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Investigation of Multi Geometric Uncertainties by Different Polynomial
Chaos Methodologies Using a Fictitious Domain Solver

L. Parussini1 and V. Pediroda2

Abstract: In this paper different Polynomial
Chaos methods coupled to Fictitious Domain
approach have been applied to one- and two-
dimensional elliptic problems with multi uncer-
tain variables in order to compare the accuracy
and convergence of the methodologies. Both in-
trusive and non-intrusive methods have been con-
sidered, with particular attention to their employ-
ment for quantification of geometric uncertain-
ties. A Fictitious Domain approach with Least-
Squares Spectral Element approximation has been
employed for the analysis of differential problems
with uncertain boundary domains. Its main ad-
vantage lies in the fact that only a Cartesian mesh,
that represents the enclosure, needs to be gener-
ated. Excellent accuracy properties of considered
methods are demonstrated by numerical experi-
ments.

Keyword: Chaos Polynomial, Chaos Collo-
cation, Tensorial-expanded Chaos Collocation,
multi geometric uncertainties, Fictitious Domain,
Least-Squares Spectral Element Method.

1 Introduction

In most engineering applications, to solve phys-
ical problems deterministic mathematical models
are adopted. It is evident these models are rough
simplifications of reality. Actually, many physi-
cal input parameters are not deterministic entities,
but stochastic processes which certainly influence
the behaviour of solution. In order to obtain re-
liable results uncertainty quantification is neces-
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sary and the influence of inherent physical and
geometric uncertain parameters must not be ne-
glected. Thanks to the increasing of computer fa-
cilities and the advance of algorithms, which leads
to more accurate solutions, the current state of
technology allows to include these inherent un-
certainties in mathematical models. Thereby an
increasing interest in uncertainty analysis applied
to computational physics has occured and proba-
bilistic methods have been developed.

In literature there are several examples of numeri-
cal methods to face problems with uncertain input
parameters and in Ref. [Loeven, Witteveen, and
Bijl (2007); Schoutens (2000); Wiener (1958);
Xiu and Karniadakis (2002, 2003b)] we find ap-
plications of these methodologies to Thermo-
Fluid Dynamics. In these works the effort is fo-
cused on exploring random material properties or
random boundary conditions, whereas the topol-
ogy of domain boundaries are described in de-
terministic terms, without taking into account of
their stochastic nature (figure 1).

Figure 1: Differential problem with stochastic
material properties and stochastic boundary con-
ditions, where θ is the uncertainty.

On the contrary there are really few examples of
numerical methods to analyse geometric uncer-
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tainty, that is to solve deterministic problems, in
terms of material properties and boundary con-
straints, on random domains (figure 2), with ge-
ometric uncertainty given by shape tolerance.

Figure 2: Differential problem with stochastic
definition domain, where θ is the uncertainty.

In Ref. [Parussini and Pediroda (2007)] a method
has been presented to face geometric tolerance
problems based on Chaos Collocation and Ficti-
tious Domain with least-squares spectral element
approximation. This method consents to avoid
both the difficulty of mapping space variables into
a deterministic domain, as in Ref. [Xiu and Tar-
takovsky (2006)], and the need to remesh the
geometry of domain, as in Ref. [Hosder, Wal-
ters, and Perez (2006); Lin, Su, and Karniadakis
(2006)].

In fact, Fictitious Domain method allows prob-
lems formulated on an intricate domain to be
solved on a simpler fictitious domain containing
the original one. In this way the computational
domain of state problem is independent by small
variations of original domain boundaries subject
to uncertainty, now immersed into computational
domain. Being the computational domain in-
dependent by random geometric parameters, the
remeshing has not to be performed when the do-
main geometry changes. To solve the Fictitious
Domain problem Least Squares Spectral Element
Method is employed [Pontaza and Reddy (2003);
Proot and Gerritsma (2002)].

In order to improve the previous study [Parussini
and Pediroda (2007)] in this work we compare
different Polynomial Chaos methodologies [Xiu

and Karniadakis (2003b); Xiu and Tartakovsky
(2006); Blith and Pozrikidis (2003); Loeven, Wit-
teveen, and Bijl (2006); Mathelin and Hussaini
(2003)] for solving problems with multi uncertain
parameters. There exist several methods for un-
certainty quantification, which can be divided into
two main categories: non-intrusive, or statisti-
cal, and intrusive, or non-statistical. Monte Carlo
[Blith and Pozrikidis (2003)], Stochastic Collo-
cation [Mathelin and Hussaini (2003)], Chaos
Collocation [Loeven, Witteveen, and Bijl (2006)]
are examples of non-intrusive approaches, Chaos
Polynomials [Xiu and Karniadakis (2002, 2003a)]
are examples of intrusive approaches. Non-
intrusive methods allow the use of existing de-
terministic solvers, whereas intrusive approaches
need to modify the solver obtaining an efficient
tool but limited to solve just a set of problems.
In particular our aim in this work is the compre-
hension of advantages and disadvantages of these
methods for description of stochastic phenomena.

We consider a one-dimensional elliptic problem
with both random material properties and ran-
dom boundary conditions on stochastic domain,
with geometric uncertainty given by shape toler-
ance. The excellent accuracy of proposed Chaos
methodologies, i.e. Chaos Polynomial, Chaos
Collocation and Tensorial-expanded Chaos Col-
location, coupled to Fictitious Domain, is demon-
strated by numerical experiments.

In consequence of the considerations arisen
by previous tests on multi uncertain problems,
we employ Chaos Collocation and Tensorial-
expanded Chaos Collocation methods with Fic-
titious Domain approach to solve the stationary
heat conduction problem in an electronic chip
[Xiu and Karniadakis (2003a)]. In particular
multi geometric uncertainties have been consid-
ered, in order to determine the differences be-
tween these methodologies, both non-intrusive.

The paper is organized as follows. In Section 2 the
theory of uncertainty quantification methods is
presented. In Section 3 the concept and the analy-
sis of geometric uncertainty are discussed and ar-
gued. In Section 4 there is a comparison among
Monte Carlo, Chaos Polynomial, Chaos Collo-
cation and Tensorial-expanded Chaos Collocation
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methods referring to definition of mean and vari-
ance of analytical functions. Section 5 illustrates
the Fictitious Domain method. In Section 6 the
formulation of Polinomyal Chaos methods with
Fictitious Domain approach is exposited and in
Section 7 some numerical examples to validate
and compare the Polinomyal Chaos methodolo-
gies with Fictitious Domain approach are shown.
In Section 8 we give some concluding remarks.

2 Uncertainty quantification methods

2.1 Setting of the problem: stochastic differen-
tial equation

Let us consider the following stochastic differen-
tial equation:

L(x, t,θ ;φ ) = f (x, t,θ ) (1)

where L is a differential operator which con-
tains space and time differentiation and can be
non linear and depended on random parameters
θ ; φ (x, t,θ ) is the solution and function of the
space x ∈ ℜd , time t and random parameters θ ;
f (x, t,θ ) is a space, time and random parameters
dependent source term.

2.2 The Generalized Polynomial Chaos

Under specific conditions [Schoutens (2000)], a
stochastic process can be expressed as a spec-
tral expansion based on suitable orthogonal poly-
nomial with weights associated with a particular
density. The first study in this field is the Wiener
process [Wiener (1958, 1938)], which can be writ-
ten as a spectral expansion in terms of Hermite
polynomials with normal distributed input param-
eters.

