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The Stochastic & Method: A Numerical Method for Simulation of Noisy
Second Order Dynamical Systems

Nagalinga Rajan and Soumyendu Raha !

Abstract: The article describes a numerical
method for time domain integration of noisy dy-
namical systems originating from engineering ap-
plications. The models are second order stochas-
tic differential equations (SDE). The stochastic
process forcing the dynamics is treated mainly as
multiplicative noise involving a Wiener Process
in the It6 sense. The developed numerical inte-
gration method is a drift implicit strong order 2.0
method. The method has user-selectable numer-
ical dissipation properties that can be useful in
dealing with both multiplicative noise and stiff-
ness in a computationally efficient way. A gener-
alized analysis of the method including the multi-
plicative noise is presented. Strong order conver-
gence, user-selectable numerical dissipation and
stability properties are established in the analysis
of the method. The concept of stochastic contrac-
tivity has been developed in this context. The in-
tegration method is illustrated with numerical ex-
amples of noisy mechanical systems. The method
addresses the need for higher strong order conver-
gent stochastic schemes for efficient simulation
and design analysis of stiff and highly oscillatory
engineering systems with multiplicative noise.

Keyword: Second order Stochastic Differential
Equations, Multiplicative Noise, Multiple It In-
tegrals, Numerical Dissipation

1 Introduction

Mechanical and electrical systems often are mod-
eled as second order differential equations. How-
ever unmodeled dynamics and structural behavior
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contribute to noise for such system. For certain
kind of devices taking the noise into account for
numerical simulation is essential in order to get
correct estimates of design behavior with respect
to manufacturing variations, thus affecting yield.
This estimate is also crucial for control design and
for obtaining desired operating performance lev-
els. Micro-mechanical systems subject to man-
ufacturing process variation and operating condi-
tion noises is one such example. The control of an
aerospace vehicle subjected to noise such as wind
gusts is another example. Long slender intercon-
nects and circuits in sub-100 nm VLSI CMOS de-
sign are subjected to process variations, introduc-
ing noise that must accounted for, so that a desir-
able level of yield can be maintained for the de-
sign [Winkler (2004)].

Modeling of the above engineering applications
yields second order Stochastic Differential Equa-
tions (SDE). As a general model, we shall con-
sider equations of the form

jé:f(xvxvt)—i_B(xvxat)él (D

where x e R", f:R"x 7 - R" B:R"x I —
R™" t € T; & is m-dimensional Gaussian white
noise and .7 is the time interval [fo,7f]. An Itd
interpretation of (1) may be written as

dx = vdt (2a)
dv = f(x,v,t)dt+B(x,v,t) dW, (2b)

where, in the sense of generalized stochastic pro-
cesses, m-dimensional Wiener Process, W;, has
been introduced corresponding to the white noise.
B is the diffusion coefficient affecting only the
first order changes in x. For mechanical systems,
this translates to noisy changes in velocities only.

Such second order engineering systems are of-
ten stiff and oscillatory [Petzold, Jay, and Yen
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(1997)] in the drift term f. Numerical meth-
ods for integration thus need to handle oscilla-
tion through some numerical damping of small
amplitude high frequency responses. Also the
numerical scheme needs to be implicit for be-
ing able to deal with stiffness. For determinis-
tic dynamical systems, the generalized [Chung
and Hulbert (1993)] and other o and similarly
numerically dissipative methods [Hoff and Pahl
(1988),Wood, Bossak, and Zienkiewicz (1981),
Yen, Petzold, and Raha (1998),Liu (2007), Cho
and Kim (2002), Briseghella, Majorana, and Pa-
van (2003), Cornwell and Malkus (1992) | have
been developed to meet the above requirements
and achieve computational efficiency, A-stability
and larger time step sizes fixed over almost entire
interval of integration. Preserving the efficiency
of deterministic &t-methods, the stochastic version
of the generalized a-method is developed in this

paper.

1.1 Background

Special structures of the equations (2) under con-
sideration have been used to construct lower or-
der methods in the form of two step schemes
in [Lépingle and Ribémont (1992)]. Multistep
schemes like stochastic BDF-2 may be found in
[Buckwar, Horvath-Bokor, and Winkler (2006)].
Since the numerical method constructed in the
present paper is a one-step scheme, a brief re-
view confined only to one step methods is touched
upon in this section. On numerical methods for
second order SDE systems, treatment of Runge-
Kutta, Heun, leap-frog and other schemes may
be found in [Burrage, Burrage, and Tian (2004),
Burrage, Lenane, and Lythe (2007)] along with
analysis on measure-exact methods in the con-
text of stationary densities. Since straightfor-
ward extension of numerical schemes for deter-
ministic counterpart of the same stochastic equa-
tions may not produce the desired consistency and
stability [Kloeden (2002)] the derivation should
be done systematically. Systematically derived
strong order 1.0 Milstein schemes [Milstein and
Tretyakov (2004)] and strong order 1.5 strong
schemes [Kloeden and Platen (1999)] have been
traditionally and successfully used for numerical
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integration of first order SDE systems. Runge-
Kutta Methods [Carletti (2006)] have been ex-
tended for Stratonovich and It6 interpretation of
second order SDEs. A stochastic version of the
Newmark Beta method [Roy and Dash (2002)]
may be mentioned as a one step scheme providing
controlled damping. The present method belongs
to this last class.

2 Preliminaries

The design goal of the numerical method is to
introduce user-controllable numerical damping in
order to damp highly oscillatory small amplitude
responses including those from small multiplica-
tive noise and to focus the computational effort
on overall responses in relatively lower frequen-
cies which usually carry more information for the
engineering design. An accompanying strategy
toward computational efficiency is to take larger
time steps and keep the time step size fixed over
large sub-intervals of simulation, if not the entire
time interval of simulation. This time step ef-
ficiency is important in the engineering context
since path-wise simulations must be computed
economically enough to obtain the stochastic pro-
cess governing the behavior of the response with
reasonable computing resources. A strongly con-
vergent scheme is necessary for most engineering
system since each component state’s response is
important for failsafe working of the design. Stift-
ness and hence implicit formulation, is particu-
larly important when dealing with models from
flexible multibody systems, structural engineering
applications and multi-physics models.

The It6-Taylor expansion is used to construct the
strong order 2.0 approximation and numerical
damping is affected through implicit introduction
of the drift-related terms. In line with the obser-
vation in [Milstein and Tretyakov (2004)], the dif-
fusion term in the present method is not designed
to be implicit. The scheme is parameterized for
user-control of numerical damping.

Throughout the paper the following standard as-
sumptions are made as in [Kloeden and Platen
(1999)]. The noise in equations (2b) is assumed to
be standard m-dimensional Wiener Process with
pairwise independent components. Let there be
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a common probability space (Q,<7,P) with in-
dex t € .7 C R on which stochastic processes
x(t) and v(r) are collections of random variables.
The Wiener process W = {W,,t > 1} is associated
with an increasing family of o-algebras {.o7,t >
to}. Each component of W, is <% -measurable with
E(W (1p)) = 0 with probability 1, E(W(t)|<%,) =
0. E((W W)W/ —Wi)|) = 6 (1 —s) for
to < s<tand AW = W(t,+1) — W(t,), the incre-
ments are independent at all points in the parti-
tion of the time interval 7: 1o <t; <tp... <1, <
1 <... SIN:lf.

