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Boundary Element Analysis of Three-Dimensional Exponentially Graded
Isotropic Elastic Solids

R. Criado1, J.E. Ortiz1, V. Mantič1, L.J. Gray1,2 and F. París1

Abstract: A numerical implementation of the
Somigliana identity in displacements for the so-
lution of 3D elastic problems in exponentially
graded isotropic solids is presented. An expres-
sion for the fundamental solution in displace-
ments, Uj�, was deduced by Martin et al. (Proc.
R. Soc. Lond. A, 458, pp. 1931–1947, 2002).
This expression was recently corrected and im-
plemented in a Galerkin indirect 3D BEM code
by Criado et al. (Int. J. Numer. Meth. Engng.,
2008). Starting from this expression of Uj�, a new
expression for the fundamental solution in trac-
tions Tj� has been deduced in the present work.
These quite complex expressions of the integral
kernels Uj� and Tj� have been implemented in a
collocational direct 3D BEM code. The numeri-
cal results obtained for 3D problems with known
analytic solutions verify that the new expression
for Tj� is correct. Excellent accuracy is obtained
with very coarse boundary element meshes, even
for a relatively high grading of elastic properties
considered.

Keyword: functionally graded materials,
boundary element method, three-dimensional
elasticity, Somigliana identity, fundamental
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1 Introduction

Functionally Graded Materials (FGMs) [Suresh
and Mortensen (1998)] represent a new genera-
tion of composites, having a continuous variation
of apparent material properties obtained through
a progressive variation of their microstructural
composition. Stress concentrations appearing at
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material discontinuities in various applications
(for example, thermal barrier coatings) can be
avoided or diminished using FGMs.

The first numerical studies of FGMs have been
carried out using the Finite Element Method
(FEM) [Lee and Erdogan (1998); Santare and
Lambros (2000); Anlas et al. (2000); Kim and
Paulino (2002a,b); Paulino and Kim (2004)] due
to its capability to include, relatively easily, vari-
ation of material properties. The Meshless Lo-
cal Petrov-Galerkin (MLPG) Method [Atluri and
Shen (2002); Sládek et al. (2004, 2005, 2007);
Ching and Chen (2006)] has also recently shown
to be a versatile approach to solve different prob-
lems including non-homogeneous media.

The Boundary Element Method (BEM) [París and
Cañas (1997); Aliabadi (2002)] is another tech-
nique for elastic analysis, capable of solving prob-
lems with material and geometrical discontinu-
ities, e.g., crack growth and contact, and also very
suitable for flaw detection and shape optimiza-
tion. Nevertheless, an adaption of BEM to non-
homogeneous media is a hard task, as fundamen-
tal solutions or Green’s functions (corresponding
to concentrated loads or sources) for such media
are difficult to obtain.

Fundamental solutions for heat transfer problems
in non-homogeneous media have been presented
in Shaw and Makris (1992); Clements (1998);
Gray et al. (2003); Berger et al. (2005) and
Kuo and Chen (2005) and implemented in BEM
codes by Gray et al. (2003); Clements and Budhi
(1999); Núñez et al. (2002); Paulino et al. (2002)
and Sutradhar and Paulino (2004). Green’s func-
tions due to surface loads in non-homogeneous
half-spaces have been deduced in Han et al.
(2006) and Seyrafian et al. (2006).

Fundamental solutions for 2D and 3D elastic
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problems in exponentially graded isotropic ma-
terials have been deduced only recently in Chan
et al. (2004) and Martin et al. (2002). These so-
lutions have not as yet been checked computa-
tionally, to the knowledge of the present authors,
which can be due to the fact that implementing
them in a BEM code is far from straightforward.

In the present work the displacement fundamen-
tal solution Ujl corresponding to a point force in
a 3D exponentially graded elastic isotropic me-
dia, developed originally in Martin et al. (2002)
and corrected by Criado and co-workers (2005,
2008), is employed in the form presented in Cri-
ado and co-workers (2005, 2008). Moreover, a
new expression of the corresponding traction fun-
damental solution Tjl is presented herein, and both
functions have been implemented in a 3D collo-
cational BEM code. To check the correctness of
the kernel function expressions and to prove their
suitability to be implemented in a BEM code,
and also to check the overall BEM implementa-
tion, two 3D problems with known analytic so-
lutions for exponentially graded materials have
been analysed by this BEM code.