The basic idea is to project the variables of the
problem onto a stochastic space spanned by a set
of complete orthogonal polynomials Ψ that are
functions of random variables ξ (θ ), where θ is a
random event. For example, the variable φ has the
following spectral finite dimensional representa-
tion:

φ (x, t,θ ) =
∞

∑
i=0

φi(x, t)Ψi(ξ (θ )) (2)

In practical terms the Eq. (2) divides the random
variable φ (x, t,θ ) into a deterministic part, the co-
efficient φi(x, t) and a stochastic part, the polyno-
mial chaos Ψi (ξ (θ )). The basis {Ψi} is a set of
orthogonal polynomials with respect to the prob-
ability density function of the input parameters.
Following the Askey scheme [Askey and Wil-
son (1985)], it is possible to introduce the Gen-
eralized Polynomial Chaos [Xiu and Karniadakis
(2003a)]. Thanks to this theory, known also as
Askey-chaos, for certain input parameter distribu-
tion there exists the best representation in terms
of convergence rate. For example, for Gaussian
random input, we have the Hermite Polynomial
Chaos representation, for Gamma distribution the
Laguerre representation, for Beta distribution the
Jacoby representation, for Uniform distribution
the Legendre representation, etc.

In this paper we focus mainly on the Gaus-
sian random input, so we represent the variable
φ (x, t,θ ) in terms of Hermite spectral representa-
tion, following the Askey scheme:

φ (x, t,θ ) = φ0(x, t)H0+
∞

∑
i1=1

φi1(x, t)H1(ξi1(θ ))+

∞

∑
i1=1

i1

∑
i2=1

φi1i2(x, t)H2(ξi1(θ ),ξi2(θ ))+

∞

∑
i1=1

i1

∑
i2=1

i2

∑
i3=1

φi1i2i3(x, t)H3(ξi1(θ ),ξi2(θ ),ξi3(θ ))+

. . . (3)

where Hp
(
ξi1 , . . . ,ξip

)
is the Hermite polynomial

of order p in terms of a n-dimensional Gaussian
random variable ξ = (ξ1, . . .,ξn) distributed as
N(0,1) [Xiu and Karniadakis (2003a)]. The Her-
mite polynomial is expressed in general form by:

Hp
(
ξi1 , . . . ,ξip

)
=

e
1
2 ξ T ξ (−1)p ∂ p

∂ξi1 . . .∂ξip

e−
1
2 ξ T ξ (4)

and for one-dimensional case:

H0 = 1, H1 = ξ , H2 = ξ 2 −1, H3 = ξ 3 −3ξ , . . .

(5)
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The polynomial basis
{

Ψ j
}

of Hermite-Chaos
forms a complete orthogonal basis, i.e.〈
Ψi,Ψ j

〉
=
〈
Ψ2

i

〉
δi j (6)

where δi j is the Kronecker delta and 〈·, ·〉 denotes
the ensemble average. This is the inner product in
the Hilbert space determined by the support of the
Gaussian variables

〈 f (ξ )g(ξ)〉=
∫

f (ξ )g(ξ)w(ξ )dξ (7)

with weighting function

w(ξ ) =
1√

(2π)n
e−

1
2 ξ T ξ . (8)

What distinguishes the Hermite-Chaos expansion
from other possible expansions is that the basis
polynomials are Hermite polynomials in terms of
Gaussian variables and are orthogonal with re-
spect to the weighting function w(ξ ) that has
the form of n-dimensional independent Gaussian
probability density function.

For practical cases, the series in Eq. (2) has to
be truncated to a finite numbers of terms, here
denoted with N. So the form Eq. (2), using the
one-to-one correspondence between the function
Hp
(
ξi1 , . . . ,ξip

)
and Ψp (ξ ), as demonstrated in

Ref. [Xiu and Karniadakis (2002)] for Gaussian
random input, becomes:

φ (x, t,θ ) =
N

∑
i=0

φi(x, t)Hi(ξ ) (9)

The number of total terms of the series is deter-
mined by:

N +1 =
(n+ p)!

n! p!
(10)

where n is the uncertainties dimensionality and p
is the order of the expansion.

As an example, for a second order two-
dimensional Hermite polynomial expression, we
get the following form:

φ (x, t,θ ) = φ0(x, t)+
φ1(x, t) ξ1(θ )+φ2(x, t) ξ2(θ )+

φ3(x, t)
(
ξ 2

1 (θ )−1
)
+φ4(x, t)

(
ξ 2

2 (θ )−1
)
+

φ5(x, t) ξ1(θ ) ξ2(θ ) (11)

where ξ1(θ ) and ξ2(θ ) are the two random inde-
pendent variables.

2.3 Intrusive and non-intrusive Polynomial
Chaos methodologies

Substituting the Polynomial Chaos series, given
in Eq. (6) for Gaussian random input, into the
stochastic differential Eq. (1) we obtain:

L

(
x, t,θ ;

N

∑
i=0

φi(x, t)Ψi (ξ (θ ))

)
∼= f (x, t,θ ).

(12)

The method of Weighted Residuals is adopted to
solve this equation. The coefficients φi(x, t) are
obtained imposing the inner product of the resid-
ual with respect to a weight function is equal to
zero.

If the weight functions are chosen to be the
same as the expansion functions Ψi we produce
Galerkin method. Performing the Galerkin pro-
jection on both sides of the equation, the form be-
comes:〈

L

(
x, t,θ ;

N

∑
i=0

φi(x, t)Ψi

)
,Ψ j

〉
=

〈
f (x, t,θ ),Ψ j

〉
j = 0, . . .,N. (13)

If the operator L is non linear, the deterministic
set of N + 1 equation is coupled and this form is
called Chaos Polynomial [Lin, Wan, Su, and Kar-
niadakis (2007)].

If we employ Dirac delta function as weight func-
tion we produce Collocation method. Using a col-
location projection on both sides of Eq. (12), we
obtain:

L(x, t,θ j;φ j) = f (x, t,θ j) j = 0, . . .,N. (14)

This formulation is a linear system equivalent to
solving a deterministic problem at each grid point;
this form is called Chaos Collocation [Loeven,
Witteveen, and Bijl (2007)].

To reconstruct the stochastic solution φ (x, t,θ ),
the Eq. (2) is used:

EPC(φ ) = μφ = φ0(x, t,θ ) (15)

VarPC(φ ) = σ2
φ =

N

∑
i=1

[
φ 2

i (x, t,θ )
〈
Ψ2

i

〉]
. (16)
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Here for one-dimensional case〈
Ψi,Ψ j

〉
=
〈
Ψ2

i

〉
δi j =

1√
2π

∫ +∞

−∞
e−ξ2/2Ψi(ξ )Ψ j(ξ )dξ = 2ii!δi j (17)

where δi j is the Kronecker operator.

