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Abstract: We investigate the reconstruction
of a divergence-free surface current distribution
from knowledge of the magnetic flux density in
a prescribed region of interest in the framework
of static electromagnetism. This inverse problem
is motivated by the design of gradient coils for
use in magnetic resonance imaging (MRI) and is
formulated using its corresponding integral repre-
sentation according to potential theory. A novel
boundary element method (BEM) which employs
linear interpolation on quadratic surfaces and also
satisfies the continuity equation for the current
density, i.e. a divergence-free BEM, is presented.
Since the discretised BEM system is ill-posed and
hence the associated least-squares solution may
be inaccurate and/or physically meaningless, the
Tikhonov regularization method is employed in
order to retrieve accurate and physically correct
solutions.
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1 Introduction

Magnetic resonance imaging (MRI) is a non-
invasive technique for imaging the human body,
which has revolutionised the field of diagnostic
medicine. MRI relies on the generation of highly
controlled magnetic fields that are essential to the
process of image production. In particular, an ex-
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tremely homogeneous, strong, static field is re-
quired to polarize the sample and provide a uni-
form frequency of precession, while pure field
gradients are needed to encode the spatial origin
of MR signals. The field gradients are generated
by carefully arranged wire distributions generally
placed on surfaces surrounding the imaging sub-
ject, known as gradient coils.

Over the last decades, many theoretical design
methods for the construction of MRI gradi-
ent coils have been developed. In one of the
first papers on this subject, Bangert and Mans-
field (1982) produced a simple coil design that
generated a high gradient strength per unit cur-
rent whilst providing a low coil inductance. The
majority of early MRI systems employed gradi-
ent coils based on simple saddle and loop units
which are positioned so as to null as many unde-
sired terms in the spherical harmonic expansion
of the field at the coil centre, see e.g. Romeo and
Hoult (1984). However, coils composed of dis-
crete wire units generally have high inductance at
fixed gradient strength and often have high length
to diameter ratios. Improved performance can be
achieved by using coils composed of distributed
wirepaths which are spread more uniformly over
the coil surface. In order to generate such de-
signs, Turner (1986) developed a Fourier-Bessel
expansion of the magnetic field generated by cur-
rents flowing on the surface of a cylinder. Inver-
sion of the relationship between the current den-
sity and the corresponding magnetic field allowed
the design of gradient, solenoidal and shim coils
capable of generating a specified or target field.
A method for designing coils with the minimum
inductance consistent with the field specification
was also presented by Turner (1988). Schweik-
ert, Krieg and Noack (1988) have used a Lagrange
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multiplier formalism to allow the magnetic field
specified at discrete locations in space to be used
as constraints in an explicit minimisation of the
power dissipated by a coil. Minimum power de-
signs have also been proposed by Bowtell and
Mansfield (1989). These methods of coil de-
sign have been implemented by using fast Fourier
transforms to calculate the matrix elements and
evaluate the current densities. The method of con-
jugate gradient descent for the minimisation of
the gap functional between the desired and calcu-
lated magnetic fields with respect to the current
element position has been addressed by Wong,
Jesmanowicz and Hyde (1991). Carlson, Derby,
Hawryszko and Weideman (1992) have developed
an inductance minimisation technique which au-
tomatically incorporates finite length, by initially
expanding the current density as a Fourier se-
ries. The majority of gradient coil designs are
based on a cylindrical geometry in which the
gradient wirepaths are confined to the surface
of a cylinder. It is also, however, possible to
design gradient coils using a variety of alterna-
tive geometries including planar and hemispheri-
cal forms, see Martens, Petropoulos, Brown, An-
drews, Morich and Patrick (1991), and Green,
Leggett and Bowtell (2005), respectively. Several
generic gradient coil designs, as well as compu-
tational analysis approaches, were described in a
review by Turner (1993).

There are important studies in the literature
that are devoted to the design of gradient coils
used in MRI based on computational methods.
Liu (1998) has considered a bi-planar design and
suggested a minimisation procedure for the mag-
netic energy, which is proportional to the total
inductance, subject to the magnetic field being
equal to a desired distribution in a specified region
of interest. Green, Bowtell and Morris (2002)
have proposed an approach similar to Liu (1998),
namely the minimisation of a weighted combina-
tion of power, inductance and the squared differ-
ence between the actual and the desired fields.
Leggett, Crozier, Blackband and Bowtell (2003)
have investigated the multilayer transverse cylin-
drical coils by considering a cost function as a
weighted combination of inductance and power

loss, and imposing the condition that the magnetic
field equals certain values at specified points. Re-
cently, Lemdiasov and Ludwig (2005) have re-
ported a new design approach for the construction
of gradient coils used in MRI by considering an
integral representation formula that satisfies the
continuity equation for the surface current den-
sity, constant interpolation and the minimisation
of a constrained cost function between the actual
and the desired magnetic fields in a region of in-
terest.

The boundary element method (BEM) is a nu-
merical method essentially based on the integral
formulation of the problem under consideration,
see e.g. Brebbia, Telles and Wrobel (1984),
and it is now a well established technique in
computational electromagnetics and particularly
in magnetostatics, see e.g. Adriaens, Delincé,
Dular, Genon, Legros and Nicolet (1991), Nico-
let, Dular, Genon and Legros (1992), and Nico-
let (1991; 1994). To represent the current vec-
tor field over surfaces, it is important in a bound-
ary integral formulation to express the current
vector field with respect to an appropriate set of
vector basis functions. The Rao-Wilton-Glisson
(RWG) basis functions are the most used ba-
sis functions that preserve the continuity of the
normal current vector across the interfaces be-
tween adjacent elements, see e.g. Rao, Wilton
and Glisson (1982). Higher-order basis func-
tions over triangular patches have been attempted
by Wandzura (1992). However, no explicit and
easy-to-implement formulations of the basis func-
tions of general higher-order have been pro-
vided by Wandzura (1992). Popovic and Kol-
undzija (1994) have studied higher-order sur-
face current basis functions using polynomials
of parametric variables of the curved quadrilater-
als and triangles with continuous normal compo-
nent over the generalised quadrilaterals and trian-
gles. Subsequently, this approach has been used
by Andersen and Volakis (1999) to produce a
higher-order tangential vector finite element ba-
sis in the Sobolev space H (Curl) in 2D and 3D
spaces, similar to the edge elements proposed
by Nedelec (1980) and studied by Webb (1993).
Cai (1999), Cai, Yu, Wang and Yu (2001), and
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Cai, Yu and Yuan (2002) have developed a higher-
order basis with the following properties (i) it is
applicable to either curved or flat triangular and/or
quadrilateral patches; (ii) it ensures the continu-
ity of the normal components of the basis func-
tions across common interfaces among adjacent
patches; (iii) the usual RWG basis functions rep-
resent a particular case that corresponds to the
lowest order approximation for the basis func-
tions proposed by Cai (1999), Cai, Yu, Wang and
Yu (2001), and Cai, Yu and Yuan (2002) over flat
triangular patches.

Over the last two decades, both the BEM and
the dual reciprocity BEM (DRBEM) have of-
ten been employed to solve inverse problems
that occur in several branches of engineering
and sciences, such as fluid flow [Lesnic, Elliott
and Ingham (1997), Zeb, Ingham, Elliott and
Lesnic (2000, 2002)], rock mechanics [Mustata,
Harris, Elliott, Lesnic and Ingham (2000)], elas-
ticity [Chao, Chen and Lin (2001), Marin, El-
liott, Ingham and Lesnic (2001, 2002)], steady-
state heat conduction [Lesnic, Elliott and Ing-
ham (1997, 1998), Marin, Elliott, Heggs, Ingham,
Lesnic and Wen (2003, 2004)], electrochemical
processes [Noroozi, Sewell and Vinney (2006)],
automatic inverse problem engine [de Lacerda
and da Silva (2006)], etc.