It is assumed that in the equations (2b) f and
B are component-wise jointly .#?>-measurable in

(t, (i)) € .7 x R?, where .Z is the c-algebra

of Lebsgue subsets of R. Also, f and B are
Lipschitz-continuous for all time over the simula-
tion interval and for all values of x and v. They
satisfy the linear growth bound condition, i.e.,

2
g < &2 <1+ ()

L . x\ .
The initial value condition that (v) is -
fo

> , K > 0 is constant.
2

2

measurable with E H < oo i8 also as-

oll2
sumed.

3 Numerical Scheme

Starting with the It6-Taylor expansions, the nu-
merical scheme leading to the stochastic version
of the generalized-or method is developed in this
section. Define

- )

a(x;,v,t) = <f(x,,vv,,l‘)>

G:’j(xtavtat)

The stochastic process (if) in the equations (2)

t
can be written as

G, = L )

0 o
(B(xz,v,,t)> (:,j) (™ column)

93

m (:,7)
t O .
+ dw]. 3)
E/ <B>

The equations in (3) can be rewritten in the con-
text of It6-Taylor expansion as

t m o .
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with superscripts indicating appropriate entries in
the matrix or vector. Expanding equations (3) in
[t6-Taylor fashion, we get
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+R 5)

where the terms of the form L{)(.), denote the op-
erator applied to the vector function component-
wise and evaluated at time instant s and R is the re-
mainder with mean square expectation of O(h%?).
The above expansion is relatively cheaper to ex-
pand owing to the special structure of (2). After
applying the operators, the expansion (5) is ob-
tained, component-wise for vectors x and v, as
h2
Xp = Xs —I—vsh—l—fs? +B

‘_,_/
Lo
zlaB g i k
+ZZZB / /(WT—VVS)dWT du
k=1l=1i= s
ﬁr ~~
C}f Lo
+ R,
(6a)
afmn: & 0
v =it fih+ == f +Z< +fla£>—
1 2o kol 8f h2
+§ZZZB ! javkavl 2 +Bs /dWT
k=1i=1j=1
m ) Bi,k u
+ZZZBl=la—i/ (wi—w!)aws
Sima 9V sds -
1k
no| 9Bk & aBk 0B
+k§ ot §(V w)
EEB
t T
x// dudW*
N N
Io x
1 & & 9*B* o7
Z B4l // k
+2;Z§ Fag |, | dudWe
q=11=1j=1
EEB
B'* WX —WE)dt+R,
+k§‘h§{ Mg Js ( T) T
N—— ~~
c Iko
(6b)

The above expansions are strong order 2.0-
accurate in x and 1.5-accurate in v respectively.
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The notations under the under-brace have been in-
troduced in equations (6) for referring to appropri-
ate coefficient and multiple It6 integral terms.

3.1 The Stochastic-oc Method

Based on the expansions in (6) and following the
deterministic generalized-o¢ method of [Chung
and Hulbert (1993)], the drift implicit Stochastic-
o method can be constructed as

2
bt =5t vt (1-28)6,+2B0,00) >

m m
+Bulo+ Y, Zczljjnll,k,o (7a)
k=1i=1
Va1 =V + (1 =) On+ YPut1 )t
+By(Wyp1 — +chlk L1k
k=1i=1
(7b)

OCm¢n+l :(am - 1)¢n + (1 - af)fn + OCffn+l-
(70)

For the deterministic generalized ¢ method, the
algorithmic parameters 8, y, oy, o, are real-
valued functions of a real valued user selectable
parameter p chosen in the interval [0, 1] and are
given as

1

B = D (8a)
y = % (8b)
Oy = % (8c)
o = %. (8d)

For the Stochastic-a method the same parame-
ters are needed to be assigned in terms of p and
time step size h. This is done in the context of
designing the algorithm for stability later in this

paper.

4 Stability of the Stochastic-o: Method

The generalized o method is practically A-stable
[Chung and Hulbert (1993)], i.e, for a given prob-
lem p and % can be selected so that the problem
lies in the induced stability region of the method.
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Similar properties for the Stochastic-o¢ method is
analyzed. Being a one-step method, the stability
properties are investigated by constructing an am-
plification matrix A on a linear test equation on the
normalized time interval [0, 1] with multiplicative
noise:

dg = udt (9a)

du = - qdi+Y (ug+mum) dW;. (9b)
=1

where gou € R, w € C, W is am m-
dimensional Wiener Process. The amplification
matrix A for the test equation (9) is defined
such that Eet = (quet tnsth Guiih?) =
A(gn uyh ¢nh2)T =: AZ, and Q := wh. Then,
A can be split into deterministic part A; and the
stochastic part Ay:

A=Ay +A,. (10)

The deterministic part corresponds to the amplifi-
cation matrix of the generalized-o method and the
stochastic part contains the Itd integrals. Thus the
parts of the amplification matrix can be written as

Ad =
o B+, —1 0—1 0y +2B—1
Dy D¢y 2D,
e’ Ay Agxy
Dy D¢y 2D,
Q2 _ (O‘./_])Qz Auzz
D D¢y 2D,
A=
(n—1)(X:+Zy) (=) (X+Zy) 0
Asyy As» 0
(-)PH42) (-1 RxA7)
- Do - 7Dg
where
Dy = (op— 1) BQ* + 0y — 1
Agry = (0 — 1) B2+ (1 — o) YQ* + 0y — 1
Agry =0y = 1) 2B =) Q2 +2 (O +7—1)
Agzzi=(ap—1)(2B —1)Q* + 204,

Ay =(Se+ Wih ((ap —1)BQ2+ 04, — 1)
- (af_ )}/QZ(XX +Zx)

95

Ay i=h ((ap —1)BQ2+ 04, — 1) (S, + W)
- (af - I)YQZ(XV +Zv)

in which Z represents the summation over It6 in-
tegrals of the form /(; ), X represents the sum-
mation over Itd integrals of the form /), S
represents summation over the integrals /(; 1), and
W represents the summation over the integrals of
the form fti"“ dw'; with I,k =1,2,....,m. The
subscript v to any of the Itd integrals S and X
denotes summation over the expressions of the
form 1; 1Ml and the subscript x denotes that over
MXilp; @ being a multi-index (as defined in
[Kloeden and Platen (1999)]) either of the form
(1,k,0) or of the form (/, k) as appropriate. For Ito
integrals W and Z, the subscript v denotes sum-
mation over expressions of the form 1,1, and for
subscript x, it denotes summation over y;ly; ¢ be-
ing a multi-index of the form (/,0) or (/). In all
the above, [ and k take non-zero integer values
1,2,...,m. The time step size is h = t,1 | — t,.
Letting |@| — oo, the amplification matrix A for
the very stiff case of the test equation (9) becomes

—p 0 0
Astiffa) Astif 2 Y
Agirr = —p “Bh 1=35
bl _ g+Xx+Zx+l _g+XLv+ZL' 1 _ L
B Bh 2p
(1)
where

Astiff21 ::Bh(sx‘i'wx) - }/(P +Xx +Zx + 1)
ASliff22 Z:Bh(Sv+Wv+ 1) — ’}/(h+Xv +Zv)