The two approaches, Chaos Polynomial and
Chaos Collocation, are based on the same theory,
but gives different numerical representations. In
practice the intrusive method consists in resolu-
tion of a coupled system of deterministic equa-
tions, the non-intrusive method consists in resolu-
tion of a decoupled system of deterministic equa-
tions. It is evident the difficulty to design an ef-
ficient intrusive solver, both because of computa-
tional cost and because of the obvious handicap
to imply an internal modification of the determin-
istic solver. The non-intrusive methodology has
a simpler computational management. A remark-
able advantage of this approach is the determin-
istic solver represents a black-box and there is no
need to modify it. This means the non-intrusive
method is more versatile than intrusive method.

A still open problem of Chaos Collocation ap-
proach is the difficulty to select collocation
points: with multi dimensional uncertainties the
choice is not unique [Hosder, Walters, and Perez
(2006)]. This problem does not exist for one
stochastic parameter, because collocation points
are the roots of polynomial of order p + 1, the
same polynomial employed for the representation
of random variable. So to overcome this difficulty
of Chaos Collocation method, the stochastic pro-
cess will be expanded into polynomials obtained
by tensorial product of one-dimensional polyno-
mials. We obtain the Tensorial-expanded Chaos
Collocation formulation:

L(x, t,θ j;φ j) = f (x, t,θ j) j = 0, . . ., (p+1)n−1

(18)

with n number of uncertain variables and p ex-
pansion polynomial order respect to i-th uncer-
tain variable, if the same expansion order is cho-
sen for all variables. We still have a linear sys-
tem equivalent to solving a deterministic prob-
lem at each (p + 1)n grid point. The method-
ology is non-intrusive but computationally more

expensive than multidimensional Chaos Colloca-
tion. The advantage is to avoid an arbitrary choice
of collocation points.

In this paper we focus on geometric tolerances us-
ing Fictitious Domain approach. We will consider
multi uncertain parameters with Gaussian distri-
bution.

3 The concept and analysis of geometric un-
certainty

In engineering design a particular attention must
be paid to geometric tolerance and its influence on
the performance of designed component. So there
is a great interest in developing a methodology to
face problems where the geometry of definition
domain is a stochastic phenomenon. As defined
in Ref. [Xiu and Tartakovsky (2006)], the problem
under study writes:

Let θ ∈ Θ be a random realization drawn from a
complete probability space (Θ,A,P), whose event
space Θ generates its σ -algebra A ⊂ 2Θ and is
characterized by a probability measure P. For all
θ ∈ Θ, let Ω(θ ) ⊂ ℜd be a d-dimensional ran-
dom domain bounded by boundary ∂Ω(θ ). We
consider the following stochastic boundary value
problem: for P-almost everywhere in Θ, given
f : Ω(θ )→ ℜ and g : ∂Ω(θ )→ ℜ, find a stochas-
tic solution u : Ω(θ )→ ℜ such that:

A(x;u) = f (x) in Ω(θ ) (19)

B(x;u) = g(x) on ∂Ω(θ ) (20)

where x = (x1, . . . ,xd), A is a differential operator
and B is a boundary operator.

Except for a few studies, random domain prob-
lems have not been systematically analyzed. The
most complete work on these topics is presented
in Ref. [Xiu and Tartakovsky (2006)], where a
mapping methodology is introduced to transform
the original problem defined in a random domain
into a stochastic problem defined in a determinis-
tic domain. The new stochastic problem defined
on a deterministic domain, thanks to this map-
ping, can be solved by already existing Polyno-
mial Chaos techniques. The methodology illus-
trated above has been efficiently implemented to
solve two diffusion problems: in a channel with
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rough surface and in double-connected domains
with rough exclusion. The Polynomial Chaos
methodology is demonstrated to be more accurate
than Monte Carlo method and with lower com-
putational cost. The drawback of the presented
method is the difficulty of mapping. In fact this
process is simple for connected domains, but it
is computationally challenging for complex non-
connected domains.

To ride over this problem, i.e. the mapping
of complex domains, in this work we present
the coupling of Fictitious Domain approach with
Polynomial Chaos methodologies for geometric
uncertainties. The idea is to avoid the mapping
of stochastic domain onto a deterministic domain
and to use absolute coordinates.

Let us consider this one-dimensional problem as
example:

d2φ
dx2

= 0 in [0,L]

with φ |x=0 = φ0 , φ |x=L = φL (21)

and L = N (LMean,σL)

where φ0 and φL are constants and L is a ran-
dom parameter with Gaussian distribution. In fig-
ure 3 is shown how we mean the stochastic do-
main problem of Eq. (21).

Figure 3: Representation of stochastic domain
problem Eq.(21) in absolute coordinates with nor-
mal distribution of length L.

Geometric uncertainty, represented by probabilis-

tic distribution P(L) of domain length L, becomes
an uncertainty on the position of boundary con-
dition. As every point of domain is studied in
absolute coordinates, there is no need of map-
ping the stochastic domain onto a deterministic
domain. The solution of the problem has a proba-
bility distribution pd f (φ ) associated to each point
of domain in absolute coordinates. This proba-
bility distribution of the solution depends on the
position of boundary condition in x = L, which is
a stochastic phenomenon. In figure 3 it is show
the probability P(x) of a point of belonging to do-
main, which depends on the probabilistic distri-
bution of L in problem Eq. (21). To solve this
problem Polynomial Chaos methodologies can be
used. If Chaos Polynomial is employed, we have
to solve N coupled problems, whereas if Chaos
Collocation is employed, we have to solve N dis-
tinct deterministic problems defined on different
lengths of domain.

4 Comparison of Polynomial Chaos method-
ologies and analytical solution

To compare the Polynomial Chaos methodolo-
gies, we consider the problem of thermal diffusion
in heat sink profiles with negligible thickness:

d2T
dx2 =

2h
sλ

T (22)

with

− λ dT
dx

∣∣∣∣
x=0

= q0 and − λ dT
dx

∣∣∣∣
x=L

= hT (23)

where s is the thickness profile, λ the conduction
coefficient, h the convection coefficient and q0 is
the inlet thermal flux.

The analytic solution of this problem, if the pa-
rameters h, λ , q0 and L are deterministic vari-
ables, writes as:

T (x) =
q0

λ m

(
h
λ +m

)
emLe−mx −( h

λ −m
)

e−mLemx(
h
λ −m

)
e−mL +

(
h
λ +m

)
emL

(24)

where m2 = 2h
sλ .

As we know the analytic function T (x) given the
parameters h, λ , q0 and L, we can compute the
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analytic probability distribution of T if these pa-
rameters are uncertain. To compute the expected
value E(T) and the variance Var(T) we refer to
formulation presented in Ref. [Rotondi, Pedroni,
and Pievatolo (2001)] for a function f (X):

Z = f (X1,X2, . . . ,Xn)≡ f (X)
with joint pd f pX(x1,x2, . . .,xn)

E(Z) =
∫

f (x1,x2, . . . ,xn)pZ(z)dz

Var(Z) =
∫

[ f (x1,x2, . . .,xn)−E(Z)]2 pZ(z)dz

(25)

pZ(z)=
∫

. . .

∫
pX(x1,x2, . . . ,xn)dx1dx2 . . .dxn =

∫
. . .

∫
pX( f−1(z,x2, . . .,xn),x2, . . . ,xn)

∣∣∣∣∂ f−1

∂ z

∣∣∣∣
dx2 . . .dxn

where pX(x1,x2, . . .,xn) is the probability density
of n random variables X and pZ(z) is the proba-
bility density of random output variable Z.

