1
and t= 0.25 shown in Fig. 9 agree well with the
analytical solutions (red dashed line).



12 Copyright c© 2008 Tech Science Press CMES, vol.24, no.1, pp.1-20, 2008

Table 3: The comparisons for CPU time and required memory for different methods for case 2

Method
CPU

Time(sec)
Memory(KB)

Explicit FDM 0.6 1480

Implicit FDM 2 1576

Explicit FDMFS 1.7 1756

Implicit FDMFS 2.4 1824

MPSMFS 8.3 2344

Np=11x11 Nh=11x11

Node Δt

N=11x11 Δt=10
-3

Δtp=10
-3 Δth=10

-2

We use this case to test the proposed meshless
scheme for problems with different diffusion co-
efficient. Figure 10 (a) shows the time history of
maximum and minimum temperature by explicit
FDMFS for k=10, 1, and 0.01. As we can see,
the results generally are in good agreement with
analytical solutions. When k=10, the phenomena
of diffusion process change quickly, as a result a
smaller time increment is needed. The maximum
relative error shown in Fig. 10 (b) is less than
0.05%. This case shows the present scheme is
easy to handle problems with different diffusion
coefficients.

4.2 Irregular domains

To illustrate the advantages of the proposed mesh-
less scheme, there are three cases tested with ir-
regular domains. Cases 4 and 5 demonstrate the
application of FDMFS for circular domains. A
twin circle domain problem is adopted in case 6.
Each case has comparisons of required CPU time
between the FDM and the FDMFS. Because the
conventional FDM can not directly solve irregular
domain problem, we adopt the boundary-fitted co-
ordinate (BFC) transformation method [Lee and
Leap (1994)] for the coordinate transformation.
Brief descriptions of BFC transformation that we
used are given in Appendix.

4.2.1 Case 4: forcing function depends on t

In this case, we consider the problem of a circular
domain and the same analytical solution as case
2. Figure 11 (a) plots the time history of numer-
ical results at (x,y)=(0.5,0.5) by M1, M2 and M3
and the numerical results show good agreement
with analytical solutions. The maximum relative
errors of the numerical results by explicit and im-
plicit FDMFS schemes with different methods for
handling of irregular domain are shown in Fig. 11

(b). As we expect, the accuracy of these results
is almost in the same order and M1 has the best
numerical results due to the spatial-independent
forcing function is considered. Table 4 lists the
number of nodes and time increment in the test
and shows the comparisons of CPU time and
memory between FDM and FDMFS. As the ta-
ble shows, the coordinate transformation process
needs 30 seconds of CPU time and 16,120 KB for
memory storage. On the contrary, the FDMFS
scheme obtains the numerical results in a very
short time and saves a lot of memory, especially
for explicit FDMFS scheme.

4.2.2 Case 5: forcing function depends on x, y, t

The analytical solution of case 5 is the same as
case 3. The forcing function is dependent on x,y
and t. Figure 12 (a) plots the time history of
numerical results at (x,y)=(0.5,0.5) by M1, M2
and M3 and shows good agreement with analyt-
ical solutions. Fig. 12 (b) shows that the max-
imum relative error of M1, M2 and M3 are all
less than 0.1%. The contour maps are shown
in Fig. 13 for k=1 at t=0.1 ant t=0.25. These
three methods for handling the irregular domain
problem can produce reasonable results for arbi-
trary domain problems. Moreover, the compar-
isons of CPU time and memory between FDM
and FDMFS are also listed on Tab. 5. In this
case, the FDMFS needs finer mesh for particu-
lar solutions, because using the Cartesian grid for
particular solutions needs more nodes to fit the
unsteady and space-dependent forcing function.
On the other hand, since the governing equation
has been transformed and the extra coefficients
of each term have been stored, the FDM scheme
consumes a lot memory not only in mapping pro-
cess but also in computing process. In contrast,
the FDMFS is implemented without mapping pro-
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Figure 10(a): Time history of (a) maximum and minimum temperatures and (b) maximum relative error for
case 3 when k=10, k=1 and k=0.01
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Figure 10(b): Time history of (a) maximum and minimum temperatures and (b) maximum relative error for
case 3 when k=10, k=1 and k=0.01
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Figure 11: Time history of (a) temperature at (0.5, 0.5) and (b) maximum relative error for case 4 for k=1
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Figure 12: Time history of (a) temperature at (0.5, 0.5) and (b) maximum relative error for case 5 for k=1