For |®| — 0 in the test equation (9b) with only
multiplicative noise affecting the changes in ve-
locity, the amplification matrix A reduces to

X+7, 3B 1
Xx+Zx+1 Y E‘FB‘FQ

Ao=| Ao Ao %‘H"H
0 0 2+5%
where
(p+1) (p—2>
Ay = 2 (Se+ W)k [ ===

A022 = Sv+Wv+1

For the deterministic (no noise) case of the test
equation (9) (i.e., ny, yy — Ofor/=1,2,...,m)the
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amplification matrix A, after putting the values of
the parameters in equation (8), becomes

1 — Lo+l _@? p—p’
D, D, —2D,
Ay = Q(p-3)(p+1)’  Aup _ A
2D, 2D, 4D,
_Qp+1)? CQ(p+1)? Agn
D, D, 2D,
(12)
where

D,:=—p>+3p+Q*+2
A= =20 +6p +Q*((p—2)p — 1) +4
Anz=(p—1)(2(p+1)*-Q*(p—1))
Agzsi=(p(p+2)—1)Q*+2p*(2p+3) —2.
The eigenvalues A (A,) of the deterministic part of

the amplification matrix as in (12) are as follows.
Let

27(p—1DQ*+2(p+1)*) (p+1)°
(—p3+3p +Q2+2)°

L9+ 1)*Bp=3)p +83)Q2 13V3
(=P’ +3p + @ +2)

[Q2(p+ 1)1 27Q%(p — 1)2 +4(p +1)?)

\/ (—p3+3p+Q242)*

5-p(3Q°+p(4p+3)—6)

3(—p3+3p+Q2+2)

(P+1)*(3GBp—4)Q2+(p+1)?)
(—p3+3p +Q2+2)°

and the eigenvalues are evaluated as

P =

L=—

V2L P
=Sy 550 (13a)
23/—2L+P<(—2)%P—6Q)
h=— (13b)
6P
13:_(1—1\/§)L (1+z\/§)P+Q' 130

3(223)p * 6v2

For Q € C and p € [0,1], the eigenvalues in
(13) have maxy (|A(A4)|) < 1 everywhere on the
complex plane except at Q = ++/(p3 —3p —2)
at which points the eigenvalues become non-
analytic. This means the overall stability region
for the deterministic generalized o method in-
duced by a particular choice of p and 4, is the
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entire complex plane except for a point each in
the intervals [~2,—+/2] and [v/2,2] on the real
axis. Thus, for a particular choice of p € [0,1],
the induced stability region excludes the points

+3 («/(p3 —3p — 2)) on the real axis. However,

for a given w, the parameter p and time step size &
can be chosen so that the problem is always in the
induced stability region, i.e., does not fall on one
of the non-analytic points on the real axis. This
gives the method A-stability for all practical pur-
poses.

4.1 Choice of B and y

The values of parameters 8 and y as in (15) in
terms of the user selectable dissipation parame-
ter p is based on the expected value of the max-
imum absolute value of the eigenvalues of Ag;zr
as defined in (11). In order to dissipate the highly
oscillatory smaller amplitude responses in the ex-
tremely stiff modes, the design goal is to choose
the parameters in such a way that the all the eigen-
values of Ay;rr are real and their absolute values
are equal to p, thus giving a dissipation propor-
tionate to the user selectable dissipation parame-
ter [Chung and Hulbert (1993)]. The eigenvalues
of Ayiry are given as

M(Agifr) = —p (14a)

191 =

4Bh—2yh+2BS,h+2BWyh —h—2vX, —2vZ,
4Bh

192 =

(h(2y—2B(S, + W, +2)+1) +2¥(X, + Z,))*
193 =
— 8B (—2y—S, — W, +2B(S,+W,+1)+1)
+16BA(y—1)(X, +Z,)

Vh+ 1

Ao a(Agirs) = O+
23(Agifr) =t 15h

(14b)
In order the preserve the properties similar to the
deterministic generalized-o method, it is required
that P(|® + p| > 0) < O(h?) and P(| + 0| >
0) < O(h?) for a sufficiently small time step h.
Applying Markov inequality this condition may
be modified as E(Ax(Ayirr)) = E(A3(Agirr)) =
—p in (14b) so that E(¥%) = —p and E( +
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©¥3) = 0. The resulting equations are solved for
P and y. Taking the solutions least sensitive to
change in the time step size & we obtain

194 =
1152 — h*A® —61° A% —6n* (4(p —2)p +5)7*
—96h(p —2)p7*

B :=4/2(p+1)%0y

Bi:= ((h0)*+4)p+1) A% —96p +20 — 96

g Mh(a’+4) (p+1)

—4h(p +1)p

ne=r(2p -1

pi=h"(2p>+1) A% +2n (4p> +2p + 1) A*
N +6hpf?—24p+ 9424

(15a)

15b

2(p+24(p+1)2) (15b)
_2p—1 _ P

oy = 1Tp and af_l—l—p (15¢)

where )2 = 3" | n?. Expanding the equations
(15a) and (15b) in series,

a2
n°h
B~ (1—1—6+0(h2)>
+< 2+—+0 h2>p
1 2

_|_<3_ 777h ))p?
51%h )

+{ 3 —4+0(n) ) p?

n2
+<5—27g h+0(h2)>p4+...

1

~ for very small % or very small j2

(p+1)? Y Y L

(16a)
)
N n°h 2
A2h
—|—<—2—|—nT—|-0(h2)>p

97

_3-p
T 2Ap+1)

for very small & or very small 2.

(16b)

Thus, for large noise multiplicative in velocities,
the parameters B and y are time step size depen-
dent and must be computed using (15). How-
ever, for small noise and extremely small time
step sizes, the same 3 and v as in the determin-
istic generalized o method can be used. The o/
and o, remain same as the the deterministic gen-
eralized o method since these parameters are con-
cerned with only the drift terms and also, the noise
does not affect the column corresponding to ¢ in
Ay. While solving for 8 and v, the following esti-
mates (using expectations of multiple Itd integrals
given in [Kloeden and Platen (1999)]) are used for
finding the expectation of various second moment
terms involving multiple Itd integrals.

h? )
E(Gyl:0) = 58  mWZ (17a)
E(Iy1(j,.j5)) =0 in WS (17b)
E(1(j, jo)l(j5,0) =0 inSZ  (17¢)
h3 )
E(I(jl-,jz)l(h-,jmo)) = g5jl J3 5j2-,j4 inSX  (17d)
E(1(, 0)1(».j5,0) =0 inZX (17e)
E(I;)1(j,.j5.0) =0 in WX (17
h )
Bl 0lp0) = 300 22 (17g)
h4
E(I(jl -,jz-,O)I(J% J4s 0)) 125]1 J3 5]2 Jja in X? (17h)
E(l(j\I(j,)) = h6;, j, inw?  (17i)
h? . )
E(I(jl-,jz)l(ja-,jzt)) = ?51'1 J3 5j2-,j4 in 82, (17)

where the components j; of the multi-indices
take non-zero integer values 1,2,...,m. Also,

E(l;)) =E(, ;) =E,0) =E(,,j.0) =0

4.2 Stochastic Perturbation to the Determinis-
tic Amplification Matrix

The stability property of the Stochastic-o method,
everywhere in C except at the two points on the
real axis where the deterministic eigenvalues be-
come singular for a given p, depends the largest
magnitude of the eigenvalues of the amplification
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matrix being less than or equal to 1. The path-
wise stability for the Stochastic-a method can be
viewed as a perturbation in the eigenvalues of the
deterministic part A4 of the amplification matrix
A, i.e., as a noisy perturbation to the generalized-
o method. Hence an estimate of the suitable
norms of the perturbation Ay is needed.