A remark needs to be done: to compute the mean
and the variance employing Eq. (25) we have to
solve integrals and the method we use for their
solution is Gauss Quadrature. So, as mean and
variance are computed employing a numerical
method, they are affected by numerical errors.

In figure 4 the mean function E(T ) and the uncer-
tainty bars E(T )±Std(T ) of function:

T (x,h,λ ,q0,L) =

q0

λ m

(
h
λ +m

)
emLe−mx −( h

λ −m
)

e−mLemx(
h
λ −m

)
e−mL +

(
h
λ +m

)
emL

with m2 =
2h
sλ

, s = 2mm , h = N(8,0.1)W/m2K ,

λ = N(65,0.1)W/mK , q0 = N(10000,50)W/m2

and L = N(20,0.07)mm (26)

are shown.

The expected value E(T ) and the standard devia-
tion Std(T) obtained according to Eq. (25), which
we will refer as analytical values, will be com-
pared to those ones obtained by means of Monte
Carlo method, Chaos Polynomial, Chaos Colloca-
tion and Tensorial-expanded Chaos Collocation,
for the problem given in Eq. (26).
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Figure 4: Mean function E(T ) and uncertainty
bars E(T )±Std(T ) of problem Eq. (26) accord-
ing to definition of mean and variance given
in Eq. (25) and computed by means of Gauss
quadrature formulae.

Figure 5 shows the absolute error of mean E(T)
and standard deviation Std(T) obtained by Monte
Carlo respect to analytical solution. The Monte
Carlo E(T ) and Std(T) have been computed with
different number of realizations, i.e. 1000 and
10000.

In figure 6 the absolute errors of E(T) and
Std(T) obtained by means of Chaos Polynomial
are shown. Different expansion polynomial or-
ders (p = 1, p = 3 and p = 5) have been consid-
ered.

In the end figure 7 shows the absolute error of
E(T ) and Std(T) obtained by means of Chaos
Collocation respect to analytical solutions and fig-
ure 8 shows the absolute error of E(T ) and Std(T)
obtained by means of Tensorial-expanded Chaos
Collocation.

Chaos Collocation method and Tensorial-
expanded Chaos Collocation method differ
just for the selection of collocation points.
The collocation points, employed in Tensorial-
expanded Chaos Collocation approach, are
obtained by a full factorial of roots of order
p + 1 one-dimensional Hermite polynomial with
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Figure 5: Mean E(T ) (above) and standard devia-
tion Std(T) (below) of problem Eq. (26): absolute
error of solution obtained by Monte Carlo respect
to analytical solution. The Monte Carlo E(T ) and
Std(T) have been computed with different num-
ber of realizations: 1000 and 10000.

n factors, where n is the number of uncertain
variables. The collocation points, employed in
Chaos Collocation approach, are the set of N + 1
(< (p + 1)n) points with the highest associated
probability chosen among full-factorial points.
As random parameters are independent, the
probability associated to the point belonging
to full-factorial is given by the product of the
probabilities associated to each single root.

The results, illustated above, suggest several com-
ments.

Monte Carlo, which is the methodology mainly
used for uncertainty quantification [Xiu and Tar-
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Figure 6: Mean E(T ) (above) and standard devia-
tion Std(T) (below) of problem Eq. (26): absolute
error of solution obtained by Chaos Polynomial
respect to analytical solution. The Chaos Polyno-
mial E(T) and Std(T ) have been computed with
different expansion polynomial orders: P = 1,
P = 3 and P = 5.

takovsky (2006); Xiu and Karniadakis (2003a)],
is strongly dependent on the number of real-
izations, as demonstrated in Ref. [Parussini and
Pediroda (2007); Xiu and Karniadakis (2003a)].
Figure 5 shows an higher number of realizations
increases significantly the accuracy, in particular
of standard deviation and besides it is evident, tak-
ing in accout both of accuracy and computational
cost, Monte Carlo method is not comparable with
Polynomial Chaos methods.

Polynomial Chaos methodologies, both intrusive
and non-intrusive, have played up much the same
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Figure 7: Mean E(T ) (above) and standard devia-
tion Std(T) (below) of problem Eq. (26): absolute
error of solution obtained by Chaos Collocation
respect to analytical solution. The Chaos Collo-
cation E(T) and Std(T) have been computed with
different expansion polynomial orders: P = 1,
P = 3 and P = 5.

accuracy for the problem under study and it has
been verified that increasing the expansion poly-
nomial order further on p = 3 there is not a signif-
icantly improvement of accuracy. The reason why
there is not a decrease of error with increasing p
from 3 to 5 is related to two different aspects: the
first is the analytical solution is affected by nu-
merical integration errors, as explained above, the
second is the use of single precision number rep-
resentation.

Let us notice that employing Polynomial Chaos
methodologies, if the expansion polynomial has
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Figure 8: Mean E(T ) (above) and standard devia-
tion Std(T) (below) of problem Eq. (26): absolute
error of solution obtained by Tensorial-expanded
Chaos Collocation respect to analytical solution.
The Tensorial-expanded Chaos Collocation E(T)
and Std(T) have been computed with different
expansion polynomial orders: P = 1, P = 3 and
P = 5.

order p and n is the number of uncertain vari-
ables, Chaos Polynomial method needs to solve
a system of (n+p)!

n!p! coupled equations, Chaos Col-

location needs to solve (n+p)!
n!p! decoupled equa-

tions and Tensorial-expanded Chaos Collocation
needs to solve (p + 1)n decoupled equations.
This means, if p = 3 and n = 4, Chaos Polyno-
mial method needs to solve a system of 35 cou-
pled equations, Chaos Collocation needs to solve
35 decoupled equations and Tensorial-expanded
Chaos Collocation needs to solve 256 decoupled
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equations. This demonstrates as the results we
obtain by Polynomial Chaos are better than those
ones obtained by Monte Carlo method with a con-
siderable higher number of simulations.

About a comparison among Polynomial Chaos
methodologies, the accuracy we get by the dif-
ferent approaches is pretty the same, but the non-
intrusive Polynomial Chaos methods have the not
negligible advantage respect to Chaos Polynomial
they do not require an internal modification of dif-
ferential problem solver.

As last remark, in the problem under study we
have computed the mean and standard deviation
of an analytical function, so that the implementa-
tion of Polynomial Chaos methodologies is quite
simple, but usually we have to compute the mean
and standard deviation of the solution of a dif-
ferential equation. It appears clear the drawback
of these methodologies is the need to modify the
computational domain for every different simula-
tion. If we can not solve analytically the differ-
ential equation, we have to remesh the computa-
tional domain for each new simulation and it is
well-known to find an appropriate parameteriza-
tion of partitions of domain, which is good for all
geometries, is a difficult task.

To overcome this problem we introduce the Ficti-
tious Domain methodology and exploit it to solve
differential problems with uncertain parameters.
In this way the stochastic domain does not coin-
cide with the computational domain, which is the
same for all simulations, and for every new ge-
ometry the trace of Lagrange multipliers, which
enforce the boundary conditions immersed in the
computational domain, has just to be modified.