2 Properties of Elastic Exponentially Graded
Isotropic Materials

The fourth rank tensor of elastic stiffnesses ci jk�

(i, j,k, �= 1,2,3) for an exponentially graded ma-
terial varies according to the following law:

ci jk�(x) = Ci jk� exp(2βββ ·x), (1)

where x is a point in the material and the vector βββ
defines the direction and exponential variation of
grading, β = ‖βββ‖. According to (1), points situ-
ated in a plane perpendicular to βββ have the same
stiffnesses, Ci jk� giving the stiffnesses in the plane
including the origin of coordinates.

In the case of isotropic materials, the Lamé con-
stants λ and μ satisfy

ci jk�(x) = λ (x)δi jδk� + μ(x)
(
δikδ j� +δi�δ jk

)
,

(2)

where δi j is Kronecker delta, and hence for expo-

nential grading

λ (x) = λ0 exp(2βββ ·x) and

μ(x) = μ0 exp(2βββ ·x).
(3)

Here λ0 and μ0 are the Lamé constants on the
plane that includes the origin of coordinates. It
is easy to check, that λ (x)/μ(x) = λ0/μ0 =
2ν/(1− 2ν), ν being the (constant) Poisson ra-
tio defined as ν = λ0/2(λ0 + μ0). Note that the
assumption of a constant Poisson ratio appears to
be reasonable for many real graded materials, and
is a commonly used approximation in an analysis
of graded materials.

3 Elastic Fundamental Solution in 3D Expo-
nentially Graded Isotropic Materials

3.1 Displacement fundamental solution

According to Martin et al. (2002), the displace-
ment fundamental solution can be written as

U(x,x′) = exp{−βββ · (x+x′)}
·{U0(x−x′)+Ug(x−x′)

}
, (4)

where Uj�(x,x′) gives the j-th displacement com-
ponent at x due to a unit point force acting in the
�-direction at point x′, and U0 is the weakly sin-
gular Kelvin fundamental solution associated to a
homogenous isotropic material defined by λ0 and
μ0 (see París and Cañas (1997); Aliabadi (2002)).
The so-called grading term

Ug
j�(x−x′) = − 1

4πμ0r

(
1−e−βr

)
δ j�

+ A j�(x−x′) (5)

is bounded for r → 0 and vanishes for β = 0, r =
‖r‖ where r = x−x′.
Let an orthogonal system of coordinates
(x̃1, x̃2, x̃3), whose origin is placed at x′, be
defined by the orthonormal right-handed triad
{n,m,β̂ββ}, where β̂ββ = (β̂1, β̂2, β̂3) = βββ/β , and
n and m are orthonormal vectors in the plane
perpendicular to βββ . Let the following spherical
coordinate system (r,Θ,Φ) be associated to this
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coordinate system:

r ·n = r sinΘ cosΦ,

r ·m = r sinΘ sinΦ

r ·β̂ββ = r cosΘ,

(6)

where 0 ≤ Θ ≤ π and 0 ≤ Φ ≤ 2π .

According to Criado and co-workers (2005, 2008)
the term A jl is composed of the following five in-
tegrals:

A jl = − β
4π(1−ν)μ0

I1

− β
2π2(1−ν)μ0

(I2 −I3 +I4 −I5, ) , (7)

where

I1 =
2

∑
s=0

2

∑
n=0

∫ π/2

0
R

(n)
s e−|k|ys In(Kys) sinθ dθ ,

(8)

I2 =
2

∑
s=0

∫ π/2

θm

R
(0)
s sinθ

∫ π/2

ηm

sinhΨs dη dθ , (9)

I3 =
2

∑
s=0

∫ π/2

θm

R
(2)
s sinθ

∫ π/2

ηm

sinhΨs cos2η

·dη dθ ,
(10)

I4 =
2

∑
s=1

∫ π/2

θm

M
(1)
s sinθ

∫ π/2

ηm

coshΨs sinη

·dη dθ ,
(11)

I5 =
2

∑
s=1

∫ π/2

θm

M̃
(1)
s sgn(k) sinθ

∫ π/2

ηm

sinhΨs

· sinη dη dθ ,

(12)

the extensive notation introduced in this equation
being now defined.