The purpose of this paper is to investigate the nu-
merical reconstruction of a divergence-free sur-
face current distribution from knowledge of the
magnetic flux density in a prescribed region of
interest in the framework of static electromag-
netism. This inverse problem is motivated by the
design of gradient coils used in MRI and is formu-
lated using its corresponding integral representa-
tion according to potential theory. In this study, a
novel BEM which employs linear interpolation on
quadratic surfaces and also satisfies the continuity
equation for the current density, i.e. a divergence-
free BEM, is developed. It should be mentioned
that, in classical BEM formulations of the inverse
problem analysed in this paper, the divergence-
free condition for the current density has usu-
ally to be imposed in the form of additional con-
straints on the corresponding discretised BEM
system of algebraic linear equations. However,

in the present approach no additional constraints
are required for the current density to satisfy the
continuity equation, as the interpolation functions
already satisfy this condition. Since the discre-
tised BEM system is ill-posed and its associated
solution obtained via a direct solver may be in-
accurate and/or physically meaningless, regular-
ization methods are employed in order to retrieve
accurate and physically correct solutions. In our
study, this is achieved by using the Tikhonov reg-
ularization method, where the regularization term
is given by the norm related to the magnetic en-
ergy. The efficiency of the proposed numerical
method is illustrated by numerical examples for
cylindrical and hemispherical x− and z−gradient
coil designs.

2 Mathematical formulation

In a non-magnetic material, such as biologi-
cal tissue, the magnetic induction field B =(
Bx,By,Bz

)T
satisfies the following system of

partial differential equations, see e.g. Jack-
son (1998):

∇×B(x) = μ0J(x), ∇ ·B(x) = 0,

x = (x,y,z) ∈ R
3.

(1)

Here μ0 = 4π ×10−7 N/A2 is the permeability of
the free-space and J =

(
Jx, Jy, Jz

)T
is the current

density which is defined as a surface current den-
sity Jcoil =

(
Jx

coil, Jy
coil, Jz

coil
)T

, i.e.

J(x) = Jcoil(x′)δ
(
x′,x

)
, x ∈ R

3, x′ ∈ Γcoil,

(2)

where Γcoil ⊂R
3 is the coil surface and δ (x′,x) is

the Kronecker delta function, such that

∇ ·Jcoil(x) = 0, Jcoil(x) ·ν(x) = 0, x ∈ Γcoil,

(3)

with ν the outward unit vector normal to the coil
surface Γcoil.

If the vector potential A =
(
Ax,Ay,Az

)T
is intro-

duced as:

B(x) = ∇×A(x), x ∈ R
3, (4)
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then the system of partial differential equations
(1) reduces to the following Poisson equation for
the vector potential A:

∇2A(x) = μ0J(x), x ∈ R
3. (5)

In the direct problem formulation, the current den-
sity Jcoil is known on the coil surface Γcoil, satis-
fies the divergence-free condition (31) and lies on
the plane tangent to the coil surface Γcoil, see Eq.
(32), whilst the vector potential A is determined
from the Poisson equation (5) by employing its
integral representation, namely

A(x) = μ0

∫
R3

u∗
(
x,x′

)
J(x′)dx′

= μ0

∫
Γcoil

u∗
(
x,x′

)
Jcoil(x′)dΓ(x′), x ∈ R

3,

(6)

where u∗(x,x′) is the Green function for the 3D
Laplace equation given by

u∗
(
x,x′

)
=

1
4π |x−x′| , x,x′ ∈ R

3. (7)

On using Eqs. (4) and (6), the magnetic induction
field may be recast as

B(x) = μ0

∫
Γcoil

∇xu∗
(
x,x′

)×Jcoil(x′)dΓ(x′),

x ∈ R
3. (8)

Motivated by the design of gradient coils for use
in MRI, we investigate the reconstruction of the
divergence-free surface current distribution Jcoil

from knowledge of one component of the mag-
netic flux density B, generally Bz, in a prescribed
region of interest Ω ⊂ R

3. More precisely, we fo-
cus on the following inverse problem:

Given B̃z(x), x ∈ Ω, find Jcoil(x), x ∈ Γcoil,

such that:⎧⎨⎩Bz(x) = B̃z(x), x ∈ Ω,

∇ ·Jcoil(x) = 0,Jcoil(x) ·ν(x) = 0, x ∈ Γcoil.

(9)

3 Divergence-free BEM

In this section, we generalise the approach of
Lemdiasov and Ludwig (2005) which is based on
the integral representation formula for the vector
potential that satisfies the continuity equation for
the surface current density and employs a con-
stant approximation for the field variables corre-
sponding to linear (flat) elements. More specifi-
cally, starting from the integral representation (6)
for the vector potential A, we develop a linear in-
terpolation for the current density Jcoil which en-
sures that the current density is divergent-free, i.e.
the continuity equation (31) is satisfied, and that it
also lies in the plane tangential to the coil surface
Γcoil, see Eq. (32).

3.1 Geometry of the boundary elements

Assume that the coil surface Γcoil is approximated
as Γcoil ≈ ⋃N

n=1 Γn, where Γn, 1 ≤ n ≤ N, are tri-
angular boundary elements (not necessarily flat).
In the subsequent analysis, we use the following
notation, see also Fig. 1:

• Γn := 	xn1xn2xn3, 1 ≤ n ≤ N, triangular
boundary elements;

• xnj, 1 ≤ j ≤ Ne, local nodes corresponding
to the triangular boundary element Γn, e.g.
Ne = 3 and Ne = 6 in the case of linear and
quadratic triangular boundary elements, re-
spectively;

• The first three local nodes, i.e. xnj, 1 ≤ j≤ 3,
correspond to the vertices of the triangular
boundary element Γn;

• Γnj the edge of the triangular boundary ele-
ment Γn opposite to the vertex xnj, 1 ≤ j ≤ 3;

• νnj the outward unit vector normal to the
edge Γnj, 1≤ j≤ 3, lying in the plane tangen-
tial to the triangular boundary element Γn;

• νn the outward unit vector normal to the tri-
angular boundary element Γn;

• xm, 1 ≤ m ≤ M, global nodes on the coil sur-
face Γcoil corresponding to the BEM mesh
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(a) (b)

(c) (d)

Figure 1: Schematic diagram of the (a) linear and (c) quadratic triangular boundary elements Γn in the
physical space R

3. Schematic diagram of the transformed (b) linear and (d) quadratic triangular boundary
elements Γn(ξ ,η) in the parametric space (ξ ,η).

generated by the triangular boundary ele-
ments Γn, 1 ≤ n ≤ N. Note that every global
node is a vertex of at least one triangular
boundary element;

• N the number of triangular boundary ele-
ments;

• M the number of global nodes on the coil sur-
face Γcoil;

• Ne the number of local nodes corresponding
to each triangular boundary element Γn.

The parametrization of the triangular boundary el-
ements is given by

(ξ ,η) ∈ Γn(ξ ,η) 
−→ x(ξ ,η) ∈ Γn

x(ξ ,η) =
Ne

∑
j=1

Nj(ξ ,η)xnj ,
(10)

where

Γn(ξ ,η)=
{
(ξ ,η) |ξ ≥0,η ≥0,ξ+η ≤1

}
and Nj(ξ ,η), 1 ≤ j ≤ Ne, are geometrical shape
functions which, for the sake of completeness,
are presented in Appendix A. Consequently, the
derivatives in the ξ− and η−directions may be
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recast as:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
τnξ (ξ ,η) = ∂x(ξ ,η)

∂ξ =
Ne

∑
j=1

∂Nj(ξ ,η)
∂ξ

xnj

τnη(ξ ,η) = ∂x(ξ ,η)
∂η =

Ne

∑
j=1

∂Nj(ξ ,η)
∂η

xnj.

(11)

Then the surface metric (Jacobian) Jn and the
outward unit vector νn normal to the triangular
boundary element Γn are given by:

Jn(ξ ,η) = |τnξ (ξ ,η)×τnη(ξ ,η)| (12)

and

νn(ξ ,η) =
1

Jn(ξ ,η)
τnξ (ξ ,η)×τnη(ξ ,η) (13)

respectively.

3.2 Basis functions

On every triangular boundary element Γn, we de-
fine the following vectors, as shown in Fig. 1:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

vn1(ξ ,η) = − 1
Jn(ξ ,η)

τnη(ξ ,η)

vn2(ξ ,η) =
1

Jn(ξ ,η)
τnξ (ξ ,η)

vn3(ξ ,η) =
1

Jn(ξ ,η)

[
−τnξ (ξ ,η)+τnη(ξ ,η)

]
.

