
Copyright © 2008 Tech Science Press CMES, vol.23, no.3, pp.175-186, 2008

Modeling and Bending Vibration of the Blade of a Horizontal-Axis Wind
Power Turbine

Shueei-Muh Lin1, Sen-Yung Lee2 and Yu-Sheng Lin3

Abstract: The blade of a horizontal-axis wind
power turbine is modeled as a rotating beam with
pre-cone angles and setting angles. Based on the
Bernoulli-Euler beam theory, without considering
the axial extension deformation and the Corio-
lis forces effect, the governing differential equa-
tions for the bending vibration of the beam are
derived. It is pointed out that if the geometric and
the material properties of the beam are in poly-
nomial forms, then the exact solution for the sys-
tem can be obtained. Based on the frequency rela-
tions as revealed, without tedious numerical anal-
ysis, one can reach many general qualitative con-
clusions between the natural frequencies and the
physical parameters of the beams. The validity of
the conclusions is not limited in specialized do-
mains. Finally, the influences of the pre-cone an-
gle, the angular speed and the setting angle on the
natural frequencies of the beam are studied by the
proposed numerical method. The phenomenon of
divergence instability is also discussed.

Keyword: rotating beam, bending vibration,
pre-cone angle

0.0.1 Introduction

Due to the increasing demand on the clean en-
ergy, wind power turbines are widely installed
around the world. In the dynamic analysis of the
horizontal-axis wind power turbines (HAWTs)
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[Egglestion and Stoddard (1987)], the blade can
be modeled as a rotating non-uniform beam with
pre-cone angles and setting angles.

Rotating beams are of importance in many practi-
cal applications such as turbine blades, helicopter
rotor blades, airplane propellers, and robot ma-
nipulators. Such beams can also be presented as
elements of multi-body dynamic systems (Hus-
ton and Liu (2005)). The problems have been
studied for a long time. An interesting review of
the subject can be found in the papers by Leissa
(1981), Ramamurti and Balasubramanian (1984)
and Rosen (1991).

Based on the Bernoulli-Euler beam theory, the
governing characteristic differential equation for
bending vibrations of rotating non-uniform beams
is a fourth-order ordinary differential equation
with variable coefficients expressed in terms of
the flexural displacement [Lo et al. (1960)]. Carl-
son and Wang (1978) obtained an exact solu-
tion for the static bending of a rotating uniform
Bernoulli-Euler beam. Rao and Carnegie (1970)
and Hodges (1979) studied the steady response
of a rotating cantilever non-uniform Bernoulli-
Euler beam by using the Rayleigh-Ritz method.
Ko (1989) studied the flexural behavior of ro-
tating sandwich tapered beams with linearly dis-
tributed loads by using the finite difference tech-
nique. Hernried (1991) determined the in-plane
(lag) and out-of-plane (flap) dynamic deflections
of a flexible twisted non-uniform rotating blade
through a mode superposition approach. Lee and
Kuo (1992) and Lee and Lin (1994) provided the
exact power series solution for the vibration of
a rotating non-uniform beam. Recently, Vinod,
etc. (2007) used the spectrally formulated finite
element method to study the vibration and wave
propagation of rotating beams. Singh, etc. (2007)
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used Genetic Programming to generate the empir-
ical model of a finite element model for finding
the natural frequencies of rotating beams.

The influence of tip mass, angular speed , hub
radius, setting angle, taper ratio, pretwisted an-
gle, inclined angle, and elastic root restraints on
the natural frequencies of transverse vibrations of
a rotating beam were investigated by many in-
vestigators [Pnueli (1972); Hodges and Rutkow-
shi (1981); Wright, etc. (1982); Liu and Yeh
(1987); Storti and Aboelnaga (1987); Lee and
Kuo [(1991), (1992)]; Lee, etc. (2004); Lee and
Sheu (20071,2). Wave propagation characteris-
tics of rotating beams were studied by Vinod, etc
(2006). Some other relevant researches about the
rotating structures can be found in the works by
Thakkar and Ganguli (2004, 2007) and Leu and
Chen (2006).