Time M1 M2 M3 

t=0.10

t=0.25

Figure 13: Contour maps of temperature for case 5
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Figure 15: Contour maps of temperature for case 6 using different methods for particular solution
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Table 4: The comparisons for CPU time and required memory for different methods for case 4

CPU Time(sec)

total time

(after mapping

process)

Memory(KB)

total cost

(after mapping

process)

45.0 (14.3) 16120 (8952)

52.3 (21.6) 16120 (9120)

M1 7.7 1924

M2 15.7 1924

M3 7.3 1924

M1 58.1 2148

M2 73.5 2160

M3 24.6 2132

Δtp=10
-4

Δtp=10
-3

Method

Δt=10
-3

Δt=10
-4

FDMFS

Explicit 

Implicit 

Explicit FDM

Implicit FDM

Np=41x41 Nh=144 Δth=10
-2

Node Δt

N=31x31

Table 5: The comparisons for CPU time and required memory for different methods for case 5

CPU Time(sec)

total time

(after mapping

process)

Memory(KB)

total cost

(after mapping

process)

173.1(142.33) 16148(9140)

M1 370.5 2064

M2 881.9 2064

M3 274.6 2064

Method

Explicit FDM

FDMFS Explicit Np=81x81 Nh=144 Δtp=10
-5 Δth=10

-2

Node Δt

N=31x31 Δt=10
-5

Table 6: The comparisons for CPU time and required memory for different methods for case 6

CPU Time(sec)

total time

(after mapping

process)

Memory(KB)

total cost

(after mapping

process)

1307.3 (1278.6) 13308 (7548)

M1 Np=41x81 176.8 1936

M2 Np=81x141 1531.5 2280

M3 Np=21x41 68.6 2160

Method Node Δt

Explicit FDM N=21x41 Δt=10
-6

FDMFS Explicit Nh=167 Δtp=10
-5 Δth=10

-2

cess, so it can save memory significantly.

4.2.3 Case 6: forcing function depends on x, y, t

The last case is to simulate a twin circle domain
problem. The analytical solution is chosen the
same as case 3 and k=1. The maximum relative
error is depicted in Fig. 14 and all of them are
less than 0.2%. Moreover, Fig. 15 shows the con-
tour maps via M1, M2 and M3 when t=0.10 and
t=0.25. From this figure, we find the M3 has some
error due to the discontinuity of the forcing func-
tion near the boundary. Furthermore, the compar-
isons of efficiency between FDM and FDMFS are
provided in Tab. 6. In this case, the FDM based on
BFC transformation uses a coarse mesh and a very
small time step (Δt = 10−6) such that the simula-
tion costs more CPU time. In addition, the mem-
ory storage for FDM scheme is still large. On the
other hand, the FDMFS based on M1 or M3 can

obtain the numerical results in a very short time
and require less memory. The FDMFS based on
M2 is more time-consuming and it requires a finer
Cartesian grid for particular solutions.

5 Conclusions

The nonhomogeneous diffusion equation with un-
steady forcing function is analyzed by the pro-
posed FDMFS which is the combination of the
conventional FDM using simple grid and the
meshless MFS. The solutions are assumed as the
combination of particular solutions and homoge-
neous solutions. The FDM is applied to solve
the particular solutions by a simple Cartesian
grid which covers the whole physical domain.
On the other hand, the homogeneous solution
which is governed by the linear diffusion equa-
tion is solved by time-dependent MFS. Finally,
the numerical solutions are obtained by summing
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the particular solutions and homogeneous solu-
tions. The present numerical scheme can solve the
nonhomogeneous diffusion equation with a time-
dependent forcing function successfully. In addi-
tion, the boundary conditions for particular solu-
tion are not required and the initial conditions for
particular solution can be assumed as an arbitrary
function in the present scheme.