4.2.1 An Estimate for the Norm of A

Because of the structure of Ay, viz., a null column
and similar entries containing the multiple Ifo in-
tegrals in the two other columns, the 2-Norm is
expected to be O(v/h). We shall use the Frobenius
Norm to upper bound the estimate of E(||A||2).

LEMMA 4.1 For small time step

size b E(lAll) < (/IVAVE +

Y] 22 38R (w) 3/2

\/77—(1377 —;%>(p+l>2>h + 0(h5/2) when

both f) and % are not zero. If ©)> — 0,
\/Ph‘%/z \/Pﬂf(&))hs/z 7/2

E(HAAHF) < V3 V3(p—2)(p+1)2 +0(h )

and E(||A||r) = 0, when both A*> — 0 and

52

3~ —0.

Proof. Squaring the absolute value of every entry
of Ay and adding, we take the expectation of the
square of the Frobenius norm of A;:

E(||A][7) < (1-04)°Ey
+(ar — 1227 +1)|QE,

A2A2h4 A23 h
+2( %N ?erh n nh
(18)

where
2

Y ST A Y
Ey = X?+xn +9%= +n -
1
X
‘(af—l)ﬁﬂz—i—am—l

using the expectations in (17) and well-known in-
equalities for random variables, such as, E(|z(X +
Z) 4+ (S+W)h|?) < 2(E(|z(X +2) ) + E(|hS +
hW|?)), where X,Z,S,W are random variables
and z € C is a deterministic scalar. Substituting
the values of the parameters as in (15) for small
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h, followed by taking the square root and expand-
ing the right hand side in a series in 4 about 0,
establishes the first estimate. For the second esti-
mate, appropriate limits are taken before the series
expansion in s. The second estimate is thus ob-

mz<p+1>2<pfgp—z>+n>h3ﬂ +0(1?) as
R(w) — o=. The last estimate in the Lemma fol-

lows from making 7} and § zero in the expression
for (18). I

It may be noted that as R(w) — oo, the first esti-
mate becomes

E([|Ad|r) <

1
\/g(p +1)2(p(3p—2)+ 11)A2 +27Vh
L M (p(p(pBp+4) +10) +20) +35)h*>
86/ ((p(B3p—2) + 1) (p + 1)2 + 12)
+0 <h5/ 2) :
When significant noise multiplicative in velocities
is present, §2, the norm of the coefficients of noise

multiplicative in positions, does not play a signif-
icant role in the the first estimate for E(||A;||r)

tained as

and appears in the coefficients of > and higher
order terms in 4. Noise multiplicative in positions
alone produces lesser perturbation to A, since the
estimate for E(||A,||r) then becomes O(h%).

4.2.2 An Estimate of the Norm of the Strictly
Upper Triangular Matrix of Schur De-
composition of Ay

The sensitivity of the eigenvalues of A; due to
the additive perturbation A; depends on the norm
of the strictly upper triangular matrix from the
Schur Decomposition of A; [Golub and Van Loan
(1996)]. Hence, this estimate. Let Q' (D +N)Q
be the Schur Decomposition of A;, where Q is a
unitary matrix and D, a diagonal matrix and N is a
strictly upper triangular matrix, such that [N|? =0
with an integer p, with 1 < p < n. For the test
equation (9), p can take the values 1,2 or 3. A
result on smooth decompositions, useful for esti-
mating the norm of N, is stated.

LEMMA 4.2 (DIECI AND EIROLA) [Dieci and
Eirola (1999)] Ay has Schur Decomposition,
Q,D, N that are smooth wherever Ay is smooth.
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Let the stability region for the deterministic gen-
eralized oo method be modified to exclude a small
neighborhood around each of the points of singu-
larity on the real axis and let the modified sta-
bility region be denoted by S. A, as a function
of Q is smooth over S. The spectral radius of
Ay increases smoothly with p everywhere in S.
The strictly upper triangular N from the Schur
Decomposition is smooth over S for the deter-
ministic generalized or method, by Lemma (4.2).
Also, [|N||2 < ||Aal|2+ || — D||2, since norms re-
main unchanged under unitary transformation. As
D is the diagonal matrix with eigenvalues of A,,
||D||> = max|A(Ag)| < 1 on S. Thus we estimate
[IN|]2 < ||A4|]2+ 1. Since, A; is smooth every-
where on S, ||A,|| is also smooth. Then, the fol-
lowing estimate is used.

0)

[1Adllz < llAdl 7 < 5— (19)
pQ

where

DPQ =

(p3—3p +S(Q)Z—SK(Q)Z—Z>2+4S(Q)25K(Q)2

and

4 2
+<11§K(Q) +3SKE‘Q) +22_5> .

2
2293(Q)* 229R(Q)’F(Q)° 453(Q)%) ,
6 T 8 - 4 p

N 2299{(9)4+459T(Q)2 39\ ,
16 4 5P

4 2 2 2
N (993;9) +99EK(Q; 3(Q) _173;9) >p3

4 2
99R(Q) +179{2(Q) _17> »

_4_

4 2
N (2499;(9) - 299{2(9) +21> 5
693(Q)* 69R(Q)*I(Q)* 533(Q)*
+< 4 2 L
4 2
+<699¥i9) _539{;9) +§>p
773(Q)  TIR(Q)*  33(Q)?
6 T 16 4
773(Q)°R(Q)*  3R(Q)* 53
* 3 T4 7%

||[A4||% thus smoothly increases with p € [0,1] ev-
erywhere on S for a given step size & and circular
frequency @. Then, max||Aq||F = [|AallF|,—; <
993 (Q)*+2(99R(Q)*+4) 3 (Q)* +99R(Q)* - 8R(Q)* +64
3(Q) +2(R(Q)1—4)3(Q)+(R(Q)*+4)°

which has a minima at :t% on the imaginary
axis and a point of inflexion at the origin.
Elsewhere on the S the norm grows smoothly
and becomes 99 as |Q| — e. The points of
singularity of A; have been excluded along with
a neighborhood from S such that at the boundary
of the excluded region ||A,||F is bounded by its
limiting value for || — eo. Thus,

IN]]2 < V99 +1
and

N3+ [IN[]2+1 <109.95

However, excluding the poles with a neighbor-
hood on the boundary of which ||N||, is bounded
as above would exclude almost all of the real axis,
ie., between (1.3784,c00) and (—oo,—1.3784)
from S. This still ensures /-Stability. Since the
eigenvalues are no longer analytic on on entire
C~, A-Stability is lost. In order to include most of
the C~, the bounds above may be relaxed to ex-
clude only a reasonable neighborhood around the
points of singularity on the real axis of the stabil-
ity plane. The definition of the neighborhood de-
pends on the engineering problem being solved.
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For multibody systems relaxing the upper bound
to

[[N|[5+IN|]2+1 < 140

works well and results in defining

§ = C\{(—‘m‘—zl.%lﬂ,
<0.576424— ‘m‘))
U(((\/m( —0.576424) ,
(4.06157+‘m‘))} (20)

ie., including all of C in §
except (=lV((P*=3p-2)] -
4.06157,—|+/(p?—3p —2)| +
0.576424) and (W (P*=3p—-2)] —
0.576424,|\/(p3 —3p —2)| + 4.06157).  For

the rest of this paper this relaxed definition of S,
(20) is used to denote the stability region of the
Stochastic-o method.