From the existing literature, it can be found that
no analytical solution for the vibration of a rotat-
ing beam with pre-cone angle had been presented.
In addition, little attention has been focused on
the investigation of the mechanism of rotating in-
stability (divergence instability). In this paper, the
blade of a horizontal-axis wind turbine is modeled
as a rotating beam with pre-cone angles and set-
ting angles. For simplicity, the beam theory em-
ployed is the Bernoulli-Euler beam theory. The
extensional deformation and the Coriolis force ef-
fect are not considered. The beam considered is
doubly symmetric such that the centroidal axis
and the neutral axis are coincident. In addition,
the width of the beam is considerably greater than
the thickness of the beam. The analytical method
given by Lee and Lin (1994) will be used to study
the bending vibration of the beam system.

It is known that most of the numerical results can
only provide partial qualitative conclusions. The
conclusions are valid only in the specified do-
mains those numerical analysis were performed.
In addition, it requires tremendous computer cal-
culation. In this paper, several frequency rela-
tions those provide general qualitative relations
between the natural frequencies and the physical
parameters are to be revealed without numerical
analysis. Moreover, the influence of the coupling
effect of the pre-cone angle and the setting angle

and the angular speed on the natural frequencies
will be investigated. The phenomenon of diver-
gence instability will also be discussed.

1 Governing Equations and Boundary Con-
ditions

Consider the pure bending vibration of a rotating
Bernoulli-Euler beam, as shown in Figure 1. The
beam is elastically restrained and mounted with a
setting angle θ and a pre-cone angle φ on a hub
with radius rh. It rotates with constant angular
velocity Ω.

Figure 1: Geometry and coordinate system of a
rotating non-uniform beam with an elastically re-
strained root.

The displacement fields of the beam in the x, y,
and z-directions are

u = z
dw
dx

,

v = 0,

w = w(x, t),

(1)



Modeling and Bending Vibration of the Blade of a Horizontal-Axis Wind Power Turbine 177

where z is the lateral distance of a point to the cen-
troidal axis and t is the time variable. The velocity
vector of a point (x, y, z) in a beam is given by

�V =[
du
dt

+(z+w)Ωsinθ cosφ +yΩcosθ cosφ
]
�i

+[−(x+ rh +u)Ωcosθ cosφ−(z+w)Ωsinφ]�j

+
[

dw
dt

+yΩsinφ − (x+ rh +u)Ωsinθ cosφ
]
�k

(2)

and the kinetic energy T of the rotating beam can
be expressed as

T =
1
2

∫ L

0
ρA(�V ·�V)dx, (3)

where ρ , A and L are the mass per unit length, the
cross sectional area and the length of the beam,
respectively.

Based on the Bernoulli-Euler beam theory, only
the normal strain εx is considered. The nonlinear
strain-displacement relation yields

εx = −z
∂ 2w
∂x2 +

1
2

(
∂w
∂x

)2

. (4)

The potential energy U of the rotating beam is

U =
1
2

∫∫
Eεx

2dAdx (5)

where E is the Young’s modulus of the beam.

Application of Hamilton’s principle, without con-
sidering the Coriolis force, yields the following
governing differential equation:

∂ 2

∂x2

(
EI

∂ 2w
∂x2

)
− ∂

∂x

(
N

∂w
∂x

)

−ρA

(
wΩ2(sin2 θ cos2 φ + sin2 φ )− ∂ 2w

∂ t2

)
= 0

(6)

and the corresponding boundary conditions at x =
0:

−EI
∂ 2w
∂x2 +kθ

∂w
∂x

= 0, (7)

∂
∂x

(
EI

∂ 2w
∂x2

)
−N

∂w
∂x

+kT w = 0. (8)

and at x = L:

EI
∂ 2w
dx2 = 0, (9)