The proposed numerical scheme, FDMFS, is
mainly aimed at diffusion problems with unsteady
forcing function and in irregular domain. Since
the forcing function is unknown outside the real
domain, we addressed three approaches to deal
with irregular domain problem for particular so-
lution. From the numerical tests, it shows that M1
has the highest accuracy, M2 is the most reason-
able method for the practical problems and M3
can get rough numerical solutions instantly. If the
unsteady forcing function is spatial-independent,
we recommend M1 for the particular solution.
Otherwise, M2 is another good numerical scheme
and commended to be applied.

In the present scheme, the particular solution over
the whole domain is satisfied by the nonhomo-
geneous equation. We only need to construct a
Cartesian grid covered the whole problem domain
and the Cartesian grid for particular solution is
very simple to generate. Besides, the MFS is free
from mesh generation and numerical quadrature.
Therefore the present scheme is very suitable and
easy to analyze the diffusion problem with irreg-
ular domains. The reason we suggest the FDM to
solve the particular solutions is that the scheme is
very simple comparing to other discretized meth-
ods found in the literature. In addition, if we adopt
the explicit FDM scheme, the matrix solver is
not needed and numerical scheme can be speeded
up. The numerical results are compared well with
the analytical solutions. For future works, the
FEM, differential quadrature (DQ) method also
can be considered to analyze the particular so-
lution in the proposed numerical scheme. The
combination of the proposed FDMFS and Euler-
Lagrangian method (ELM) to solve the nonhomo-
geneous advection-diffusion equation is expected
and will be carried out in the near future.

Acknowledgement: The National Science
Council of Taiwan is gratefully acknowledged
for providing financial supports to carry out
the present work under the grant No. NSC
95-2622-E-002-016-CC3 and No. NSC 95-2221-
E-002-406. It is greatly appreciated. A partial
financial support from CoreTech System is also
acknowledged.

References

Alves, C.J.S.; Chen, C.S. (2005): A new method
of fundamental solutions applied to nonhomoge-
neous elliptic problems. Adv Comput Math, vol.
23, pp. 125-142.

Balakrishnan, K.; Ramachandran, P.A. (2001):
Osculatory interpolation in the method of funda-
mental solution for nonlinear Poisson problems. J
Comput Physics, vol. 172, pp. 1-18.

Burgess, G.; Mahaherin, E. (1987): The fun-
damental collocation method applied to the non-
linear Poisson equation in 2 dimensions. Comput
Struct, vol. 27, pp. 763-767.

Chantasiriwan, S. (2004): Cartesian grid meth-
ods using radial basis functions for solving Pois-
son, Helmholtz, and diffusion-convection equa-
tions. Eng Anal Bound Elem, vol. 28, pp. 1417-
1425.

Chen, C.S. (1995): The method of fundamen-
tal solutions and the quasi-Monte Carlo method
for Poisson’s equation. In: H. Niederreiter
and P. Shuie (ed) Lecture Notes in Statistics106,
Springer, New York, pp. 158-167.

Chen, C.S.; Golberg, M.A.; Hon, Y.C. (1998a):
The method of fundamental solutions and quasi-
Monte Carlo method for diffusion equations. Int
J Numer Methods in Eng, vol. 43, pp. 1421-1436.

Chen, C.S.; Golberg, M.A.; Hon, Y.C. (1998b):
Numerical justification of the method of fun-
damental solutions and the quasi-Monte Carlo
method for Poisson-type equations. Eng Anal
Bound Elem, vol. 22, pp. 61-69.

Chen, C.W.; Fan, C.M.; Young, D.L.; Mu-
rugesan, K.; Tsai, C.C. (2005): Eigenanalysis
for membranes with stringers using the methods
of fundamental solutions and domain decomposi-



18 Copyright c© 2008 Tech Science Press CMES, vol.24, no.1, pp.1-20, 2008

tion. CMES: Computer Modeling in Engineering
& Sciences, vol. 8, pp. 29-44.

Chen, K.H.; Chen, J.T.; Kao, J.H. (2006): Reg-
ularized meshless method for solving acoustic
eigenproblem with multiply-connected domain.
CMES: Computer Modeling in Engineering &
Sciences, vol. 16, pp. 27-39.