5 Fictitious Domain via Lagrange Multipli-
ers with Least-Squares Spectral Element
Method

5.1 Fictitious Domain approach

Fictitious domain approach rises to solve differen-
tial problems defined on domain changing in time
and space, i.e. in general structural elastic prob-
lems, fluid dynamics problems with moving rigid
bodies, shape optimization problems, and so on.
This means the same problem is solved on differ-

ent domains. Therefore such a method is suitable
to solve differential problems defined on stochas-
tic geometries.

Unlike the usual approach, based on the bound-
ary variation technique where a sequence of do-
mains is considered (figure 9), in Fictitious Do-
main approach (figure 10) the computational do-
main is not the same of the definition domain of
problem, but it contains that one. Hence when the
definition domain changes the computational do-
main does not change with evident advantages.

Figure 9: Classical approach based on the bound-
ary variation technique to solve differential prob-
lems defined on domain changing in time and
space.

Figure 10: Fictitious Domain approach to solve
differential problems defined on domain changing
in time and space.
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Several variants of fictitious domain method ex-
ist: the basic idea is to extend the operator
and the domain into a larger simple shaped do-
main. The most important ways to do this are
algebraic [Makinen, Rossi, and Toivanen (2000);
Rossi and Toivanen (1999)] and functional ana-
lytic approaches [Glowinski, Pan, Hesla, Joseph,
and Periaux (2000); Glowinski, Pan, and Periaux
(1994); Ramiere, Angot, and Belliard (2007)].
More flexibility and better efficiency can be ob-
tained by using a functional analytic approach
where the use of constraints ensures that the so-
lution of extended problem coincides with the so-
lution of original problem. In our implementa-
tion we enforce constraints by Lagrange multipli-
ers [Parussini (2007)].

The physical aspects of the problem are stated
in a variational principle form, which specifies a
scalar quantity, the functional J, defined by an in-
tegral form

J =
∫

Ω
F

(
φ ,

∂φ
∂x

,
∂φ
∂y

, ...,x,y, ...

)
dΩ+

∫
Γ

E

(
φ ,

∂φ
∂x

,
∂φ
∂y

, ...,x,y, ...

)
dΓ (27)

where Γ = ∂Ω, φ is the unknown function and F
and E are specified operators. The solution to the
continuum problem is a function φ which make J
stationary with respect to small changes δφ ; thus,
for a solution to the continuum problem, the vari-
ation is δJ = 0.

To implement the Fictitious Domain approach we
have to extend the operator F and the domain Ω
into a larger simple shaped domain Π and to con-
strain the functional on Γ = ∂Ω (figure 11). To
treat such problems Lagrangian multipliers are in-
troduced, so that the problem is now equivalent to
find the stationary point of J′, where

J′ =
∫

Π
F

(
φ ,

∂φ
∂x

,
∂φ
∂y

, ...,x,y, ...

)
dΩ+

∫
Γ

λ (x)E

(
φ ,

∂φ
∂x

,
∂φ
∂y

, ...,x,y, ...

)
dΓ. (28)

Here λ (x) is an undetermined multiplier which is
in general a function of position, because the lo-
cal condition must be satisfied at every point of Γ,
rather than being a global restriction.

Π

Ω

Γ

Figure 11: Example of a fictitious rectangular do-
main Π containing the original domain Ω.

5.2 Least Squares variational principle and
Spectral Element approximation

The Fictitious Domain solver, we employ in this
work, is based on a high order method. To
discretize the problem under study we use the
Least Squares Spectral Element Method, based on
higher order functions, locally defined over finite
size parts of domain. The Least Squares Spectral
Element Method (LSQSEM) [Pontaza and Reddy
(2003); Proot and Gerritsma (2002); Pontaza and
Reddy (2006); Proot and Gerritsma (2005)] com-
bines the least squares formulation with a spectral
element approximation. This provides several ad-
vantages. The method produces symmetric posi-
tive definite linear systems for every type of par-
tial differential equation, i.e. elliptic, parabolic
and hyperbolic equations. The method converges
just as fast with hp refinement than conventional
Galerkin methods. Furthermore, no stabilization
is required for convection dominated flows.

Let us consider a model problem stated as fol-
lows:

Find φ (x) such that

−�φ = f in Ω (29)

φ = φ s on Γ (30)

where Ω in ℜd with d number of space dimen-
sions, ∂Ω = Γ is the boundary of Ω, f is the
source term and φ s is the prescribed value of φ on
boundary Γ. This problem is chosen only for no-
tational simplicity; our statements are also valid
for every type of deterministic differential prob-
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lem, i.e. elliptic, parabolic and hyperbolic equa-
tions, and every type of boundary condition, i.e.
Dirichlet, Neumann and Robin.

The Fictitious Domain Least-Squares functional
associated with first-order equivalent system of
Eqs. (29-30) will be:

J(φ ,q,λ ; f ,φ s) =
1
2
‖−∇ ·q− f‖2

0,Π +

1
2
‖∇φ −q‖2

0,Π+
1
2
‖∇×q‖2

0,Π+‖λ (φ −φ s)‖0,Γ

(31)

where Π ⊃ Ω and the Lagrange multiplier defined
on Γ is denoted by λ , with μ associated weight
function.

Therefore the least squares principle for func-
tional Eq. (31) can be stated as:

Find (φ ,q,λ ) ∈ X × M such that for all
(ψ ,p,μ) ∈ X×M

J(φ ,q,λ ; f ,φ s) ≤ J(ψ ,p,μ ; f ,φ s), (32)

where we use the spaces X ={
(φ ,q) ∈ H1(Π)×H1(Π)

}
and M ={

λ ∈ H−1/2(Γ)
}

.

The solution of problem, Eq. (29-30), will be the
restriction to Ω of the minimum, defined on do-
main Π, of functional Eq. (32).

To get approximated solution of minimization
problem of least-squares functional the spectral
hp element method is employed [Karniadakis
and Sherwin (1999); Gerritsma and Maerschalck
(2006); Wu, Liu, Scarpas, and Ge (2006); Wu, Al-
Khoury, Kasbergen, Liu, and Scarpas (2007); Mi-
tra and Gopalakrishnan (2006); Komatitsch and
Vilotte (1998); Komatitsch, Vilotte, Vai, Castillo-
Covarrubias, and Sánchez-Sesma (1999); Lin
(1998)].

For more details on the implementation of Fic-
titious Domain and Least-Squares Spectral El-
ement method see Ref.[Parussini and Pediroda
(2007)].

5.3 Numerical example

To verify the accuracy of numerical algorithm
based on Fictitious Domain Method and Least-
Squares Spectral Element approximation we

solve the equation of thermal diffusion in cool-
ing fins with negligible thickness. The problem
writes as:

d2T
dx2 =

2h
sλ

T with

− λ
dT
dx

∣∣∣∣
x=0

= q0 and − λ
dT
dx

∣∣∣∣
x=L

= hT

(33)

where we set s = 2mm, h = 8W/m2K, λ =
65W/mK, q0 = 10000W/m2 and L = 20mm. The
analytical solution of the problem is plotted in fig-
ure 12 (see Ref. [Bonacina, Cavallini, and Mat-
tarolo (1989)] for more details about cooling fins
with negligible thickness).

x
0.000 0.005 0.010 0.015 0.020

58.5

59.0

59.5

60.0

60.5

61.0

T

Figure 12: Analytical solution of stationary diffu-
sion problem Eq. (33) in a cooling fin with negli-
gible thickness.