(14)

From definition (14), it follows that the vectors
vnj(ξ ,η) satisfy the identity:

3

∑
j=1

vnj(ξ ,η) = 0 for x = x(ξ ,η) ∈ Γn. (15)

Next, we define the incidence function i as fol-
lows:

i(·, ·) : {1,2,. . .,M}×{1,2,. . .,N}−→{0,1,2,3}
(m,n) 
−→
i(m,n) =

{
0 if xm 
= xnj, ∀ j ∈ {1,2,3}
j if ∃ j ∈ {1,2,3} : xm = xnj.

(16)

Figure 2: The set Cm of boundary elements Γn ad-
jacent to the global node xm and the correspond-
ing vector vn,i(m,n)(x) in the physical space R

3.

For every global node xm, 1 ≤ m ≤ M, we define
the set Cm ⊂ Γcoil of triangular boundary elements
Γn, 1 ≤ n ≤ N, adjacent to xm, see also Fig. 2, i.e.

Cm =
N⋃

n = 1
i(m,n) 
= 0

Γn, 1 ≤ m ≤ M. (17)

The vector basis function fm associated with the
global node xm is defined by

fm(·) : Γcoil −→ R
3

fm(x) =

{
vn,i(m,n)(x) if x ∈ Cm

0 if x /∈ Cm

(18)

and clearly its support is a subset of Cm, i.e.
supp fm = {x ∈ Γcoil |fm(x) 
= 0} ⊂ Cm.

3.3 Surface current density

The current density Jcoil on the coil surface Γcoil

is then approximated by

Jcoil(x)≈∑M
m=1 Imfm(x)

= ∑M
m=1

Im ∑N
n = 1

i(m,n) 
= 0
vn,i(m,n)(x), x ∈ Γcoil,

(19)

where Im ∈ R, 1 ≤ m ≤ M, are unknown coeffi-
cients that correspond to the stream function in-
tensities at each of the global nodes xm, 1 ≤ m ≤
M, see also Lemdiasov and Ludwig (2005). For
direct problems, the stream function intensities
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are determined from appropriate boundary condi-
tions, while in the case of inverse problems, they
are obtained by solving a minimisation problem.

It should be noted that the degree of the approxi-
mation (19) for the surface current density Jcoil is
one degree less than the degree of the triangular
boundary elements Γn, 1 ≤ n ≤ N, since the vec-
tors vnj(ξ ,η), 1 ≤ j ≤ 3, are related to the deriva-
tives of the geometrical shape functions Nj(ξ ,η),
1 ≤ j ≤ Ne, associated with the triangular bound-
ary element Γn, see Eqs. (10)− (14). More
precisely, linear and quadratic triangular bound-
ary elements provide constant and linear approx-
imations for the surface current density, respec-
tively. It is important to note that the collocation
points, i.e. global nodes, are always located at the
vertices of the triangular boundary elements em-
ployed in the BEM meshing of the coil surface,
Γcoil. Therefore, increasing the degree of inter-
polation of the surface current density does not
affect the number of collocation points and hence
the dimension of the resulting BEM system of lin-
ear algebraic equations. From Eqs. (13) and (14)
it follows that for every triangular boundary el-
ement Γn the vectors vnj(ξ ,η), 1 ≤ j ≤ 3, and
the outward unit normal vector νn(ξ ,η) are or-
thogonal and hence expression (19) forces the ap-
proximated current density Jcoil to lie in the plane
tangential to the coil surface, Γcoil, i.e. condi-
tion (32) is satisfied. Furthermore, the interpola-
tion given by Eq. (19) is divergence-free point-
wise, i.e. the divergence-free condition (31) is sat-
isfied for both types of triangular elements con-
sidered, namely linear and quadratic triangular
boundary elements. In the case of linear trian-
gular elements, the divergence-free condition is
clearly satisfied since the basis vectors given by
Eq. (14) are constant over each triangular el-
ement. Although not so evident, it can easily
be shown that the same divergence-free property
is always preserved for linear interpolation over
quadratic triangular elements, as shown in Ap-
pendix B by considering a local spherical coordi-
nates for quadratic triangular boundary elements.

The unknown coefficients Im, 1 ≤ m ≤ M, can
also be defined locally for every triangular bound-

ary element Γn, 1 ≤ n ≤ N, i.e.

Inj = Imj , where mj ∈{1,2, . . .,M} : i
(
mj,n

)
= j.

(20)

Consequently, we obtain the local approximation
on every triangular boundary element Γn, 1 ≤ n ≤
N,

Jcoil(x)≈
3

∑
j=1

Inj vnj(x) =
3

∑
j=1

Imj vn,i(mj,n)(x),

x ∈ Γn. (21)

3.4 Magnetic vector potential

According to Eqs. (6), (19) and (21), the mag-
netic vector potential A is approximated by

A(x)≈ μ0

4π

N

∑
n=1

∫
Γn

3

∑
j=1

Inj
vnj(x′)
|x−x′| dΓ(x′)

=
μ0

4π

M

∑
m=1

Im ∑N
n = 1

i(m,n) 
= 0

∫
Γn

vn,i(m,n)(x′)
|x−x′| dΓ(x′),

x ∈ R
3. (22)

Eq. (22) may be recast as

A(x)≈
M

∑
m=1

Im gm(x), x ∈ R
3, (23)

where

gm(x) =
μ0

4π ∑N
n = 1

i(m,n) 
= 0

∫
Γn

vn,i(m,n)(x′)
|x−x′| dΓ(x′),

x ∈ R
3, 1 ≤ m ≤ M. (24)

3.5 Magnetic flux density

On using Eqs. (8), (19) and (21), we obtain
the following approximation for the magnetic flux
density B:

B(x)≈ μ0

4π

N

∑
n=1

∫
Γn

3

∑
j=1

Inj
−(x−x′)×vnj(x′)

|x−x′|3 dΓ(x′)

=
μ0

4π

M

∑
m=1

Im ∑N
n = 1

i(m,n) 
= 0∫
Γn

−(x−x′)×vn,i(m,n)(x′)
|x−x′|3 dΓ(x′), x ∈ R

3.

(25)
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Eq. (25) may be expressed as

B(x)≈
M

∑
m=1

Im hm(x), x ∈ R
3, (26)

where

hm(x) =
μ0

4π ∑N
n = 1

i(m,n) 
= 0∫
Γn

−(x−x′)×vn,i(m,n)(x′)
|x−x′|3 dΓ(x′),

x ∈ R
3, 1 ≤ m ≤ M. (27)

4 Description of the algorithm

If the z−component of the magnetic flux density
B is known at L points in the region of interest Ω,
as shown in Fig. 3 for cylindrical and hemispher-
ical coil surfaces, then the BEM discretisation of
the inverse problem (9) yields the following sys-
tem of linear algebraic equations

HI = B̃z. (28)

Here H ∈ R
L×M is the matrix containing the

z−component of the BEM vector hm given by Eq.
(27) calculated at L points in the region of interest

Ω, B̃z =
(

B̃1
z , . . . , B̃

L
z

)T
∈ R

L is a vector contain-

ing the z−component of the magnetic flux den-
sity at L points in the region of interest Ω and
I ∈ R

M is a vector containing the unknown val-
ues of the stream function Im, 1 ≤ m ≤ M, at the
global nodes, i.e.

Hlm = hm
z (xl) =

μ0

4π ∑N

n = 1
i(m,n) 
= 0

∫
Γn

1
|xl −x′|3

×
[
(xl−x′)vn,i(m,n)

y (x′)+(yl−y′)vn,i(m,n)
x (x′)

]
dΓ(x′),

B̃l
z = Bz(xl), 1 ≤ l ≤ L, 1 ≤ m ≤ M. (29)

It is important to mention that the integrals in-
volved in the definition (29) of the components
Hlm of the BEM matrix H are non-singular since
xl /∈ Γcoil, 1 ≤ l ≤ L, and hence they are evalu-
ated numerically by employing a Gauss quadra-
ture for triangles, see e.g. Brebbia, Telles and
Wrobel (1984).