4.2.3 Noise as Perturbation to the Deterministic
Amplification Matrix

Using a result similar to Bauer-Fike (Theorem
7.2.3, [Golub and Van Loan (1996)]) the expected
perturbation due to the Weiner Process, to the
eigenvalues of the deterministic part A4 of the am-
plification matrix A, can be estimated. For A4, the
above result may be stated as follows.

LEMMA 4.3 Let Q"A;Q = D+ N be a Schur De-
composition of Ag € C"". If Ay € A(Ag+Ay) and
p is the smallest positive integer (at most 3 for Ay
in the test problem (9) ) such that |N|P = 0, then,

mingcpa,) A — A < max(6, 6%) (21)
=l p-l

where 8 := ||Al|2 Y [INI[5 < [|As]]r Y [IN113
k=0 k=0

Proof. Using the Theorem 7.2.3, in [Golub and
Van Loan (1996)], and applying A, as perturba-
tion to Ay, the result is obtained. []

Using the estimates for E(||A||r), we obtain

p—1
E(6) =E(||A;]]2) I;OHNH'E
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p—1
<E(|A,llr) X [INII3
k=0

and

=
=

E(67) <(E(6))
applying Lyapunov inequality and observing that
0 is positive and real. Again, using Lemma (4.1)
followed by taking only the first significant terms
in h, and observing that N is deterministic,

E(0)

%

m

VAZVR) SIS NI, for 72,2 > 0

72h3/2 —
(") zdimi,
0

, for 72,22 — 0

2

for )2 — 0 only

Next, we estimate the expected perturbation to the
spectral radius of the deterministic amplification
matrix.

LEMMA 4.4 With the Schur Decomposition of
and the perturbation Ag to Ay and the estimates
as defined in Lemma (4.3), the expected perturba-
tion to the eigenvalues of Ay is, almost surely,
1
minzeza,) |4 —E(4)| < max(E(6),E(67))
(22)

where p is an integer such that 1 < p < 3.

Proof. In Lemma(4.3) taking expectations on both
sides, and using Jensen’s inequality, the result is
obtained. The degree of nilpotency of |N| in the
equation (9) is at most 3. [J

At p = 1, the eigenvalues of (A;+A,) can be eval-
uated explicitly and using Jensen’s inequality, it
may be shown that the expected magnitude of the
spectral radius is in between 1 and 1+ +/A2v/h.
This is a sharper and more useful estimate since
at p = 1 the perturbation based stability estimate
may be quite pessimistic, thus giving a much
lower probability of stability than that observed
while solving SDEs from engineering applica-
tions. Similarly, as |@| — 0, the expected spec-
tral radius is in between 1 and 1+ W\/ﬁ thus
again giving a sharper and realistic estimate for
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stability at low frequencies. For noise multiplica-
tive only in positions, the expected magnitude of
the spectral radius of the stochastic amplification
matrix Ag -+ Ay is in between 1 and 1+ /72h%/2.
This and the preceding analysis shows that noise
multiplicative in velocities is likely to have worse
destabilizing effect on the Stochastic-o¢ method
than that due to the positions. Also, the destabi-
lizing effect is no worse than the analytical desta-
bilization, due to multiplicative noise, of the SDE
in its analytical form.

4.3 Contractivity

For a choice of small enough 2 > 0 and p € [0, 1],
the Stochastic-o¢ method exhibits contractivity in
probability and mean. Contractivity for a numer-
ical scheme for stochastic differential equations
can be defined as follows.

DEFINITION 4.1 (STOCHASTIC CONTRACTIVITY)

A numerical method of the form 2,,1 = AZ, is
said to have stochastic contractivity property

(a) in Probability (i.e, with probability 1)
if PUEl<IE)=1
and

(b) in the pth Mean
if E([[El”) <E(IEA")

where A € CIME)AmE) j¢ 1he amplification ma-
trix of the numerical method and E, is the numer-
ical solution for the test equation (9) generated at
the rth time-step in a partitioning t) <1t; <t <
try1--- <ty =ty of the time interval .

Following the definition a conditional contractiv-
ity property for the Stochastic-or method is estab-
lished in the following Lemma.

LEMMA 4.5 (CONTRACTIVITY) For the choice
of a sufficiently small time step size h and an
appropriate choice of p € [0,1] the Stochastic-o
method has contractivity property with probabil-
ity 1 and contractivity property in the mean.

Proof. For the test equation (9), the stochastic-o
method generates iterations of the form =, =
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AE, at the r-th time step. The amplification ma-
trix can be written as: A = Ay —|—A§r> (for r-th
time step). There exists a suitable norm ||A]| <
max; 4y |A| + & with the smallest € > 0. Then
if E, is expressed as QX a, some rotational trans-
formation on a linear combination of the eigen-
vectors of A, then using the above norm on AZ,,
we obtain in the asymptotic growth rate:

Ep|l < ADIE]. 23
12741l < (max JIADIE (23)

Using Lemma (4.4) and (4.3), choosing 0 < h <<
1 and then applying Markov inequality, we get

P(IE ol < 151D =P (maxia  <1)

=1-P( max min [A(A;)—A(A)|>¢€
<A<A>,A<Ad> iy Mo —AAl )

(since maxycy(a,) 4] < 1)

U L=
> 1 —max p gﬂh ZHNH%
k=0
1/p
1 7., k]
— /382 |IN|A
8( SN H2>

where 0 < € << 1, p is an integer in [1,dim(Z)]
such that |[N|? = 0; and N is a strictly upper trian-
gular matrix obtained from Schur Decomposition
of Ay := Q¥(D+ N)Q. For a sufficiently small
choice of / and a suitable choice of the tolerance
0 <& < 1—maxyey, |A|fora given p and
QeS, P(|E 1| <|IE|) ~ 1. Taking into ac-
count equivalence of norms, contractivity in prob-
ability is thus shown.

From the results in Lemma (4.4) and (4.4), one
may write

E( max \M) <1
AEA(Ay)
if

A) M Aq) A(Ag)

E(}L(max min M(Ad)—l(A)O

<1— max [A]
AEA(Ay)
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for a given p € [0,1], h > 0 and Q € S. Then,
h>0and p € [0,1] can be chosen such that

1
7,\2 p—1 k 7,\2 p—1 k /P
max =N2h ZHNH% Ul hZHNuz
3 k=0 3 k=0

<1— max [A|.
AEA(Ay)

Taking expectation on both sides of equation (23),
we obtain, almost surely,

E(IEal) < E(max RDE(ED. @4

using the fact thatA (1 e, Ay at the rth time-step)
are independent across the time-steps due to the
independence of increments (across time-steps) of
the m-dimensional Weiner process affecting the
test equation (9). With & and p as chosen above
along with the consideration for equivalence of
norms, stochastic contractivity in mean is estab-
lished. [J

4.4 Numerical Asymptotic Stability

Let @ be chosen such that the test equation (9)
is stochastically asymptotically stable [Burrage,
Burrage, and Mitsui (2000)] i.e, V € > 0,V #o,

lim P(supHY(t 10, Y0)|| >8> =0

Yo—0
and

lim P(hmHY(t 0, Yo)|| = ):1
Yo—0

where ||.|| is a suitable norm.