Cho, H.A.; Golberg, M.A.; Muleshkov, A.S.;
Li, X. (2004): Trefftz methods for time dependent
partial differential equations. CMC: Computers
Materials & Continua, vol. 1, pp. 1-37.

Golberg, M.A. (1995): The method of funda-
mental solutions for Poisson’s equation. Eng Anal
Bound Elem, vol. 16, pp. 205-213.

Golberg, M.A.; Chen, C.S. (1998): The method
of fundamental solutions for Potential Helmholtz
and Diffusion Problems. Boundary integral
methods, Computational Mechanics Publications,
Boston, U.S.A., pp. 103-176.

Golberg, M.A.; Muleshkov, A.S.; Chen, C.S.;
Cheng, A.H.D. (2003): Polynomial particular so-
lutions for certain partial differential operators.
Numer Meth Part Differ Equ, vol. 19, pp. 112-
133.

Hon, Y.C.; Wei, T. (2005): The method of fun-
damental solutions for solving multidimensional
inverse heat conduction problems. CMES: Com-
puter Modeling in Engineering & Sciences, vol.
7, pp. 119-132.

Hu, S.P.; Fan, C.M.; Chen, C.W.; Young,
D.L. (2005): Method of fundamental solutions for
Stokes’ first and second problems. J Mech, vol.
21, pp. 25-31.

Kansa, E.J. (1990): Multiquadrics - a scat-
tered data approximation scheme with applica-
tions to computational fluid-dynamics. 2. solu-
tions to parabolic, hyperbolic and elliptic partial-
differential equations. Comput Math Appl, vol.
19, pp. 147-161.

Kupradze, V.D.; Aleksidze, M.A. (1964): The
method of functional equations for the approxi-
mate solution of certain boundary value problem.
USSR Comput Math Math Phys, vol. 4, pp. 82-
126.

Kythe P.K. (1996): Fundamental Solutions

for Differential Operators and Applications,
Birkhäuser, Boston.

Lee, K.K.; Leap, D.I. (1994): Application
of boundary-fitted coordinate transformations to
groundwater-flow modeling. Transp Porous Me-
dia, vol. 17, pp. 145-169.

Lin, H.; Atluri, S.N. (2000): Meshless local
Petrov-Galerkin (MLPG) method for convection-
diffusion problems. CMES: Computer Modeling
in Engineering & Sciences, vol. 1, pp. 45-60.

Liu, Y.J.; Nishimura, N.; Yao, Z.H. (2005): A
fast multipole accelerated method of fundamental
solutions for potential problems. Eng Anal Bound
Elem, vol. 29, pp. 1016-1024.

Mai-Cao, L.; Tran-Cong, T. (2005): A mesh-
less IRBFN-based method for transient problems.
CMES: Computer Modeling in Engineering &
Sciences, vol. 7, pp. 149-171.

Sladek, V.; Sladek, J.; Tanaka, M. (2005): Lo-
cal integral equations and two meshless polyno-
mial interpolations with application to potential
problems in non-homogeneous media. CMES:
Computer Modeling in Engineering & Sciences,
vol. 7, pp. 69-83.

Tsai, C.C.; Young, D.L.; Cheng, A.H.D.
(2002): Meshless BEM for three-dimensional
Stokes flows. CMES: Computer Modeling in En-
gineering & Sciences, vol. 3, pp. 117-128.

Wang, H.; Qin, Q.H.; Kang, Y.L. (2005): A new
meshless method for steady-state heat conduction
problems in anisotropic and inhomogeneous me-
dia. Arch Appl Mech, vol. 74, pp. 563-579.

Young, D.L.; Tsai, C.C.; Murugesan, K.; Fan,
C.M.; Chen, C.W. (2004): Time-dependent fun-
damental solutions for homogeneous diffusion
problems. Eng Anal Bound Elem, vol. 28, pp.
1463-1473.

Young, D.L.; Tsai, C.C.; Fan, C.M. (2004): Di-
rect approach to solve nonhomogeneous diffusion
problems using fundamental solutions and dual
reciprocity methods. J Chin Inst Eng, vol. 27,
pp. 597-609.

Young, D.L.; Ruan, J.W. (2005): Method of
fundamental solutions for scattering problems of
electromagnetic waves. CMES: Computer Mod-



FDMFS for Diffusion Equation with Unsteady Forcing Function 19

eling in Engineering & Sciences, vol. 7, pp. 223-
232.