(a)

(b)

Figure 3: The BEM mesh used for (a) the cylindri-
cal, and (b) the hemispherical coils, and the loca-
tion of the internal points (•) in the corresponding
spherical region of interest.
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4.1 Direct approach

A direct approach to solving the system of lin-
ear algebraic equations (28) resulting from the
discretization of the present inverse problem can
be implemented by, for example, using the least-
squares method. In this case, the least-squares so-
lution ILS to the inverse problem (9) is sought as,
see e.g. Tikhonov and Arsenin (1986),

ILS ∈ R
M : FLS(ILS) = min

I∈RM
FLS(I), (30)

where FLS is the least-squares functional defined
by

FLS :RM −→ [0,∞)

FLS(I) =
1
2
‖HI− B̃z‖2

=
1
2

L

∑
l=1

(
M

∑
m=1

Hlm Im − B̃l
z

)2

.

(31)

However, the system of linear algebraic equa-
tions (28) cannot be solved by a direct approach,
such as the least-squares method, since such a
method would produce an inaccurate and/or phys-
ically meaningless solution due to the large value
of the condition number of the system matrix H
which increases dramatically as the BEM mesh
is refined. Several regularization procedures have
been developed to solve such ill-conditioned sys-
tems, see for example Hansen (1998). In the
following, we only consider the Tikhonov regu-
larization method and for further details on this
method, we refer the reader to Tikhonov and Ars-
enin (1986).

4.2 Magnetic energy and energy norm

The magnetic energy W defined by

W =
1
2

∫
Γcoil

Jcoil(x) ·A(x) dΓ(x), (32)

can be approximated, according to Eqs. (19), (21)
and (22), as

W ≈1
2

μ0

4π

N

∑
m′=1

N

∑
n′=1

∫
Γm′

∫
Γn′

3

∑
i=1

3

∑
j=1

Im′i In′j

vm′i(x) ·vn′j(x′)
|x−x′| dΓ(x′) dΓ(x)

=
1
2

μ0

4π

M

∑
m=1

M

∑
n=1

Im In ∑N
m′ = 1

i(m,m′) 
= 0
∑N

n′ = 1
i(n,n′) 
= 0∫

Γm′

∫
Γn′

vm′,i(m,m′)(x)·vn′,i(n,n′)(x′)
|x−x′| dΓ(x′) dΓ(x).

(33)

Eq. (33) may be recast as

W ≈ 1
2

M

∑
m=1

M

∑
n=1

Lmn In Im, (34)

where the components of the inductance matrix
L = [Lmn] ∈ R

M×M are given by

Lmn =
μ0

4π

N

∑
m′ = 1

i(m,m′) 
= 0

N

∑
n′ = 1

i(n,n′) 
= 0∫
Γm′

∫
Γn′

vm′,i(m,m′)(x) ·vn′,i(n,n′)(x′)
|x−x′| dΓ(x′) dΓ(x),

1 ≤ m,n ≤ M.

(35)

The evaluation of the double integral involved
in the definition (35) of the components Lmn of
the inductance matrix L requires special attention
since a crude approximation of this integral was
used by Lemdiasov and Ludwig (2005). More
precisely, in the case of linear triangular elements,
i.e. constant interpolation for the current den-
sity, Lemdiasov and Ludwig (2005) have approx-
imated the denominator of the integrand by the
distance between the centres of mass of the linear
triangular elements Γm′ and Γn′ , respectively, and
hence they reduced the computation of the dou-
ble integral to calculating the surface area of the
linear (flat) triangular elements Γm′ and Γn′ . Al-
though this approximation might be suitable for
elements located far from one another, it becomes
inappropriate for close triangular elements. Con-
sequently, in addition to the ill-posedness of the
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inverse problem investigated, such an approach
induces a significant numerical error and this will
affect the accuracy of the solution. Therefore, in
this study, the evaluation of the double integral in-
volved in Eq. (35) is performed numerically for
the non-singular case, i.e. Γm′ 
= Γn′ , by employ-
ing twice the 2D Gauss quadrature for triangles,
see e.g. Brebbia, Telles and Wrobel (1984). In
the singular case when Γm′ = Γn′ , the outer inte-
gral is evaluated numerically using the 2D Gauss
quadrature for triangles, whilst for the inner in-
tegral the singularity is removed by introducing
suitable local polar coordinates and then applying
the 1D Gauss-Legendre quadrature, see e.g. Breb-
bia, Telles and Wrobel (1984).

It should be mentioned that the inductance matrix
L is symmetric, i.e.

Lmn = Lmn, 1 ≤ m,n ≤ M. (36)

Furthermore, it can be shown numerically that the
inductance matrix L is also positive definite, i.e.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M

∑
m=1

M

∑
n=1

Lmn In Im ≥ 0,

∀ I1, I2, . . . , IM ∈ R

M

∑
m=1

M

∑
n=1

Lmn In Im = 0

⇐⇒ I1 = I2 = . . . = IM = 0.

(37)

The purpose of the regularization techniques is to
introduce a smoothing norm and this is strongly
related to the magnetic energy W defined by Eq.
(32). It should be noted that, since the induc-
tance matrix L is symmetric and positive defi-
nite, see Eqs. (36) and (37), the existence of the
square root matrix L̃ ∈ R

M×M associated to L, i.e.
L̃2 = L, is ensured. Moreover, L̃ is also a sym-
metric matrix, i.e. L̃T = L̃. Consequently, the ap-
proximated magnetic energy W given by Eq. (34)
is a quadratic and positive definite form which in-
duces the following energy norm:

‖I‖2
W = ‖L̃I‖2 =

M

∑
m=1

M

∑
n=1

Lmn In Im = 2W. (38)

4.3 Regularization

The Tikhonov regularized solution Iλ to the in-
verse problem (9) is sought as, see e.g. Tikhonov
and Arsenin (1986),

Iλ ∈ R
M : Fλ (Iλ ) = min

I∈RM
Fλ (I), (39)

where Fλ is the Tikhonov functional given by

Fλ (·) :RM −→ [0,∞)
Fλ (I) =FLS(I)+λ W

=
1
2
‖HI− B̃z‖2 +

1
2

λ‖I‖2
W

=
1
2
‖HI− B̃z‖2 +

1
2

λ‖L̃I‖2

=
1
2

L

∑
l=1

(
M

∑
m=1

Hlm Im − B̃l
z

)2

+
1
2

λ
M

∑
m=1

M

∑
n=1

Lmn In Im,

(40)

with λ > 0 the regularization parameter to be cho-
sen. Formally, the Tikhonov regularized solution
Iλ of the minimisation problem (39) is given by
the solution of the regularized normal system of
equations(

HTH+λ L̃TL̃
)

Iλ = HT B̃z, (41)

that is

Iλ =
(

HTH+λ L̃TL̃
)−1

HT B̃z. (42)

Regularization is necessary when solving ill-
conditioned systems of linear equations because
the simple least-squares solution, i.e. λ = 0,
is completely dominated by contributions from
rounding errors. By adding regularization we are
able to damp out these contributions and maintain
the energy norm ‖I‖W = ‖L̃I‖ to be of reasonable
size. If too much regularization, or damping, i.e.
λ is large, is imposed on the solution then it will
not fit the given data B̃z properly and the resid-
ual norm ‖HI− B̃z‖ will be too large. If too little
regularization is imposed on the solution, i.e. λ
is small, then the fit will be good, but the solu-
tion will be dominated by the contributions from
computational errors, and hence the energy norm
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‖I‖W = ‖L̃I‖ will be too large. To summarize,
the Tikhonov regularization method solves a min-
imisation problem using a smoothness constraint
in order to provide a stable solution which fits the
data and also has a minimum structure.

5 Numerical results

In this section, we illustrate the results obtained
using the numerical method described in Section
4 combined with the divergence-free BEM pre-
sented in Section 3 and, in addition, we inves-
tigate the convergence and accuracy of the pro-
posed numerical method and also perform a sen-
sitivity analysis with respect to the choice of the
regularization parameter.