DEFINITION 4.2 (NUMERICAL ASYMPTOTIC
STABILITY) [Burrage, Burrage, and Mitsui
(2000)] A numerical method with time step-size
h > 0, applied to the test equation (9) with Q € S,
and Mn,x € R™ such that it is stochastically
asymptotically stable, is defined to be numer-
ically asymptotically stable if almost surely,
limy_. ||En|| = 0, where {E,} is the sequence
of numerical solutions to the test equation (9)
generated at the end of each time step for N time
steps.
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In this section the stability properties of the
Stochastic-a method are analyzed in the sense of
the definition (4.2). In course of the analysis, it’d
be shown that due to stability requirements, noise
multiplicative in positions imposes more restric-
tion on the choice of a larger step-size for the
Stochastic-a method.

THEOREM 4.1 (NUMERICAL ASYMPTOTIC
STABILITY) For a choice of sufficiently small
step size h > 0, and 0 < p < 1 Stochastic-a
method is numerically asymptotically stable
when applied to a stochastically asymptoti-
cally stable second order stochastic differential
equation.

Proof. At the end of r time steps, the solution
generated with the linear test equation (9) is Z,,

and the amplification matrix is A") = A, + A"

Z, = A5 +AVE, (25a)

r—1
2o+ Y, Abarkiz, (25b)

ie.,2, =A)
Taking appropriate norms,

r—1
- T k r—k—1p (1=
I < Aol + 3, A AL+ 1Z )
k=1
(25¢)

For r = N and N — oo, [|A}|| — 0 due to the
max; ez (a) |[A| < 1 property of the deterministic
generahzed o method. Also, consistent with the
assumptions in section (2), it is assumed that
P(E(0) =Zp) =1and |Z
is finite. Due to Lemma (4.5), P(||Z,]| < &) ~ 1
for r > 0.. In equation (25a) with » = N, and
N — oo and due to Lemma (4.5) and independence
of Weiner process increments, we have

- — k
P(lim x| =0)=P(|Z1]| <&)P(JA%] < &),
(where 1 >>¢e>0, 1<k<N-1)

V1102h
>1-
V3e
(using Markov inequality and Lemmas (4.1), and

4.5))

~ 1
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(for a sufficiently small & and ¢€)

This proves numerical asymptotic stability (in
probability). [

4.5 Stability in Mean and Mean Square

Stability associated with expected values of vari-
ous moments is defined as follows.

DEFINITION 4.3 (STABILITY IN p-TH MEAN)
[Burrage, Burrage, and Mitsui (2000)] A nu-
merical method is said to be stable in the p-th
mean if limy_.. E(||2y]|?) = 0, where Zy is the
solution generated at the N-th time step for a test
equation of the form (9).

For the Stochastic-a method, the stability in
mean, i.e., for p = 1 is shown by the following
theorem.

THEOREM 4.2 (MEAN STABILITY) For a
choice of sufficiently small step size h, and
p € [0, 1] Stochastic-a. method is numerically sta-
ble in the mean when applied to a stochastically
asymptotically stable second order stochastic
differential equation with multiplicative noise as
in equation (9b).

Proof. Taking expectation on both sides in equa-
tion (25¢), as r = N — oo, and using Lemma(4.1)

and independence of the increment of Weiner Pro-
cess across time steps, we obtain, almost surely

Jim B(Z1)

N—1
. k —k— _
31313;2 E(I4 ) 145~ B4l

< lim Z HAN 16

N—oo &

(using Lemma(4.1) and that
E([[E]]) := & < b

by Lemma (4.5))

— 0 for sufficiently small &
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noting that E(||Zk||) = 0fork=N—j, j <<N,
as N — oo, This proves the stability in mean. [
COMMENT. For engineering application pur-
poses, obviously, the stability in probability (i.e,
numerical asymptotic stability) is more restrictive
in step sizes than that in the mean. In fact, for
large noise multiplicative in velocities and tight
tolerances in Newton Iteration, the stability in
probability can be too inefficient and render the
method inapplicable. Same observation applies to
contractivity in probability being more restrictive
on step size than contractivity in mean. Hence for
step size selection, stability and contractivity in
mean are more practical consideration and works
well with mechanical multibody systems applica-
tions, as is illustrated in the last section.

THEOREM 4.3 (MEAN SQUARE STABILITY)
For a sufficiently small time step size h and a
choice of p € [0,1], the Stochastic-a. method is
mean-square stable.

Proof. Consider equation (23). Squaring both
sides and taking expectation ( similar to the re-
currence (24)), we obtain, almost surely,

= 2 2 = 12
E(I5l?) < E(max [APE(IZ1%) @6)

using the contractivity property (that is,
E(maxjcy4)|4]) < 1 in Lemma (4.5). For
a suitable ch01ce of p, we can make, almost
surely, E(maxycy4)|A]) < 1 strictly. Also, as
before it is assumed that ||Zo|| = & < oo almost
surely. As r = N — oo, the recurrence (26)
contracts E (|[2y/|?) to zero, provided h has been
chosen to satisfy

70\ ok
max (/3712 X V1[5
k=0
7 1/p p—1 1/p
( §ﬁ2h> (ZHM\’E)
k=0

1 —max;cpa,) A
2maxjcpa,) A

1 <p<dim(E)

This establishes the mean square stability. []

Thus, as seen in the preceding proofs, the mean
and the mean-square stability are only as restric-
tive on time step sizes as contractivity in mean.
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5 Strong Order Consistency

The convergence of the method for ¢, velocity v
and position x can be derived by comparing the
method with the It6-Taylor expansion. Expanding
Jfu+1 using Ito6-Taylor expansion gives the follow-
ing expression

Tnt1 0 m titl .
fon=tfot [ 0pds+ Y [ L paw)
tn j=1 ty

Further expanding the integral terms, we obtain

Jor1= (27)
Tnt1 s

fu+hLOf, + / / L°L° f,duds

Tt 1
' Z / L1 fudeds—l—ZLk Fu(AW)
In

1 Tnt1
+Z / / 1L fydudW!
k=17

m

m Tnt1
+ZZ /t / L'Lf fdWraw! (28)

I= In

—_

where AWF = AW, | — AWF. Applying this ex-

pansion to (7¢) and rearranging yields

Ot~ Frr = (75) (00— o)
O 000 S iAW) @)

J=1

N2
where \/E<< ;?’_lLif,,AW,{>> is  O(n"?).

Consistent with the assumptions for initial con-
ditions, it is assumed that ¢g = fy almost surely.
The root mean square error is estimated as:
VE(|0ns1— fur1]?) = O(h°3). The recurrence
(29) indicates that the accumulated (global) root
mean square error for ¢y (after N time steps)
remains O(h%>). This establishes strong order
0.5 for the consistency of root mean square error
in ¢ (the acceleration term).