To verify the accuracy of our algorithm, the
numerical solution has been compared with
the analytical one. The numerical solution
is obtained considering the fictitious domain
Π = [−5.0mm,25.0mm], larger than the original
one Ω = [0.0mm,20.0mm]. The Neumann and
Robin constraints, which are now immersed in the
domain, have been imposed by Lagrange multi-
pliers. Let us notice in one-dimensional problems
the Lagrange multiplier is just a constant defined
on the constrained point. To get the solution of
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the equivalent problem least squares spectral el-
ements have been employed. The domain Π has
been meshed uniformly. To understand how the
accuracy of solution improves varying the grid
size, we have tested different grids, that means Π
has been divided into 2, 5 and 8 equal elements.

In figure 13 we plot the relative energy norm of
temperature T as function of expansion order P,
for different grid steps, where the relative energy
norm is so defined

η =

√∫
Ω(θnumeric−θanalytic)2dΩ∫

Ω θ 2
analyticdΩ

. (34)

We can observe that the results are significantly
accurate for P ≥ 5. In the convergence plots spec-
tral convergence is evident because on the linear-
logarithmic plot the convergence line is linear. It
can be remarked that η has an asymptotic be-
haviour and it can not be improved, beyond its
asymptotic value, increasing the number of spec-
tral elements or the polynomial order of trial func-
tions. The asymptotic value, corresponding to
machine round-off, is reached quickly, indicating
a very high accuracy of the method. We can ob-
serve that an increase on number of grid elements
does not improve remarkably the accuracy.

More examples and tests on Fictitious Domain
and Least-Squares Spectral Element method can
be found in Ref. [Parussini (2007); Parussini and
Pediroda (2007)].

6 Formulation of stochastic Fictitious Do-
main problems

Let θ ∈ Θ be a random realization drawn from a
complete probability space (Θ,A,P), whose event
space Θ generates its σ -algebra A ⊂ 2Θ and is
characterized by a probability measure P. For all
θ ∈ Θ, let Ω(θ )⊂ ℜd be a d-dimensional random
domain bounded by boundary Γ(θ ). We consider
the following stochastic boundary value problem:
for P-almost everywhere in Θ, find a stochastic
solution φ : Ω(θ ) → ℜ such that:

Find φ (x,θ ) such that

−�φ = f in Ω(θ ) (35)

φ = φ s on Γ(θ ) (36)
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Figure 13: Relative energy norm η of tempera-
ture T versus the expansion order p of spectral
elements for thermal diffusion problem Eq. (33).
Several discretization h have been considered: fic-
titious domain has been divided in 2, 5 and 8 ele-
ments.

where f is the source term and φ s is the prescribed
value of φ on stochastic boundary Γ(θ ). This
problem is chosen only for notational simplicity.

We proceed by replacing the problem, Eq. (35-
36), with its first-order equivalent system:

Find φ (x,θ ) and q(x,θ ) such that

−∇ ·q = f in Ω(θ ) (37)

∇φ −q = 0 in Ω(θ ) (38)

∇×q = 0 in Ω(θ ) (39)

φ = φ s on Γ(θ ) (40)

where q is the flux of scalar function φ .

The L2 least-squares functional associated with
first-order equivalent system formulation is given
by

J(φ ,q; f ) =
1
2
‖−∇ ·q− f‖2

0,Ω(θ)+

1
2
‖∇φ −q‖2

0,Ω(θ) +
1
2
‖∇×q‖2

0,Ω(θ) .

(41)
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and its Fictitious Domain implementation will be:

J(φ ,q,λ ; f ,φ s) =
1
2
‖−∇ ·q− f‖2

0,Π +

1
2
‖∇φ −q‖2

0,Π +
1
2
‖∇×q‖2

0,Π +

‖λ (φ −φ s)‖0,Γ(θ)

(42)

where the Lagrange multiplier defined on Γ is de-
noted by λ , with μ the associated weight function.

The least squares principles for functional
Eq. (42) can be stated as:

Find (φ ,q,λ ) ∈ X × M(θ ) such that for all
(ψ ,p,μ) ∈ X×M(θ )

J(φ ,q,λ ; f ,φ s) ≤ J(ψ ,p,μ ; f ,φ s), (43)

where we use the spaces X ={
(φ ,q) ∈ H1(Π)×H1(Π)

}
and M(θ ) ={

λ ∈ H−1/2(Γ(θ ))
}

.

This yields:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Find (φ ,q,λ ) ∈ X×M(θ ) such that

a((φ ,q), (ψ ,p))+b ((ψ ,p),λ ) =
l ((ψ ,p)) ∀(ψ ,p) ∈ X

b((φ ,q),μ) = g(μ) ∀μ ∈ M(θ )

(44)

where

a((φ ,q), (ψ ,p)) =
∫

Π
(−∇ ·q) (−∇ ·p)dΠ+∫

Π
(∇φ −q) · (∇ψ −p)dΠ+∫

Π
(∇×q) , (∇×p)dΠ

(45)

b((ψ ,p),λ ) =
∫

Γ(θ)
ψλ dΓ(θ ) (46)

l ((ψ ,p)) =
∫

Π
f (−∇ ·p)dΠ (47)

g(μ) =
∫

Γ(θ)
φ sμdΓ(θ ). (48)

The solution of problem, Eq. (35-36), will be the
restriction to Ω(θ ) of the minimum, defined on
domain Π, of functional Eq. (43).

The saddle point problem Eq. (44) has a stochas-
tic formulation. We assume that the boundary
Γ(x,θ ) of Ω(x,θ ) ⊂ Π(x) depends on θ via n
mutually independent real random variables ξ (θ )
with zero mean and unit variance with respect to a
density function ρ defined on some interval I ∈ ℜ,
so that I = In. Referring to Eq. (6) we can write
the stochastic process as

Γ(x,θ )∼= Γ∗(x,θ ) =
N

∑
i=0

Γi(x)Hi(ξ ). (49)

Substituting the polynomial Chaos series into
Eq. (44) we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Find (φ ∗,q∗,λ ∗) ∈ L2
ρ(I;X)×L2

ρ (I;M∗)
such that

a((φ ∗,q∗), (ψ∗,p∗))+b ((ψ∗,p∗),λ ∗) =
l ((ψ∗,p∗)) ∀(ψ∗,p∗) ∈ L2

ρ(I;X)

b((φ ∗,q∗),μ∗) = g(μ∗) ∀μ ∈ L2
ρ (I;M∗)

(50)

where

φ ∗(x,θ ) =
N

∑
i=0

φi(x)Hi(ξ ) (51)

q∗(x,θ ) =
N

∑
i=0

qi(x)Hi(ξ ) (52)

λ ∗(x,θ ) =
N

∑
i=0

λi(x)Hi(ξ ) (53)

and M∗ =
{

λ ∗ ∈ H−1/2(Γ∗)
}

. In this way we
divide the random process into a deterministic
part and a stochastic part. To solve Eq. (48) the
method of Weighted Residuals is adopted.