5.1 Examples

In order to demonstrate the performance of the
proposed method, we solve the inverse problem
(9) for the following geometries, see also Figs.
3(a) and (b):

Example 1. Consider a cylindrical coil Γcoil ={
x = (x,y,z) ∈ R

3
∣∣x2 +y2 = R2,−h ≤ z ≤ h

}
,

where R = 0.5m and h = 1.0m, while the region
of interest is a sphere centered at the origin of
the coordinate system, i.e. Ω =

{
x = (x,y,z)

∈ R
3
∣∣x2 +y2 +z2 ≤ r2

}
, where r = 0.2m.

Example 2. Consider a hemispherical coil Γcoil ={
x = (x,y,z) ∈ R

3
∣∣x2 +y2 +z2 = R2,z ≥ 0

}
,

where R = 0.175m. Here the region of in-
terest is a sphere centered at xc = (xc,yc,zc)
= (0,0,0.081), i.e. Ω =

{
x = (x,y,z) ∈ R

3
∣∣

(x − xc)2 +(y − yc)2 +(z − zc)2 ≤ r2
}

, where
r = 0.065m.

Since the geometries of the two types of coil con-
sidered in this paper are symmetrical with respect
to the z−axis, it is sufficient to investigate only
the design of x− and z−gradients, i.e.

B̃z(x) = Gx x, B̃z(x) = Gz z, x ∈ Ω, (43)

where Gx ∈ R and Gz ∈ R are given. Although
not presented herein, it is reported that the numer-
ical results obtained for the cylindrical and hemi-
spherical y−gradient coils are similar to those re-
trieved for the corresponding x−gradient coils,

but rotated by an angle θ = π/2 about the z−axis.
For the present computations, we have considered
Gx = Gz = 1.0Tm−1.

The numerical results presented in this section
have been obtained using three different BEM
meshes for the coil surface Γcoil, namely N ∈
{1152,2048,3200} and N ∈ {1128,1888,2840}
triangular boundary elements for the cylindri-
cal and hemispherical coils, respectively. It
should be noted that the aforementioned BEM
meshes correspond to M ∈ {600,1056,1640} and
M ∈ {577,961,1441} global nodes on the cylin-
drical and hemispherical coil surfaces, respec-
tively, used for the approximation of the unknown
stream function I = (I1, I2, . . . , IM)T. Moreover,
for both coil geometries analysed in this study,
the z−component of the magnetic flux density is
known at L = 351 internal points in the corre-
sponding spherical region of interest.

5.2 Reduction of the regularized system of nor-
mal equations

It is important to mention that the dimension of
the regularized system of normal equations (41)
can be decreased for the coil surfaces analysed in
this paper due to the fact that these are not closed
surfaces and there is no current flux flowing
into or out of the coil surface. More precisely,
the cylindrical and hemispherical coil surfaces
considered are bounded by the following 3D
curves:

Example 1. Cylindrical coil (R = 0.5m and h =
1.0m):

∂Γcoil = γ (1)
coil ∪ γ (2)

coil :

γ (1)
coil =

{
x=(x,y,z)∈R

3
∣∣x2+y2 =R2,z=−h

}
γ (2)

coil =
{
x=(x,y,z)∈R

3
∣∣x2+y2 =R2,z=h

}
.

(44)

Example 2. Hemispherical coil (R = 0.175m):

∂Γcoil = γ (1)
coil

γ (1)
coil =

{
x = (x,y,z)∈ R

3
∣∣x2 +y2 = R2,z = 0

}
.

(45)
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In order to derive the discrete condition for the
stream function associated with the global nodes
that belong to a curve bounding the coil surface,
i.e. γ (j)

coil ⊂ ∂Γcoil, we consider a triangular bound-
ary element Γn =	xn1xn2xn3 ⊂Γcoil and, without
any loss of the generality, assume that Γn ∩ γ (j)

coil ={
xn2,xn3

}
, see Fig. 1. On considering νn1 the out-

ward unit vector normal to the edge Γn1 opposite
to the local node xn1 and lying in the plane tan-
gent to the triangular boundary element Γn, see
also Fig. 1, we obtain:

0 = Jcoil(x)
∣∣
Γn1

·νn1(x)

≈[In1 vn1(x)+ In2 vn2(x)+ In3 vn3(x)
] ·νn1(x)

=[In1 vn1(x)+ In2
(
vn1(x)+vn2(x)+vn3(x)

)︸ ︷︷ ︸
=0 according to Eq. (15)

− In2
(
vn1(x)+vn3(x)

)
+ In3 vn3(x)] ·νn1(x)

=(In1 − In2)
[
vn1(x) ·νn1(x)

]︸ ︷︷ ︸
=0 by definition

+(In3 − In2)
[
vn3(x) ·νn1(x)

]
=(In3 − In2)

[
vn3(x) ·νn1(x)

]
.

(46)

Since vn3(x) ·νn1(x) 
= 0, from Eq. (46) it follows
that

In2 = In3. (47)

By extending this rationale to all the triangular
boundary elements that share two nodes with the
curve γ (j)

coil ⊂ ∂Γcoil, we obtain the discrete con-
dition for the stream function associated with the
global nodes that belong to a curve bounding the
coil surface, namely

Im1 = Im2 = . . . = Imj , xm1,xm2, . . .,xmj ∈ γ (j)
coil.

(48)

Consequently, if the coil surface Γcoil under con-
sideration is bounded by the 3D curves γ (j)

coil, 1 ≤
j ≤ J, such that mj global nodes are located on

each curve γ (j)
coil, 1≤ j≤ J, then the original dimen-

sion M of the regularized system of normal equa-

tions (41) is reduced to M̃ = M−
J

∑
j=1

(
mj −1

)
. It is

worth mentioning that the dimensions of the ma-
trices H and L involved in the original regular-
ized system of normal equations (41), as well as
the unknown stream function vector I, should be
reduced accordingly.

5.3 Selection of the optimal regularization pa-
rameter

The choice of the regularization parameter λ in
the minimisation process of the Tikhonov func-
tional (40) is crucial for obtaining a stable, ac-
curate and physically correct numerical solution
Iλ and this issue was not addressed in a rigorous
manner by Lemdiasov and Ludwig (2005). As
mentioned in Section 4.3, the optimal value λopt

of the regularization parameter λ should be cho-
sen such that a trade-off between the two quanti-
ties ‖HI− B̃z‖ and ‖I‖W = ‖L̃I‖ involved in the
minimisation of the functional (40) is attained.

To achieve this, we introduce a term that charac-
terises the difference between the computed and
desired z−components of the magnetic flux den-
sity in the region of interest, i.e. the relative per-
centage error defined by

err(Bz(x);λ ) =
|Bλ

z (x)− B̃z(x)|
|B̃z(x)| ×100, x ∈ Ω,

(49)

where Bλ
z (x) is the numerical z−component of

the magnetic flux density calculated at the point x
in the region of interest Ω, for a given regulariza-
tion parameter λ , by employing the BEM-based
algorithm described in Section 4. Furthermore,
we define a global measure for the percentage rel-
ative error err(Bz(x);λ ) given by Eq. (49) in the
region of interest Ω, namely the maximum rela-
tive percentage error

Err(Bz;λ ) = max
x∈Ω

err(Bz(x);λ ). (50)

On assuming that a deviation ε > 0 from the de-
sired z−component of the magnetic flux density
B̃z is admissible in the region of interest Ω, such
that

B̃ε
z(x) := B̃z(x) (1±ε) , x ∈ Ω, (51)
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then the choice of the optimal regularization pa-
rameter λopt is made by employing the maximum
relative percentage error given by Eq. (50) and
the admissible level of variation in Bz|Ω defined
by relation (51), namely

λopt = max
{

λ > 0
∣∣∣Err(Bz;λ )≤ ε

}
. (52)

Figs. 4(a) and (b) illustrate the maximum rel-
ative percentage error Err(Bz;λ ), as a function
of the regularization parameter λ , obtained us-
ing quadratic triangular boundary elements for
the cylindrical x− and z−gradient coils, respec-
tively. It can be seen from these figures that the
error Err(Bz;λ ) decreases as the regularization
parameter λ tends to zero. The optimal value
of the regularization parameter, chosen accord-
ing to Eq. (52) and corresponding to a devia-
tion of ε = 5% from the linearity of the x− and
z−gradients, is given by λopt ≈ 4.0× 10−9 and
λopt ≈ 3.0×10−8 in the case of the cylindrical x−
and z−gradient coils, respectively. Although not
presented herein, it is reported that a similar evo-
lution of the error Err(Bz;λ ) with respect to the
regularization parameter λ has been obtained for
the cylindrical x− and z−gradient coils when us-
ing linear triangular boundary elements, as well
as for the hemispherical x− and z−gradient coils
and both boundary elements investigated in this
paper.