∂
∂x

(
EI

∂ 2w
∂x2

)
= 0. (10)

where I, kθ , kT are the area moment of iner-
tia, the rotational spring constant and the trans-
lational spring constant of the beam, respectively.
Here, N(x) is the centrifugally stiffened force N =
EA(dw/dx). The second term in equation (7) is a
nonlinear term induced from the nonlinear strain
displacement relation (4). The centrifugally stiff-
ened force N(x) is used to be considered as the
steady state normal force and is derived as

N(x) = Ω2 cos2 φ
∫ L

x
ρA(s+ rh)ds (11)

Consequently, the governing differential equation
(6) is reduced to a linear one. If the pre-cone an-
gle is zero, the N(x) will be the same as that of a
conventional rotating beam [Lee and Lin (1994)].
It can be observed that if the pre-cone angle is in-
creased, the axial centrifugal force decreases.

2 Solution Method

For time-harmonic vibration of a rotating beam
with angular frequency ω , one assumes

w(x, t) = w̃(x)eiωt (12)

In terms of the following dimensionless parame-
ters:

ξ =
x
L
, b(ξ ) =

E(x)I(x)
E(0)I(0)

, m(ξ ) =
ρ(x)A(x)
ρ(0)A(0)

,

n(ξ ) =
N(x)

ρ(x)A(x)Ω2L2 , Λ =

√
ρ(0)A(0)
E(0)I(0)

ωL2,

μ =
rh

L
, α =

√
ρ(0)A(0)
E(0)I(0)

ΩL2, W =
w̃
L

,

(13)

the governing characteristic differential equation
can be rewritten in the following dimensionless
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form:

d2

dξ 2

[
b(ξ )

d2W
dξ 2

]
− d

dξ

[
n(ξ )

dW
dξ

]
−m(ξ )

[
α2 (

sin2 θ cos2 φ + sin2 φ
)
+Λ2]W = 0.

(14)

Here, n(ξ ) = α2 cos2 φ
∫ 1

ξ m(μ + χ)dχ . The as-
sociated boundary conditions become at ξ = 0:

d
dξ

(
d2W
dξ 2

)
−n

dW
dξ

+βT W = 0, (15)

βθ
dW
dξ

− d2W
dξ 2 = 0. (16)

and at ξ = 1:

d2W
dξ 2 = 0, (17)

d
dξ

(
b

d2W
dξ 2

)
= 0. (18)

If the four linearly independent fundamental solu-
tions Vj(ξ ), j = 1, 2, 3, 4, of the governing char-
acteristic equations (14) are chosen such that they
satisfy the following normalization conditions at
the origin of the coordinate system:

⎡
⎢⎢⎣

V1 V2 V3 V4

V ′
1 V ′

2 V ′
3 V ′

4
V ′′

1 V ′′
2 V ′′

3 V ′′
4

V ′′′
1 V ′′′

2 V ′′′
3 V ′′′

4

⎤
⎥⎥⎦

ξ=0

=

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

(19)

where primes indicate differentiation with respect
to the dimensionless spatial variable ξ , then af-
ter substituting the homogeneous solution which
is a linear combination of the four fundamental
solutions into the four associated boundary con-
ditions, one obtains the frequency equation of the
system

The frequency equation is tabulated in the Ap-
pendix and the natural frequencies of the system
can be determined via the frequency equation.

The governing characteristic differential equation
of the system is a fourth-order differential equa-
tion with variable coefficients. In general, the

closed-form fundamental solutions of the differ-
ential equation are not available. However, if
the coefficients of the differential equation can be
expressed in polynomial forms, then the closed-
form power series solutions can be obtained by
following the algorithm developed by Lee and Lin
(1992).

3 Frequency Relations

The natural frequencies of the system can be
numerically determined by the method revealed
in the previous section and many other approxi-
mated methods such as the finite element method,
the finite difference method, the Galerkin method
and the dynamic stiffness method, .. etc.. How-
ever, most of the numerical results can only pro-
vide partial qualitative conclusions. The conclu-
sions are valid only in the specialized domains
those numerical analysis are performed. In addi-
tion, it requires tremendous computer calculation.
In this section, several qualitative relations are ex-
plored and many general qualitative conclusions
are revealed without numerical analysis.