Young, D.L.; Chen, C.W.; Fan, C.M.; Tsai,
C.C. (2006): The method of fundamental solu-
tions with eigenfunction expansion method for
nonhomogeneous diffusion equation. Numer
Methods Partial Differ Equ, vol. 22, pp. 1173-
1196.

Young, D.L.; Chiu, C.L.; Fan, C.M.; Tsai,
C.C.; Lin, Y.C. (2006): Method of fundamental
solutions for multidimensional Stokes equations
by the dual-potential formulation. Eur J Mech B-
Fluids, vol. 25, pp. 877-893.

Young, D.L.; Fan, C.M.; Hu, S.P.; Atluri,
S.N. (2007): The Eulerian-Lagrangian method
of fundamental solutions for two-dimensional un-
steady Burgers’ equations. Eng Anal Bound Elem
(doi:10.1016/j.camwa.2007.05.015).

Young, D.L.; Jane, S.J.; Fan, C.M.; Muruge-
san, K.; Tsai, C.C. (2006): The method of funda-
mental solutions for 2D and 3D Stokes problems.
J Comput Physics, vol. 211, pp. 1-8.

Young, D.L.; Chen, K.H.; Chen, J.T.; Kao, J.H.
(2007): A modified method of fundamental so-
lutions with sources on the boundary for solving
Laplace equations with circular and arbitrary do-
mains. CMES: Computer Modeling in Engineer-
ing and Sciences, vol. 19, pp. 197-221.

Appendix FDM based on Boundary-Fitted Co-
ordinate (BFC) Transformation for irregular
domain

In this paper, the FDM solutions of irregular phys-
ical domain problem are solved based on the BFC
transformation. In BFC system, the physical do-
main point (x,y) is correspondent with (X ,Y) and
X = X(x,y), Y =Y (x,y). The BFC transformation
generates the computational grid (X ,Y) by solv-
ing the following Poisson equation:

Xxx +Xyy = P(X ,Y) (27)

Yxx +Yyy = Q(X ,Y) (28)

where P and Q are terms which control the point
spacing on the interior of domain and can be as-
sumed as zero. Eqs. (27)–(28) are then trans-
formed to computational space by interchanging

the roles of the independent and dependent vari-
ables. This yields a system of two elliptic equa-
tions of the form

αxXX −2β xXY + γxYY = −J2 (PxX +QxY ) (29)

αyXX −2β yXY + γyYY = −J2 (PyX +QyY ) (30)

where

α = x2
Y +y2

Y (31)

β = xX xY +yX yY (32)

γ = x2
X +y2

X (33)

J =
∂ (x,y)
∂ (X ,Y)

= xX yY −xY yX (34)

By solving this system equation, the relation be-
tween (x,y) in Cartesian coordinate and (X ,Y)
in BFC system is obtained. The structure grid
(X ,Y) as Fig. 16 (a)-(b) can be used in computa-
tional process instead of the physical mesh (x,y)
as Fig. 17 (a)-(b) for numerical experiment case 4
to case 6.

                             (a)                                             (b) 

Figure 16: Computational domain and structure
grid for (a) case 4 and 5 (b) case 6

Moreover, the governing equation, Eq. (1), is
transferred as following:

∂T
∂ t

= k

[
1
J2 (αTXX −2β TXY + γTYY )+ pTX +qTY

]
+ F (35)

where α , β , γ , J are defined in Eqs. (31)-(34), and

p =− 1
J3 yY (αxXX −2bxXY +cxYY )

+
1
J3 xY (αyXX −2byXY +cyYY )

(36)



20 Copyright c© 2008 Tech Science Press CMES, vol.24, no.1, pp.1-20, 2008

                            (a)                                             (b) 

Figure 17: Physical domain and generated grid
for (a) case 4 and 5 (b) case 6

q =
1
J3 yX (αxXX −2bxXY +cxYY )

− 1
J3 xX (αyXX −2byXY +cyYY )

(37)

By discretizing the Eq. (35), the diffusion prob-
lem in irregular domain can be solved by FDM
scheme.