Performing the Galerkin projection, the fomula-
tion gives a system of coupled equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find (φ ∗,q∗,λ ∗) ∈ L2
ρ(I;X)×L2

ρ (I;M∗)
such that〈(

a∗ (·, ·)+b∗ (·, ·)),Hj
〉

=〈
l∗ (·) ,Hj

〉 ∀(ψ∗,p∗) ∈ L2
ρ(I;X)〈(

b∗ (·, ·)),Hj
〉

=〈
g∗ (·) ,Hj

〉 ∀μ ∈ L2
ρ(I;M∗)

(54)
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for j = 0, . . . ,N with obvious notation.

Performing the Collocation projection, the formu-
lation gives a linear system of decoupled equa-
tions equivalent to solving a deterministic prob-
lem at each grid point:

⎧⎪⎨
⎪⎩

Find (φi,qi,λi) ∈ X×Mi such that

ai (·, ·)+bi (·, ·) = li (·) ∀(ψi,pi) ∈ X

bi (·, ·) = gi (·) ∀μi ∈ Mi

(55)

with i = 0, . . . ,N where Mi =
{

λi ∈ H−1/2(Γi)
}

.
To reconstruct the stochastic solution φ (x,θ ) the
equations Eq. (15-16) are used.

7 Applications of Polynomial Chaos methods
with Fictitious Domain solver

7.1 One-dimensional problem

To verify the accuracy of Polynomial Chaos
methodologies coupled to Fictitious Domain ap-
proach let us consider the heat conduction prob-
lem of Eqs. (22-23) with uncertainties defined in
Eq. 26 once again. We will compare the numeri-
cal results to the analytical solution shown in fig-
ure 4.

In Section 4 it has been already demonstrated the
Monte Carlo method is not as accurate as Poly-
nomial Chaos approximations on equal compu-
tational cost, so we will not analyze the results
of Monte Carlo method coupled to Fictitious Do-
main.

Figure 14 shows the accuracy of E(T) and Std(T)
obtained by Chaos Polynomial with Fictitious
Domain solver, figure 15 shows that one ob-
tained by Chaos Collocation with Fictitious Do-
main solver and figure 16 shows that one ob-
tained by Tensorial-expanded Chaos Collocation
with Fictitious Domain solver.

All the tests have been computed employing the
Fictitious Domain approach. For the Chaos Poly-
nomial method the Fictitious domain solver has
been modified, so as to implement internally the
uncertainty quantification methodology. Differ-
ently for the Chaos Collocation and Tensorial-
expanded Chaos Collocation methods the origi-
nal Fictitious Domain solver, developed to solve
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Figure 14: Mean E(T) (above) and standard devi-
ation Std(T) (below) of problem Eq. (26): abso-
lute error of solution obtained by Chaos Polyno-
mial with Fictitious Domain solver respect to ana-
lytical solution. The Chaos Polynomial E(T) and
Std(T) have been computed with different expan-
sion polynomial orders: P = 1, P = 3 and P = 5.

deterministic differential problems, has been ex-
ploited.

The fictitious domain we have considered is
Π = [−5.0mm,25.0mm] and it has been divided
into 2 elements with expansion polynomial order
7.

By the figures, it is evident the introduction of Fic-
titious Domain approach into uncertainty quan-
tification methodologies to solve the differential
equation does not imply a loss of accuracy. The
error plots illustrated above and those shown in
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Figure 15: Mean E(T) (above) and standard devi-
ation Std(T) (below) of problem Eq. (26): abso-
lute error of solution obtained by Chaos Colloca-
tion with Fictitious Domain solver respect to ana-
lytical solution. The Chaos Collocation E(T ) and
Std(T) have been computed with different expan-
sion polynomial orders: P = 1, P = 3 and P = 5.

Section 4, where the probability distribution of the
analytical solution has been studied, are pretty the
same and unvaried remarks about accuracy and
computational cost can be done.

Once again, this example demonstrates that a
non-intrusive methodology has the same capabil-
ity of an intrusive approach, without the need of
an internal modification of the differential prob-
lem solver. Thereby, that being so, we can
use Chaos Collocation method and Tensorial-
expanded Chaos Collocation to study a two-
dimensional elliptic problem with multi geomet-
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Figure 16: Mean E(T) (above) and standard de-
viation Std(T) (below) of problem Eq. (26): ab-
solute error of solution obtained by Tensorial-
expanded Chaos Collocation with Fictitious Do-
main solver respect to analytical solution. The
Tensorial-expanded Chaos Collocation E(T ) and
Std(T) have been computed with different expan-
sion polynomial orders: P = 1, P = 3 and P = 5.

ric uncertainties.

Another consideration can be appended. In fig-
ure 15 it can be notice the error plot of mean and
standard deviation obtained by means of Chaos
Collocation is more influenced by polynomial or-
der than error plot of mean and standard deviation
obtained by means of Tensorial-expanded Chaos
Collocation. It is possible this behaviour is due
to the choice of collocation points which is not
unique for Chaos Collocation method. In the next
section the consequences of this arbitrary choice
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will be illustrated, as for a two-dimensional prob-
lem they will be more evident.

7.2 Two-dimensional problem

In this section we consider the stationary heat
conduction in an electronic chip [Xiu and Karni-
adakis (2003a)], subject to geometric tolerances:

−∇ · (k∇T ) = f in Ω(θ ) (56)

with k = 1 and f = 0. The stochastic domain
is shown in figure 17. The domain dimen-
sions are deterministic parameters except thick-
ness of cavity L1 which has a normal distribution
N(0.6,0.01) and the lengths L2 = N(2.0,0.01)
and L3 = N(2.0,0.01). The boundary of domain
consists of four segments: the top ΓT , the bot-
tom ΓB, the two sides ΓS and the boundaries of
the cavity ΓC . Adiabatic boundary conditions are
prescribed on ΓB and ΓS. The cavity boundary ΓC

is exposed to heat flux qb|ΓC = 1. On the top ΓT

is maintained at constant temperature T = 0.

L3= (0.60,0.01)N

1.6

L1= (2.00,0.01)N L2= (2.00,0.01)N

6.00

Figure 17: Stochastic domain of stationary heat
conduction problem Eq. (56).

Figure 18 shows the computational domain which
differs from chip geometry and in particular con-
tains it, according to Fictitious Domain approach.
The fictitious domain has been discretized into 15
spectral elements of order 8.

We are interested in the stochastic solution at the
points of domain. Actually we solve the heat con-
duction problem on all the points of fictitious do-
main and we associate to each point the probabil-
ity to belong to chip, as shown in figure 19 for
the top left corner of the cavity. In this way we

Γ

Γ

Γ Γ

ΓΓ

Γ

T

Γ

SS

B B
C

C

C

Figure 18: Schematic of the computational ficti-
tious domain for stationary heat conduction prob-
lem of Eq. (56).

have the mean and the standard deviation of tem-
perature due to geometric tolerance even in points
which do not really belong to chip, but, as we as-
sociate a probability of belonging, the results are
still significant.

Figure 19: Probability of belonging to electronic
chip under study with stochastic geometry Ω(θ )
for points of fictitious domain shown in figure 18.

Let us consider the solution along the axis of sym-
metry A − A shown in figure 20, which corre-
sponds to section x = 0.

Figure 21 shows the mean E(T ) along section
A − A obtained by means of Chaos Collocation
and Tensorial-expanded Chaos Collocation with
different polynomial orders: p = 1, p = 2, p = 3
and p = 4.