3.1 Frequency relations for the systems with
different pre-cone angle rotational speed,
setting angle and natural frequency

Consider two dynamic systems with the same
physical parameters except the dimensionless ro-
tational speed α , the setting angle θ , the pre-cone
angle φ and the dimensionless natural frequency
Λi. Here Λi denotes the i−th dimensionless nat-
ural frequency. To specify two different systems,
subscripts “a” and “b” are added to the associated
physical parameters.

It is observed that if the following relations exist

α2
a cos2 φa = α2

b cos2 φb, (20)

α2
a

(
sin2 θa cos2 φa + sin2 φa

)
+Λ2

a,i

= α2
b

(
sin2 θb cos2 φb + sin2 φb

)
+Λ2

b,i, (21)

then the governing characteristic differential
equation (14) and the associated boundary con-
ditions (15-18) will be the same. Therefore the
fundamental solutions of the two systems will be
the same. It implies that
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a. If all the physical parameters of the system
“a”; are known and the dimensionless nat-
ural frequencies Λa,i of the system are de-
termined, then the dimensionless natural fre-
quencies Λb,i of the system “b” with physical
parameters, {αb, θb, φb}, satisfying the re-
lations (20-21) can be easily determined via
the relation (21).

The (i + j)-th dimensionless natural frequency
Λi+ j will satisfy the relation (21) as well

α2
a

(
sin2 θa cos2 φa + sin2 φa

)
+Λ2

a,i+ j

= α2
b

(
sin2 θb cos2 φb + sin2 φb

)
+Λ2

b,i+ j. (22)

Subtracting equation (21) from equation (22), one
has the following frequency relation

Λ2
a,i+ j −Λ2

a,i = Λ2
b,i+ j −Λ2

b,i. (23)

This relation shows that

b. The difference between the square of the two
dimensionless natural frequencies of two
systems those satisfy the relations (20-21)
are the same.

3.2 Frequency relations for the systems with
the same angular speed and pre-cone an-
gle

If two systems have the same angular speed and
pre-cone angle, then αa = αb = α , φa = φb = φ
and the relation (20) is satisfied. Relation (21) can
be rewritten as

Λ2
b,i = α2 cos2 φ

(
sin2 θa− sin2 θb

)
+Λ2

a,i. (24)

This relation reveals the following conclusions:

a. When the setting angle is less than 90°, the nat-
ural frequencies of a beam with constant angu-
lar speed and pre-cone angle will decrease as
the setting angle is increased.

b. The influence of the setting angle on the natu-
ral frequencies of a beam rotating at high speed
is greater than that of a beam rotating at low
speed.

c. The influence of the setting angle on the natu-
ral frequencies of a beam with small pre-cone
angle is greater than that of a beam with large
pre-cone angle.

d. The smaller the axial centrifugal factor
α2 cos2 φ is, the less influence of the setting
angle on the natural frequencies is.

e. For a non-rotating beam, the setting angle and
the pre-cone angle will have no influence on
the natural frequencies of the beam.

f. When the pre-cone angle φ = 90°, the setting
angle will have no influence on the natural fre-
quencies of the beam.

g. For a beam with constant axial centrifugal fac-
tor α2 cos2 φ , the influence of the setting angle
on the natural frequency of higher mode is less
significant than that of lower mode.

For a beam with constant angular speed and pre-
cone angle φa = φb = 0, the frequency relation
(21) is reduced to

α2 sin2 θa +Λ2
a,i = α2 sin2 θb +Λ2

b,i (25)

It is exactly the same as that revealed by Lee and
Sheu (2007).

4 Numerical Results

To illustrate the previous analysis and investi-
gate the influence of the parameters on the natu-
ral frequencies of the rotating non-uniform beam,
several numerical results are presented and dis-
cussed. In the following numerical analysis, the
material properties and the width of the beam are
assumed to be constants and the depth of the beam
varied linearly with the taper ratio λ . Therefore,
the dimensionless mass per unit length and the
dimensionless bending rigidity of the beam are
m = (1 + λ ξ ) and b = (1 + λ ξ )3, respectively.
When λ = 0, it represents a uniform beam.