5.4 Comparison of the boundary elements

The numerical solution Iλ of the regularized sys-
tem of normal equations (41), with λ = λopt given
by Eq. (52), provides only a discrete distribution
of the stream function at the global nodes of the
BEM mesh employed. However, these discrete
values should be extended to a continuous distri-
bution of the numerical stream function over the
entire coil surface Γcoil and this is achieved by em-
ploying the contours of the stream function us-
ing its discrete distribution and the Matlab (The
Mathworks, Inc., Natick, MD, USA) contouring
function. Hence, in the sequel, the numerically
retrieved solutions of the inverse problem given
by Eq. (9) are presented in terms of the contours
of the stream function as described above.

Figs. 5(a) and (b) present the 2D contours of
the stream function in the θ − z plane corre-
sponding to the cylindrical x− and z−gradient
coils, respectively, obtained using the optimal reg-
ularization parameter λopt given by Eq. (52),
L = 351 internal points in the region of inter-
est and N = 3200 linear and quadratic triangu-
lar boundary elements. Here z ∈ [−1,1] and
θ ∈ (−π ,π ] are the height and azimuthal cylindri-
cal coordinates, respectively. Although the con-
tours of the stream function retrieved with linear
and quadratic triangular boundary elements can-
not be graphically distinguished in the case of the
cylindrical x−gradient coil, see Fig. 5(a), it is re-
ported that their corresponding values differ. The
stream function intensities at various global nodes
with cylindrical coordinates z = 0.5 and θ ∈ [0,π ],
obtained for the cylindrical x−gradient coil us-
ing linear and quadratic triangular boundary el-
ements, are tabulated in Tab. 1. However, in the
case of the cylindrical z−gradient coil, the differ-
ences between the contours of the stream func-
tion obtained with linear and quadratic triangu-
lar boundary elements can be noticed graphically
from Fig. 5(b), whilst Tab. 2 presents the numer-
ical values for the stream function intensity at
various global nodes with cylindrical coordinates
z ∈ [0,π ] and θ = 0, retrieved by employing the
aforementioned triangular boundary elements.

The numerical results for the stream function in
the θ − cosφ plane corresponding to the hemi-
spherical x− and z−gradient coils, obtained with
λ = λopt chosen according to Eq. (52), L = 351
internal points in the region of interest and N =
2840 linear and quadratic triangular boundary ele-
ments and illustrated in Figs. 6(a) and (b), respec-
tively, emphasize an improvement in the quantita-
tive results when using the latter. Here θ ∈ [0,2π)
and φ ∈ [0,π/2] are the azimuthal and colatitude
spherical coordinates, respectively. It should be
noted that, in the case of the hemispherical coil,
the so-called Lambert cylindrical equal-area pro-
jection, i.e. the θ − cosφ plane, has been used
to represent the 2D contours of the stream func-
tion. A similar conclusion can be drawn from
Tabs. 3 and 4 which present the numerical val-
ues for the stream function intensity at various
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Figure 4: The maximum relative percentage error Err (Bz;λ ), as a function of the regularization parameter
λ , obtained using quadratic triangular boundary elements, for the cylindrical (a) x−, and (b) z−gradient
coils.
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Figure 5: The contours of the stream function corresponding to the cylindrical (a) x−, and (b) z−gradient
coils given by Example 1, obtained using the optimal regularization parameter λopt chosen according to
Eq. (52), L = 351 internal points in the region of interest and N = 3200 linear ( ) and quadratic (− −)
triangular boundary elements.
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Figure 6: The contours of the stream function corresponding to the hemispherical (a) x−, and (b) z−gradient
coils given by Example 2, obtained using the optimal regularization parameter λopt chosen according to Eq.
(52), L = 351 internal points in the region of interest and N = 2840 linear ( ) and quadratic (− −)
triangular boundary elements.

global nodes with spherical coordinates θ ∈ [0,π ]
and φ = 0.1047197 in the case of the hemispher-
ical x−gradient coil, and θ = 0 and φ ∈ [0,π/4]
in the case of the hemispherical z−gradient coil,
respectively, retrieved using linear and quadratic
triangular boundary elements.

From Figs. 5 and 6, and Tabs. 1-4 we can con-
clude that, for the examples investigated in this
study, the numerical results retrieved using lin-
ear boundary elements are different from those
obtained by employing quadratic boundary ele-
ments. It should be stressed that, for a given num-
ber of triangular boundary elements, the num-
ber of collocation points corresponding to the lin-
ear approximations (i.e. quadratic boundary el-
ements) for the surface current density, see Eq.
(19), remains unchanged and, therefore, the di-
mension of the resulting BEM system of linear
algebraic equations will not be affected. Conse-
quently, the increase of the degree of approxima-
tion in Eq. (19) does not affect significantly the
computational cost.

5.5 Influence of the regularization parameter

It is interesting to investigate how the Tikhonov
regularization functional presented in Section 4.3
improves the accuracy of the numerical results, as

well as the importance of an appropriate criterion
for choosing the optimal regularization parameter.
To do so, we consider the cylindrical x−gradient
and the hemispherical z−gradient coils only.

Figs. 7(a)-(c) show the 2D contours of the stream
function in the z− θ plane, obtained using N =
3200 quadratic triangular boundary elements, i.e.
Ne = 6 local nodes and M = 1640 global nodes,
L = 351 internal points in the region of interest
and various values of the regularization param-
eter, namely λ = 1.0× 10−2 > λopt, λ = 4.0×
10−9 ≈ λopt, and λ = 1.0×10−11 < λopt, respec-
tively, for the cylindrical x−gradient coil given by
Example 1. From Figs. 7(a) and (b), it can be
seen that the numerical solution Iλ correspond-
ing to a large value of the regularization param-
eter, i.e. λ > λopt, yields contours of the stream
function with a low energy norm, but which do
not fit the desired z−component of the magnetic
flux density in the region of interest. In contrast,
the numerical solution Iλ associated with a very
small value of the regularization parameter, i.e.
λ < λopt, yields contours of the stream function
with an oscillatory behaviour, i.e. the correspond-
ing energy norm is high, although the fit with the
desired z−component of the magnetic flux den-
sity in the region of interest is very good, see Figs.
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Table 1: Stream function intensities at various
global nodes with cylindrical coordinates θ ∈ [0,π ]
and z = 0.5, obtained using linear and quadratic
triangular boundary elements, for the cylindrical
x−gradient coil.

θ z Im (Linear) Im (Quadratic)
0.0 0.5 353465.02 354703.80
0.3141592 0.5 336181.12 337359.76
0.6283185 0.5 285987.11 286990.23
0.9424778 0.5 207800.77 208530.18
1.2566371 0.5 109271.83 109656.14
1.5707963 0.5 47.580664 49.164221
1.8849556 0.5 −109181.57 −109562.86
2.1991149 0.5 −207723.78 −208450.63
2.5132741 0.5 −285931.32 −286932.58
2.8274334 0.5 −336151.72 −337329.38
3.1415927 0.5 −353465.02 −354703.80

Table 2: Stream function intensities at various
global nodes with cylindrical coordinates θ = 0
and z ∈ [0,1], obtained using linear and quadratic
triangular boundary elements, for the cylindrical
z−gradient coil.

θ z Im (Linear) Im (Quadratic)
0.0 0.0 −378954.18 −380012.32
0.0 0.1 −382388.77 −383343.89
0.0 0.2 −373138.04 −373949.35
0.0 0.3 −328871.62 −329649.95
0.0 0.4 −259007.31 −259774.38
0.0 0.5 −186144.83 −186830.58
0.0 0.6 −124338.51 −124880.77
0.0 0.7 −77080.789 −77460.616
0.0 0.8 −42616.230 −42845.350
0.0 0.9 −17862.255 −17964.500
0.0 1.0 0.55×10−6 −0.11×10−6

Table 3: Stream function intensities at various
global nodes with spherical coordinates θ ∈ [0,π ]
and φ = 0.1047197, obtained using linear and
quadratic triangular boundary elements, for the
hemispherical x−gradient coil.