Figure 22 shows the standard deviation Std(T)
along section A−A obtained by means of Chaos
Collocation and Tensorial-expanded Chaos Col-
location with the same polynomial orders.

The values of mean we compute by Chaos Collo-
cation or Tensorial-expanded Chaos Collocation
are the same, whereas the curves of standard devi-
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A

A

B B

X

Y

Figure 20: Section A−A and section B−B iden-
tify the slices along which Chaos Collocation and
Tensorial-expanded Chaos Collocation methods
have been compared.

ation are different on equal polynomial expansion
order. This difference is more evident comparing
figure 23 and figure 24.

Figure 23 shows the contours of mean field and
the contours of standard deviation of temperature
computed by means of Chaos Collocation with or-
der p = 3.

Figure 24 shows the contours of mean field and
the contours of standard deviation of temperature
computed by means of Tensorial-expanded Chaos
Collocation with order p = 3.

These differences are due to the choice of colloca-
tion points, which is different for Chaos Colloca-
tion and Tensorial-expanded Chaos Collocation,
as already emphasized. Taking a look to solutions
obtained by Chaos Collocation and Tensorial-
expanded Chaos Collocation, the risk of comput-
ing not accurate standard deviation solutions em-
ploying the Chaos Collocation is plainly observ-
able. For the problem under study the contours of
standard deviation of temperature should be sym-
metric respect to section A−A, but in figure 23
they are not really symmetric. This wrong be-
haviour of Chaos Collocation standard deviation
is more evident in figure 25, which shows the
comparison of standard deviation along the axis
B−B (y = 0) obtained by Chaos Collocation and
Tensorial-expanded Chaos Collocation with poly-
nomial order p = 3.

This example has highlighted the difficulty for a
Chaos Collocation approach to select a good set
of collocation points when multi dimensional un-
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Figure 21: Expected value of solution of prob-
lem Eq. (56) along section A − A obtained by
means of: Chaos Collocation coupled to Fictitious
Domain solver (above) and Tensorial-expanded
Chaos Collocation coupled to Fictitious Domain
solver (below), with expansion polynomial order
P = 1, P = 2, P = 3 and P = 4.

certainties are present. The choice is not unique
and can bring to unphysical results. This prob-
lem does not exist for Tensorial-expanded Chaos
Collocation formulation. It is true the methodol-
ogy is computationally more expensive than mul-
tidimensional Chaos Collocation, but the advan-
tage is to avoid an arbitrary choice of collocation
points in behalf of an higher accuracy.

As final remark, on the base of implemented
tests and applications, in our opinion Tensorial-
expanded Chaos Collocation method owns sev-
eral advantages respect other Polynomial Chaos
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Figure 22: Standard deviation of solution of prob-
lem Eq. (56) along section A − A obtained by
means of: Chaos Collocation coupled to Fictitious
Domain solver (above) and Tensorial-expanded
Chaos Collocation coupled to Fictitious Domain
solver (below), with expansion polynomial order
P = 1, P = 2, P = 3 and P = 4.

methodologies, because it is non-intrusive and in-
dependent by an arbitrary choice of collocation
points.

8 Conclusions

In this paper a comparison among different Poly-
nomial Chaos methodologies has been presented,
in order to find the best method for facing multi
uncertain problems, with particular attention to
geometric uncertainties given by shape toler-
ances.

In literature there are not systematic studies and
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Figure 23: Contours of temperature distribu-
tion in the electronic chip under study: mean
field (above) and standard deviation (below) field.
Mean and standard deviation have been obtained
by means of Chaos Collocation method with ex-
pansion polynomial order P = 3 coupled to Ficti-
tious Domain solver.
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Figure 24: Contours of temperature distribu-
tion in the electronic chip under study: mean
field (above) and standard deviation (below) field.
Mean and standard deviation have been obtained
by means of Tensorial-expanded Chaos Collo-
cation method with expansion polynomial order
P = 3 coupled to Fictitious Domain solver.

comparisons among different methodologies for
uncertainty quantification. Moreover the analy-
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Figure 25: Comparison of standard deviation of
problem Eq. (56) along section B−B obtained by
Chaos Collocation and Tensorial-expanded Chaos
Collocation with polynomial order P = 3 coupled
to Fictitious Domain solver.

sis of stochastic geometries is still an unprobed
field, especially when multi geometric uncertain-
ties are present. This work is an attempt to fill in
this blank.

The tests have been accomplished sequentially
from the simplest to the most complex cases, in
order to cast away the least suitable methodolo-
gies to study differential problems with multi ge-
ometric uncertainties. The methods we have com-
pared are Monte Carlo, Chaos Polynomial, Chaos
Collocation and Tensorial-expanded Chaos Col-
location.

Initial numerical experiments have been per-
formed on analytic functions and have demon-
strated Polynomial Chaos methodologies are bet-
ter than Monte Carlo Method for accuracy on
equal computational cost.

Pointed out the superiority of Polynomial Chaos
methods, these methodologies have been coupled
to Fictitious Domain approach and Least-Squares
Spectral Element method. This formulation is of
particular interest to study problems on stochastic
domain, as Fictitious Domain approach allows to
avoid the remeshing of computational domain in
the presence of geometric uncertainties. Its main
advantage lies in the fact that only one Cartesian

mesh, that represents the enclosure, needs to be
generated.

In order to demonstrate the capabilities and the
drawbacks of Polynomial Chaos methodologies
coupled with a Fictitious Domain solver, they
have been employed to solve a one-dimensional
elliptic problem with multi uncertainties, both on
geometry and material properties. Excellent ac-
curacy properties of non-intrusive methods, i.e.
Chaos Collocation and Tensorial-expanded Chaos
Collocation, have been demonstrated. Their per-
formance is comparable to that one of intrusive
Chaos Polynomial method, with the advantage of
avoiding to modify the solver of partial differen-
tial equation. The solver is just a black-box and in
this way we get a simplification of computational
process management.

On the consequence of these observations, Chaos
Collocation and Tensorial-expanded Chaos Collo-
cation methods with Fictitious Domain approach
have been employed to solve a two-dimensional
elliptic problem: the stationary heat conduction in
an electronic chip [Xiu and Karniadakis (2003a)].
In particular multi geometric uncertainties have
been considered, in order to determine the differ-
ences between these non-intrusive methodologies.

This example highlights the difficulty to select
collocation points in presence of multi geomet-
ric uncertainties employing the Chaos Collocation
approach, because the choice is not unique and
the results we obtain should be unphysical. Cer-
tainly physical solution will be obtained by the
Tensorial-expanded Chaos Collocation method,
where the employed set of collocation point is not
arbitrary. Nevertheless the computational cost of
tensorial approach is higher compared to Chaos
Collocation method.

In conclusion, it has been observed as a non-
intrusive tensorial method coupled to a Fictitious
Domain solver represents an efficient methodol-
ogy to solve multi uncertain problems, in particu-
lar when stochastic.

Several issues need to be addresed:

• Tensorial-expanded Chaos Collocation
method with different expansion orders for
each unertain variable, in order to determine
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the minimum number of collocation points
and decrease the computational cost;

• investigation of Fictitious Domain method fo
solving Navier-Stokes equations and the ex-
amination of accuracy of Polynomial Chaos
methods coupled to Fictitious Domain solver
for Fluid Dynamic problems with geometric
uncertainties.
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