The root mean square error in v,
\/E V(tys1) —Vas1|?), is  estimated from
the recurrence obtained by expanding f,+; in
(7b) using (28):

m m
Vil = Vp + B, AW, +hfn + Z Z Clljc;ll,k
k=11=1
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hyo hyos & . ,
+ a—fLOfn + a—f > LU f,AW] 4R,

m m j:]
(30)
Using the above recurrence (30), one gets
o
V(tnt1) = Vnt :thOfn(l - U)
Oy
hyo -
+ L S aw
Om k=1
e o (™ wk ik
—L fnZ(/t (WT—Vth)dT)
k=1 M
+R, (31)
The root mean square estimate

VE(EE U - whan)?) s o6,
Applying this in a time step recurrence for error,
the strong order consistency in global root mean
square error in v is obtained as 1.5.

Expanding the update of position x in (7a) using
(28) we get

h2
Xn+1 =Xp +Vnh + B, AW, + _fn

n? ZBOCf n? BOCf 0
L f,AW)] kel S8
2( O )Z‘] JnbWoi 5 2 O J

m m
+ZZ klzko-i-R
k=11=1

Comparing the recurrence above against an Ito-
Taylor expansion, we can estimate the root mean
square error in x. The resulting error expression

h? ZBOCf
t
X(tpi1) = Xnp1 = 2 0

_|_

Z L f, AW,

W2
+ —bL"fn +R,
Ol

2
can be used to estimate the global consis-
tent root mean square error in Xx. Since
VE (R (Wui1 —W,)2) is of O(h*3), the root
mean square error in x is consistent with strong
order 2.0.

THEOREM 5.1 (CONVERGENCE WITH STRONG
ORDER) The Stochastic-oc method is convergent
with strong order 2.0.
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Proof. The discussion preceding the theorem es-
tablishes that the method is strong order 2.0 con-
sistent in root mean square error. The stability
property as established in theorems (4.1), (4.2)
and (26) together with the root mean square error
consistency proves the convergence. [

6 Numerical Dissipation Property

The Stochastic-oc method introduces user control-
lable numerical dissipation. From the contractiv-
ity property, Lemma (4.5), it is seen that, under an
appropriate norm, this dissipation is proportional
to the square of the spectral radius of the method,
in both mean and probability. Since the expected
spectral radius of the method at each time step
depends on the user selectable parameter p, the
dissipation can be introduced accordingly. Also,
the expected spectral radius is influenced by the
high frequency oscillations, thus allowing the user
to introduce greater dissipation for highly oscilla-
tory but small amplitude responses. The parame-
ters 3 and y are chosen (section (4.1)) such that
the expected dissipation at very high frequencies
tends to be p% 4+ O(+v/h) The numerical dissipation
property is estimated from equation(26) in theo-
rem (4.3). In the following equation

- 2 2 = 12
E(|Zl?) < E(max [AP)E(|7)

with a suitable norm expressing the energy of the
engineering system, the expected energy dissipa-
tion across each time step is E(max; ¢z (4 |4]%).
Considering the result in theorem (4.2) along with
Jensen’s inequality yields

2
7
A ~N2h
(ﬁ%i‘d)‘ /50 )

max |A)?+O(Vh)
€A(Ag)

IN

E A2
(félf@‘ 1)

IN

A

As R(w) — oo in the test equation (9), the ex-
pected dissipation, in the limit is p2 + O(v/h).
Similarly, for low frequencies, the expected dis-
sipation tends to disappear: 1+ O(v/h).

7 Numerical Examples

The Stochastic-or method because of its dissipa-
tive property, is supposed to work well for en-
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gineering problems where stiffness arising from
spatial discretization and/or multiplicative noise
is a computational efficiency issue, in the sense
of nonlinear method convergence and smallness
of time step sizes. For the brevity of presenta-
tion, four simple stiff and nonlinear problems are
used as examples. Two of the examples where the
analytical behavior is well known with respect to
computational efficiency of the o methods, com-
putational work efficiency data are also presented.

7.1 Elastic Beam Excited with 3-Channel
White Noise

This example is taken from the IVP Test
Set at http://pitagora.dm.uniba.it/$\
sim$testset/problems/beam.php but ex-
cited with a three channel white noise. The
detailed description of the deterministic problem
including that of the spatial discretization may
be found in http://pitagora.dm.uniba.
it/$\sim$testset/report/beam.pdf and
in [Hairer and Wanner (1996)]. The problem
has been chosen to demonstrate the numerical
damping of responses in the highly oscillatory
modes due to the spatial discretization of the
beam. The initial conditions were chosen to
be z = (0.00.0...0.0),z = (0.00.0...0.0) at time
t = 0.0 almost surely. The simulation was done
for n = 10 elements for spatial discretization with
3 channels of noise, multiplicative in position,
velocity and an additive channel.The /th row of
the noise diffusion coefficient matrix

Bl.:

3 channel =

(0.04z; 0.04z; —0.4) (32)

where [ = 1,2,..10 are the corresponding element
nodes. The results are presented in figures 1-4.

7.1.1 Euler Bernoulli Beam Model of Connect-
ing Rod in a Slider Crank

A variant of the slider-crank problem de-
scribed in http://pitagora.dm.uniba.it/
“testset/problems/crank.php is considered.
The connecting rod of the mechanism is an Euler-
Bernoulli beam discretized with two-node La-
grangian elements in the longitudinal displace-
ments and with spectral (sinusoidal, first two
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Elastic beam with 3 channel noise , h=T/5000 Elastic beam with 3 channel noise, h=T/5000

z(10) radians
z(10) radians

time (seconds) time (seconds)

Figure 1: Beam Problem: Response at Beam Middle Figure 2: Beam Problem: Response at Beam End for
for Same sample Path with Various Dissipations Same sample Path with Various Dissipations

Elastic beam with 3 channel noise, p=0.0 Elastic beam, with 3 channel noise , p =1.0

z(10), radians
z(10)

time (seconds)

time (seconds)

Figure 3: Beam Problem: Response at Beam End for Figure 4: Beam Problem: Response at Beam End for
Different Sample Paths with Full Dissipation Different Sample Paths with No Dissipation
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modes) finite elements in the lateral displace-
ments. The original partial differential-algebraic
model is differentiated and simulated as a stochas-
tic differential equation with the above mentioned
spatial finite element discretization. The lateral
deflection at the midpoint of the beam subjected
to a single channel additive noise with coefficient
0.5 is simulated with the Stochastic-o¢ method.
Stochastic Newmark Beta Method, a special case
of the present method with y=0.5 and ¢, = oty =
1, is used for comparison purposes. Figure 5 for
p = 0.8 shows the improved dissipation of more
erroneous higher frequency modes of the finite el-
ement discretization.

7.2 Double pendulum

This example demonstrates the working of the
method for nonlinearity arising from rigid multi-
body systems. A double pendulum system shown
in Fig. 6 is described by the following system of
equations in its deterministic form.