θ φ Im (Linear) Im (Quadratic)
0.0 0.1047197 5353.7563 5332.4342

0.3141592 0.1047197 5093.1493 5073.0378
0.6283185 0.1047197 4334.0922 4317.1723
0.9424778 0.1047197 3150.6887 3138.6054
1.2566371 0.1047197 1658.9522 1652.8974
1.5707963 0.1047197 4.7721438 5.3324730
1.8849556 0.1047197 −1649.8512 −1642.7282
2.1991149 0.1047197 −3142.9672 −3129.9773
2.5132741 0.1047197 −4328.4675 −4310.8874
2.8274334 0.1047197 −5090.2000 −5069.7421
3.1415927 0.1047197 −5353.7563 −5332.4342

Table 4: Stream function intensities at various
global nodes with spherical coordinates θ = 0 and
φ ∈ [0,π/4], obtained using linear and quadratic tri-
angular boundary elements, for the hemispherical
z−gradient coil.

θ φ Im (Linear) Im (Quadratic)
0.0 0.0 18978.698 19012.141
0.0 0.0261799 19006.000 19037.969
0.0 0.0785398 18845.953 18866.941
0.0 0.1047197 18383.360 18395.162
0.0 0.3141592 15873.713 15911.133
0.0 0.5235987 8917.7579 8905.8097
0.0 0.7330382 3581.8981 3634.0051
0.0 1.0471976 −1654.3486 −1695.5283
0.0 1.1519173 −12815.955 −12898.754
0.0 1.3613568 −25533.014 −25631.409
0.0 1.5184364 −10755.624 −10792.625

7(b) and (c).

A similar conclusion can be drawn from Figs.
8(a)-(c) which illustrate the 2D contours of the
stream function in the θ − cosφ plane, obtained
using N = 2840 quadratic triangular boundary el-
ements, i.e. Ne = 6 local nodes and M = 1441
global nodes, L = 351 internal points in the region
of interest and various values of the regularization
parameter, namely λ = 1.0× 10−2 > λopt, λ =
7.0×10−9 ≈ λopt, and λ = 1.0×10−11 < λopt, re-
spectively, for the hemispherical z−gradient coil

given by Example 1.

5.6 Convergence of the method

The convergence of the proposed numerical
method with respect to refining the BEM mesh
size is illustrated in Figs. 9(a) and (b) which rep-
resent the contours of the stream function corre-
sponding to the cylindrical x− and z−gradient
coils, respectively, obtained using the optimal reg-
ularization parameter λopt chosen according to
Eq. (52), L = 351 internal points in the region
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Figure 7: The contours of the stream func-
tion obtained using N = 3200 quadratic triangu-
lar boundary elements, i.e. Ne = 6 local nodes
and M = 1640 global nodes, L = 351 internal
points in the region of interest and various val-
ues of the regularization parameter, namely (a)
λ = 1.0×10−2 > λopt, (b) λ = 4.0×10−9 ≈ λopt,
and (c) λ = 1.0×10−11 < λopt, for the cylindrical
x−gradient coil given by Example 1.
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Figure 8: The contours of the stream func-
tion obtained using N = 2840 quadratic triangu-
lar boundary elements, i.e. Ne = 6 local nodes
and M = 1441 global nodes, L = 351 internal
points in the region of interest and various val-
ues of the regularization parameter, namely (a)
λ = 1.0×10−2 > λopt, (b) λ = 7.0×10−9 ≈ λopt,
and (c) λ = 1.0×10−11 < λopt, for the hemispher-
ical z−gradient coil given by Example 2.
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of interest and various numbers of quadratic tri-
angular boundary elements (Ne = 6), namely N ∈
{1152,2084,3200}. Although an analytical solu-
tion for the contours of the stream function is not
available, we can conclude from these figures that
the Tikhonov regularization method described in
Section 4, in conjunction with the divergence-free
BEM presented in Section 3, is convergent with
respect to increasing the number of boundary el-
ements used to discretise the coil surface Γcoil.
Furthermore, the finer the BEM mesh size is then
the smoother contours of the stream function cor-
responding to the cylindrical x− and z−gradient
coils. Similar results have been obtained for
the hemispherical x− and z−gradient coils with
λ = λopt given by Eq. (52), L = 351 internal
points in the region of interest and various num-
bers of quadratic triangular boundary elements,
i.e. N ∈ {1128,1888,2840}, and these are shown
in Figs. 10(a) and (b), respectively.

There are a number of inter-related parameters
characterising the performance of a gradient coil.
One of the most important of these is the gradient
coil efficiency, η , which is the gradient strength
produced by the current, I, i.e.

η =
G
I

, (53)

where G = Gx and G = Gz in the case of x− and
z−gradient coils, respectively. Ideally, the gradi-
ent coil efficiency, η , should be as large as possi-
ble, but its magnitude is however strongly related
to another parameter that plays an important role
in gradient coil performance, namely the induc-
tance, L, of the gradient coil.

The inductance value is crucial in the design of
gradient coils since it limits the rate of change of
current in the coil and thus dictates the maximum
possible rate of change of gradient per unit time,
dG/dt, that can be achieved. Using a gradient am-
plifier capable of generating a maximum voltage,
V , gives

dG
dt

=
ηV
L

, (54)

so that the rise-time, τ , required to ramp-up a gra-
dient to amplitude, G, is obtained by integrating

Eq. (54) as

τ =
GL
ηV

. (55)

This indicates that achieving short rise-times re-
quires gradient coils with low inductance and am-
plifiers capable of producing high voltages. Us-
ing short rise-times means that less time is wasted
in ramping up gradients in MR sequences and
this often implies faster image acquisition and im-
proved signal to noise ratio. The inductance can
be made small by using a small number of turns,
n, in the gradient coil since for any coil L is pro-
portional to n2, but since in addition η is propor-
tional to n, this entails a reduction of the gradient
coil efficiency and, therefore, a reduced maximum
achievable gradient.

A useful parameter in characterising the perfor-
mance of gradient coils is the ratio η2/L, which is
independent of the number of turns and indicates
the efficiency that can be achieved for a given in-
ductance. It should be mentioned that the induc-
tance, L, is related to the magnetic energy, W, and
the current, I, through the following relation:

W =
1
2

LI2 (56)

and hence, on using Eqs. (53) and (56), we ob-
tain:

η2

L
=

G
2W

. (57)

Figs. 11(a) and (b) present the parameter η2/L
given by Eq. (57) corresponding to the cylindri-
cal x−gradient coil and hemispherical z−gradient
coil, respectively, obtained using the optimal reg-
ularization parameter λopt chosen according to
Eq. (52) and L = 351 internal points in the re-
gion of interest, as a function of the number of
linear (Ne = 3) and quadratic (Ne = 6) triangular
boundary elements. It should be mentioned that
in Eq. (57) the magnetic energy has been eval-
uated numerically by employing relations (34)
and (35), whilst G = Gx = 1.0Tm−1 and G =
Gz = 1.0Tm−1 in the case of x− and z−gradient
coils, respectively. From these figures it can be
seen that, for both linear and quadratic triangular
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Figure 9: The contours of the stream function corresponding to the cylindrical (a) x−, and (b) z−gradient
coils given by Example 1, obtained using the optimal regularization parameter λopt chosen according to Eq.
(52), L = 351 internal points in the region of interest and various numbers of quadratic triangular boundary
elements, i.e. Ne = 6, namely N = 1152 ( ), N = 2084 (− −) and N = 3200 (· · ·).
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Figure 10: The contours of the stream function corresponding to the hemispherical (a) x−, and (b)
z−gradient coils given by Example 2, obtained using the optimal regularization parameter λopt chosen ac-
cording to Eq. (52), L = 351 internal points in the region of interest and various numbers of quadratic
triangular boundary elements, i.e. Ne = 6, namely N = 1128 ( ), N = 1888 (− −) and N = 2840 (· · ·).
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Figure 11: The parameter η2/L corresponding to (a) the cylindrical x−gradient coil, and (b) the hemispher-
ical z−gradient coil, obtained using the optimal regularization parameter λopt chosen according to Eq. (52)
and L = 351 internal points in the region of interest, as a function of the number of linear (−◦−) and
quadratic (−+−) triangular boundary elements.

boundary elements, the parameter η2/L tends to
a constant value as the number of elements used
for discretising the coil surface, Γcoil, increases.
Hence we can conclude that the convergence of
the proposed numerical method with respect to re-
fining the BEM mesh size is also proven by con-
sidering the parameter η2/L characterising the
performance of gradient coils, for both coil ge-
ometries investigated.