In Table 1, the first four natural frequencies of a
cantilevered non-uniform beam determined by the
method proposed in this paper are compared with
those in the existing literatures. It shows that the
results are very consistent.
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0
.1ξ
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=
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=
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Λ
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Λ
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=
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=
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a

=
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a
=

0°,θ
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=
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a
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=
5
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Λ
a
,2

=
25
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α
2cos 2φ

α
b

φ
b

θ
b

Λ
b
,1

Λ
b
,1

Λ
b
,2

Λ
b
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In Table 2, the first two natural frequencies of the
system “b” are determined by employing the pro-
posed numerical method in section 3 and the re-
lations (20-21), respectively. It can be found that
the results are consistent.

In Table 3, the frequency relation (23) is illus-
trated.

Figure 2 shows the influence of the pre-cone an-
gle on the first natural frequency of a rotating can-
tilevered beam with setting angle being zero and
different angular speeds. One can observe that:

a. The pre-cone angle will have no influence on
the natural frequencies of a non-rotating beam.
This conclusion is obvious. Since when the
angular speed is zero, the pre-cone angle will
also disappeared from the coefficients of the
governing characteristic differential equation
(14).

b. The natural frequencies of a clamped rotating
beam will decrease when the pre-cone angle is
increased.

c. When the pre-cone angle is small, the natural
frequencies of a beam with high angular speed
are greater than those with low angular speed.
However, when the pre-cone angle is greater
than the critical value, the natural frequency of
the beam with high angular speed will be less
than those with low angular speed.

d. The influence of the pre-cone angle on the nat-
ural frequencies of a beam with high angular
speed is greater than that of the beam with low
angular speed.

e. The phenomenon of divergence instability that
revealed by Lee and Kuo (1991) will happen
as the angular speed and the pre-cone angle are
greater than certain values.

It can be observed that the last 2nd term,
−ρAΩ2(sin2 θ cos2 φ + sin2 φ )w in the governing
differential equation (6) acts as a negative spring.
As the value of ρAΩ2(sin2 θ cos2 φ + sin2 φ )w is
increased, the natural frequencies of the system
will decrease. The decreasing rate of the natural
frequencies for the beam with high angular speed

will be greater than that with low angular speed as
the pre-cone angle is increased. This explains the
last three phenomena revealed in Figure 2.

In Figure 3, the influence of the pre-cone angle on
the first three natural frequencies of a cantilevered
rotating beam with setting angle being zero and
different angular speeds is shown. It can be found
that the critical pre-cone angle, as mentioned in
the conclusion “c” in Figure 2, associated with
higher vibration mode will be greater than that as-
sociated with lower vibration mode.

In Figure 4, the influence of the pre-cone angle,
the setting angle and the angular speed on the
first natural frequency of a cantilevered beam is
shown. It can be found that:

a. When the pre-cone angle or the setting angle
is increased, the associated natural frequencies
decrease.

b. When the setting angle is the same, the influ-
ence of the pre-cone angle on the natural fre-
quencies of a beam with high angular speed is
greater than that of the beam with low angular
speed. This conclusion is an extension of the
conclusion “d” revealed in Figure 2, in which
the setting angle of the beam is zero.

c. When the pre-cone angle φ = 90°, there is no
axial centrifugal force. In this case, the setting
angle θ will have no influence on the natural
frequencies of the beam. This conclusion is
consistent with our common physical sense.

d. When the setting angle is increased, the associ-
ated critical pre-cone angle for the happening
of the divergence instability phenomenon will
decrease.

In Figure 5, the influence of the translational
spring constant and the pre-cone angle on the first
natural frequency of a beam is revealed. One can
observed that when the translational spring con-
stant is decreased, the associated critical pre-cone
angle for the happening of the divergence insta-
bility phenomenon will decrease.