6,L,D = —g(2my +my)sin@; —mygsin(6, —26,)
—2sin(6; — 92)m2(922L2
+dotO?Licos(6; — 6,)) (33a)

bLLD = 2sin(0; — 92)(912L1 (my +my)
+g(my +my)cos6,
+922L2m2c0s(91 —6)) (33b)
where,

D = (2my+my —mycos(20,—26,))
The simulation is done with L; = 1.0,L, =
1.0,m; = 1.0,m, = 2.0 and initial conditions

0=2,6,=20=00,6,=0.0 at t =0, al-
most surely. A single channel Wiener Process,
which forces the deterministic equations, with the
diffusion coefficients matrix

0.26,
Buuitiplicative := 0.1,

is used multiplicative noise in the simulation ex-
amples.

Sample paths are shown in the figures 7 - 12.
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7.3 Noisy bushing problem

This well-used example illustrates a stiff noisy
system similar to those obtained from Finite Ele-
ment Method (FEM) discretization of elastic sys-
tems. The Stochastic-o¢ method is illustrated by
simulating the sample paths of a three-variable
bushing example. In 2-dimensional cartesian co-
ordinates, the deterministic version of problem is
given as

i1 =0 (34a)
€
- L; ~1=0 (34b)
6 1 fy o Jx
1082 2 <c0s9(1 + 82) sin6 ) )34c()

where f, = % —x+ %cose, fHi=—y+ %sine, and
€ =107. A Wiener Process with diffusion co-
efficient B is then used to excite the bushing sys-
tem. The initial conditions are, almost surely, x =
1.0,y=0.0,6 =0.0 and x = 0.0,y = 0.0,6 = 0.0
at the time ¢ = 0.0. The time step size is fixed at
h= %.’0. The simulation was done with both ad-
ditive and multiplicative noise. The deterministic
model is forced by a Wiener Process with differ-
ent coefficient matrices B in three separate simu-

lations:

0.012x
Bmultiplicative = 0005y (35a)
—.0176

0.022% 0.42
Bochamer = | 0.0455 025 (35b)
—0.0176 0.73

Some sample paths are shown in figures 13, 14,
15 and 16. The numerical dissipation in the same
sample path through different choices of p is
demonstrated in figures 17 and 18. The average
of 40 sample paths is compared against the case
with no noise in figures 19 - 22.

The nonlinear bushing system was also simulated
with a 2 channel noise. The results are shown in
figures 23, 24 and 25.
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x107° Flexible slider crank under additive noise (+5.0dW)
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Figure 5: FEM Example: Euler-Bernoulli Beam
Model of Connecting Rod of a Noisy Slider Crank m2
Mechanism
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Nonlinear bushing problem p=0.0 , multiplicative noise

0 (radians)

. . . . . . )
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time (seconds) X 10"
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Nonlinear bushing problem, p=1.0 multiplicative noise
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. . . . . . )
0.2 0.4 0.6 0.8 1 1.2 1.4
time (seconds) X 10"

Figure 13: Bushing: sample paths of 0 vs time with Figure 14: Bushing: sample paths of 8 vs time with

multiplicative noise and p = 0.0

Nonlinear bushing example, additive noise, p = 0.0

10
5 -
—_ 0
2
8
k=]
g
o gl
-10r
-15

0 02 04 06 038 1 1.2
time (seconds) X1 0—3

multiplicative noise and p = 1.0

Nonlinear bushing example, additive noise,p = 1.0
20

15+

10}

0 (radians)
o

0 02 04 06 038 1 1.2
time (seconds) X1 0—3

Figure 15: Bushing: sample paths of 0 vs time with Figure 16: Bushing sample paths of 6 vs time with

additive noise and p = 0.0

additive noise and p = 1.0
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Nonlinear bushing example
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Nonlinear bushing example, additive noise
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Figure 17: Bushing: same sample path of

with multiplicative noise for different choices of p

Nonlinear bushing example, p=0.0
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Figure 18: Bushing: same sample path of 6 vs time
with additive noise for different choices of p
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Figure 21: Bushing: "fully dissipated" 0 vs time for Figure 22: Bushing: 6 vs time for multiplicative
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Nonlinear bushing example, 2 channel noise
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Figure 25: Bushing: sample paths over the same
Wiener path 6 vs time for different choices of p, 2-

channel noise

Noisy Nonlinear Bushing: Typical Sample Path
T = 0.00027 s, Newton Tolerance = 1E — 4
Single Channel Multiplicative Noise
p | No. of Time | Total Number
Steps (T /h) of Newton
iterations
100 549
0.0 | 300 2094
600 4499
100 671
0.2 | 300 2366
600 Failed
100 800
0.4 | 300 3395
600 Failed
100 1037
0.6 | 300 Failed
600 6254
100 1561
0.8 | 300 Failed
600 5976
100 Failed
1.0 | 300 3737
600 5778

0 (radians)

113

Nonlinear bushing problem, 2 channel noise

— — —p=0.0
p=1.0

0 02 04 06 038 1 1.2
time (seconds) -3

Figure 26: Bushing: average 6 vs time, 2-channel
noise

7.4 Stiff spring pendulum

The deterministic version of a stiff spring pendu-
lum model is given in Cartesian coordinates as

X+xA = 0 (36a)

y+yA—10 = 0 (36b)
/12 2 _

- KLI'O (36¢)

where the stiff spring of unit nominal length and
stiffness K is attached to the center of mass of
the pendulum. The deterministic model is forced
by Wiener Process in the It6 sense with multi-
plicative noise. Using initial conditions x, y, x,y =
0.9,0.0,0.0,0.0 at t = 0 almost surely, K =2000.0
and tolerance of the Newton iterations as 1077,
the simulation was carried out for various choices
of p and h. The diffusion coefficient

0.2x
Bmultiplicutive = 04y

was used for modeling the multiplicative noise.
The sample paths are shown in figures 27-30 for
the single channel multiplicative noise.
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Stiff Spring Pendulum: Typical Sample Path
T =4 s, Newton Tolerance = 1E— 11
Single Channel Multiplicative Noise
p h | Total Number
of Newton
iterations
0.01 | 1602
0.0 | 0.03 | 640
0.08 | 291
0.01 | 1603
0.2 | 0.03 | 643
0.08 | 296
0.01 | 1603
0.4 | 0.03 | 644
0.08 | 313
0.01 | 1608
0.6 | 0.03 | 655
0.08 | 331
0.01 | 1654
0.8 |10.03 | 677
0.08 | 370
0.01 | 1725
1.0 | 0.03 | 701
0.08 | 319

8 Discussions

A stiff system integrator for deterministic sys-
tems has been extended to stochastic dynamics.
The analysis shows the limitations on step size
in various asymptotic stability requirements and
also how the choice of parameter p is affected by
noise. The method is suitable for small to medium
noise applications. It may be seen that with a
choice of y = % 0y = @, = 1 the method behaves
as stochastic Newmark-Beta scheme. At p =1
it is same as the average acceleration Newmark-
Beta method. The method can be extended to sin-
gular mass matrix with some extra computations.
A rank-revealing permutation of the rows and cor-
responding columns of mass matrix may be done
to obtain a non-singular submatrix to which the
present method may be applied. However, the
remaining rows of the mass matrix would cor-
respond to hidden algebraic equations which are
satisfied at each time step to solve for the re-
maining (algebraic) variables. The system would
correspond to a Differential-Algebraic Equation
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(DAE) system which can be solved if its index is
lower than 2. Such computational issues are dis-
cussed in Raha and Petzold (2001).
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