Figure 12: Quadratic triangular boundary ele-
ment: Local spherical coordinate system.

6 Conclusions

In this paper, we have investigated the design
of cylindrical and hemispherical gradient coils
for MRI by considering the reconstruction of a
divergence-free surface current distribution from
knowledge of the magnetic flux density in a pre-
scribed region of interest. This inverse prob-
lem was formulated in the framework of static
electromagnetism using its corresponding integral
representation according to potential theory. A
novel quadratic BEM (i.e. linear interpolation)
which satisfies the divergence-free condition for
the current density was also proposed. In order
to retrieve an accurate and physically correct nu-
merical solution of this problem, a minimisation
problem for the Tikhonov functional was solved.
The latter was obtained by regularizing the least-
squares functional, which measures the difference
between the desired and numerically calculated
magnetic fluxes in a region of interest, with re-
spect to the norm induced by the magnetic en-
ergy. The numerically retrieved solutions of the
inverse problem analysed in this paper were pre-
sented in terms of the contours of the stream func-
tion. The numerical results obtained for cylin-
drical and hemispherical x− and z−gradient coil
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designs using linear and quadratic boundary ele-
ments (i.e. constant and linear approximations)
have showed the efficiency of the proposed nu-
merical method, as well as an improvement in the
accuracy in the case of quadratic elements.
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Appendix A: Shape functions and
divergence-free basis func-
tions for triangular boundary
elements

For the sake of completeness, we list below the
expressions for the shape functions, Nj, and their

derivatives, ∂Nj

∂ξ and ∂Nj

∂η , the derivatives in the ξ−
and η−directions, τnξ and τnη , the surface met-
ric, Jn, and the basis vectors, vnj, corresponding
to the types of boundary element, Γn, used in this
paper, see also Fig. 1. In the sequel, we use the
following notation:

ζ = ζ (ξ ,η) = 1−ξ −η, (58)

where ξ ,η ≥ 0, ξ +η ≤ 1.

Linear triangular boundary elements (Ne = 3)

Shape functions:

N1(ξ ,η) = ξ N2(ξ ,η) = η N3(ξ ,η) = ζ (59)

Derivatives of the shape functions:

∂N1(ξ ,η)
∂ξ

= 1
∂N1(ξ ,η)

∂η
= 0

∂N2(ξ ,η)
∂ξ

= 0
∂N2(ξ ,η)

∂η
= 1

∂N3(ξ ,η)
∂ξ

= −1
∂N3(ξ ,η)

∂η
= −1

(60)

Derivatives in the ξ− and η−directions:

τnξ (ξ ,η) = xn1−xn3 = τnξ

τnη(ξ ,η) = xn2−xn3 = τnη
(61)

Surface metric (Jacobian):

Jn(ξ ,η) = |τnξ (ξ ,η)×τnη(ξ ,η)|
= |τnξ ×τ nη | = Jn

(62)

Vectors vni(ξ ,η):

vn1(ξ ,η) =
xn3−xn2

Jn = vn1

vn2(ξ ,η) =
xn1−xn3

Jn = vn2

vn3(ξ ,η) =
xn2−xn1

Jn = vn3

(63)

Quadratic triangular boundary elements (Ne =
6)

Shape functions:

N1(ξ ,η) = ξ (2ξ −1) N4(ξ ,η) = 4ξη

N2(ξ ,η) = η(2η −1) N5(ξ ,η) = 4ηζ

N3(ξ ,η) = ζ (2ζ −1) N6(ξ ,η) = 4ζξ

(64)
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Derivatives of the shape functions:

∂N1(ξ ,η)
∂ξ

= 4ξ −1 ∂N1(ξ ,η)
∂η = 0

∂N2(ξ ,η)
∂ξ

= 0 ∂N2(ξ ,η)
∂η = 4η −1

∂N3(ξ ,η)
∂ξ

= 1−4ζ ∂N3(ξ ,η)
∂η = 1−4ζ

∂N4(ξ ,η)
∂ξ

= 4η ∂N4(ξ ,η)
∂η = 4ξ

∂N5(ξ ,η)
∂ξ

= −4η ∂N5(ξ ,η)
∂η = 4(ζ −η)

∂N6(ξ ,η)
∂ξ

= 4(ζ −ξ ) ∂N6(ξ ,η)
∂η = −4ξ

(65)

Derivatives in the ξ− and η−directions:

τnξ (ξ ,η) =(4ξ −1)xn1 +(1−4ζ )xn3

+4ηxn4 −4ηxn5 +4(ζ −ξ )xn6

τnη(ξ ,η) =(4η −1)xn2 +(1−4ζ )xn3

+4ξxn4 +4(ζ −η)xn5 −4ξxn6

(66)

Surface metric (Jacobian):

Jn(ξ ,η) = |τnξ (ξ ,η)×τnη(ξ ,η)| (67)

Vectors vni(ξ ,η):

vn1(ξ ,η) =
1

Jn(ξ ,η)
[
(1−4η)xn2 +(4ζ −1)xn3

− 4ξxn4 +4(η −ζ )xn5 +4ξxn6]
vn2(ξ ,η) =

1
Jn(ξ ,η)

[
(4ξ −1)xn1 +(1−4ζ )xn3

+ 4ηxn4−4ηxn5 +4(ζ −ξ )xn6]
vn3(ξ ,η) =

1
Jn(ξ ,η)

[
(1−4ξ )xn1 +(4η −1)xn2

+ 4(ξ −η)xn4 +4ζxn5 −4ζxn6]
(68)

Appendix B: Quadratic triangular boundary
elements: Local spherical coor-
dinate system

We first assume that two of the edges of the
quadratic triangular boundary element under in-
vestigation are given by constant azimuthal, θ =

θ0, and colatitude spherical coordinates, φ =
φ0, where θ0 ∈ [0,2π) and φ0 ∈ [0,π ], see also
Fig. 12.

The curve φ = φ0 can be parameterised as

x2 +y2 = r(z)2, z2 + r(z)2 = R2, (69)

whilst the unit tangent vector, v1(x), at this curve
is given by

v1(x) = − y
r(z)

ex +
x

r(z)
ey (70)

and hence we obtain

∇ ·v1(x) = 0. (71)

Moreover, the curve θ = θ0 can be parameterised
as

ξ : y(ξ ) = αx(ξ ), α ∈ R =⇒
ξ 2 = x(ξ )2 +y(ξ )2 =

(
1+α2

)
x(ξ )2

ξ =
√

1+α2 x(ξ )

eξ =
1√

1+α2

(
αex +ey

)
.

(72)

Consequently, the unit tangent vector, v2(x), at
the curve θ = θ0, is given by

v2(x) =
z
R

eξ −
ξ
R

ez

=
z

R
√

1+α2

(
αex +ey

)− x
√

1+α2

R
ez

(73)

and therefore it satisfies the following relation

∇ ·v2(x) = 0. (74)

Since the unit tangent vector at the third edge of
the quadratic triangular boundary element, v3(x),
is defined as a linear combination of the unit tan-
gent vectors v1(x) and v2(x), it follows that

∇ ·v3(x) = 0. (75)

Therefore, on using the interpolation proposed for
the surface current density, Jcoil, in Section 3.3,
as well as Eqs. (71), (74) and (75), we obtain the
divergence-free property of the approximated sur-
face current density, namely

∇ ·Jcoil(x) = 0. (76)
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The above property can easily be shown to hold
also in the general case by considering the rota-
tion of a circle on a spherical surface into a circle
on the same surface defined by either constant az-
imuthal, θ = θ0, or constant colatitude spherical
coordinates, φ = φ0.