Finally, it should be mentioned that in this paper,
for simplicity, the linear theory is used to study
dynamic behaviors of the beam system. All the
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Figure 2: Influence of the pre-cone angle on the first natural frequency of a cantilevered rotating beam with
different angular speeds. [m = (1−0.1ξ ), b = (1−0.1ξ )3, μ = 0.1, θ = 0°]
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Figure 3: Influence of the pre-cone angle on the first three natural frequencies of a cantilevered rotating
beam with different angular speeds. [m = (1−0.1ξ ), b = (1−0.1ξ )3, μ = 0.1, θ = 0°]

values of physical parameters in the present nu-
merical analysis are mainly used to illustrate the
qualitative information of this linear beam sys-
tem. In practice, when the dimensionless angular
speed α is greater than certain value, the axial ex-
tension deformation, the Coriolis force, the shear

deformation, the rotatory inertia and the nonlin-
ear effects will turn to be significant. If solutions
of high accuracy are required, then an advanced
theory should be adapted [Kaza and Kvaternik
(1977)].

It is well known that most of the qualitative behav-
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Figure 4: Influence of the angular speed and the pre-cone angle on the first natural frequency of a can-
tilevered beam. [m = (1−0.1ξ ), b = (1−0.1ξ )3, μ = 0]

Figure 5: Influence of the translational spring constants βT and the pre-cone angle on the first natural
frequency of a beam. [m = (1−0.1ξ ), b = (1−0.1ξ )3, μ = 0, θ = 0°, βθ = 0]

iors of a simple system will either exist or have
similar behaviors while they are re-evaluated by
advanced theories. Even though some of the nu-
merical data presented in this paper may be not
accurate enough in practice, it still provides valu-

able physical observations and information to the
literature.
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5 Conclusions

In this paper, a wind power turbine blade is mod-
eled as a rotating beam with pre-cone angles
and setting angles. Based on the Bernoulli-Euler
beam theory, without considering the axial ex-
tension deformation and the Coriolis force effect,
the governing differential equations for the pure
bending vibrations of the rotating non-uniform
beam are derived. It is pointed out that if the geo-
metric and the material properties of the beam are
in polynomial forms, then the exact solution for
the system can be obtained.

In the previous analysis, most of the qualitative
conclusions about the dynamic behavior of the
beam are not general and valid only in the spe-
cialized domains that numerical analyses are per-
formed. In the present analysis, based on the fre-
quency relations as revealed, many general qual-
itative conclusions between the natural frequen-
cies and the physical parameters of the beams are
explored without numerical analysis. The conclu-
sions are valid in the entire domains. In addition,
the influences of the pre-cone angle, the angular
speed and the setting angle on the natural frequen-
cies of the beam are also investigated numerically.
The phenomenon of divergence instability is dis-
cussed.

In this paper, for simplicity, the Bernoulli-Euler
beam theory is employed to study dynamic be-
haviors of the beam system. To improve the accu-
racy of the analysis, one should extend the work
by using the Timoshenko beam theory. In addi-
tion, the axial extension deformation, the Coriolis
force and the nonlinear effects can also be consid-
ered.
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Appendix: Frequency Equation

π =

∣∣∣∣∣∣∣∣
D14 D13 D12 D11

D24 D23 D22 D21

G34 G33 G32 G31

G44 G43 G42 G41

∣∣∣∣∣∣∣∣
= 0

where

D14 = βT a2|ξ=0 ,

D13 = βT
(
2a2b′ +a′2

)
+a1a2

∣∣
ξ=0 ,

D12 = βT
(
a2b′′+a′2b′+a3a2 −n

)
+a1a2b′

∣∣
ξ=0 ,

D11 = βT (a3a2 −n)′ +a1 (a3a2−n)
∣∣
ξ=0 ,

D21 = βθ , D22 = −1, D23 = D24 = 0,

G3 j = V ′
j(1)

G4 j = b(1)V ′′
j (1)+b′(1)V ′

j(1)+g(1)a3Vj(1),

j = 1, 2, 3, 4

in which

a1 = α2 (
sin2 θ cos2 φ + sin2 φ

)
+Λ2,

a2 = (1+ μn/q) ,

a3 = η
(
α2 cos2 φ +Λ2) .