First, In(x) denotes the modified first kind Bessel
function of order n,

I1(Kys) =
2
π

∫ π/2

0
sinh(Kys sinη) sinη dη, (13)

In(Kys) =
2

π in

∫ π/2

0
cosh(Kys sinη) cosnη dη,

n = 0,2. (14)

The integration limits θm and ηm (0 ≤ θm,ηm ≤
π
2 ) are defined by

θm(Θ) =
∣∣1

2 π −Θ
∣∣ ,

|k(r,Θ,θ )|= K(r,Θ,θ ) sinηm(Θ,θ ),
(15)

where k(r,Θ,θ ) = β r cosθ cosΘ and
K(r,Θ,θ ) = β r sinθ sinΘ, and the range of
θ guarantees that ηm is well defined. The
argument of the hyperbolic functions is

Ψs(r,Θ,θ ,η)
= K(r,Θ,θ )ys(θ ) (sinηm(Θ,θ )− sinη), (16)

where the functions ys are given by

y0 = 1,

y1(θ ) =

√
q(θ )+

√
q2(θ )−1,

y2(θ ) =

√
q(θ )−

√
q2(θ )−1,

(17)

with q(θ )≥ 1 defined as

q(θ ) = 1+
2ν

1−ν
sin2(θ ). (18)

The functions R
(n)
s and M

(n)
s are given by

R
(0)
s = M

(0)
s , R

(2)
s = −M

(2)
s , s = 0,1,2,

(19)

R
(1)
s = −

(
M

(1)
s +M̃

(1)
s sgn(k)

)
, s = 1,2,

(20)

M
(n)
0 =

fn(1)
2D(1)

, M
(n)
s =

fn(ys)
(1−y2

s )D′(ys)
,

(21)

n = 0,2 and s = 1,2,

M
(1)
s =

f1(ys)
D′(ys)

, M̃
(1)
s =

f̃1(ys)
D′(ys)

, s = 1,2,

(22)

while the functions fi are defined by

f0(x) = 1
2

{
8νx4 − (−x2 +1)(−2x2q+1)

}
· (n jn� +m jm�) sin2 θ +

{
8νx4 sin2 θ

+(−x2 +1)[−x2 − (−2x2q+1)cos2 θ ]
}

β̂ jβ̂�,
(23)
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f1(x) = x3(4ν −1)(s jβ̂�− β̂ js�) sinθ , (24)

f̃1(x) = −1
2 (s jβ̂� + β̂ js�)(−2x2q+1) sin2θ , (25)

f2(x) = −1
2 [8νx4− (−x2 +1)(−2x2q+1)]
·{n j(n� cos2Φ+m� sin2Φ)

+m j(n� sin2Φ−m� cos2Φ)
}

sin2 θ , (26)

s j(Φ) = n j cosΦ+m j sinΦ, (27)

and the polynomials D(x) and D′(x) by

D(x)= x4−2x2q+1 and D′(x) =−4x3 +4xq.

(28)

Notice that D′(x) is not the derivative of D(x).

A discussion of the properties of the fundamental
solution Ujl and some aspects of the above ex-
pression, together with recommendations for its
numerical evaluation can be found in Criado and
co-workers (2005, 2008).

3.2 Traction fundamental solution

The direct boundary integral equation for sur-
face displacement requires the displacement fun-
damental solution, and the corresponding traction
fundamental solution. The starting point in the
evaluation of tractions in an exponentially graded
material due to a unit point force is the differen-
tiation of the fundamental solution in displace-
ments Ujl . These derivatives are used to deter-
mine the corresponding strains, and then employ-
ing the constitutive law with the tensor of elas-
tic stiffnesses given in (2-3), the corresponding
stresses can be obtained.

Differentiation of (4) yields

∂Uj�

∂xk
(x,x′) = exp

(−βββ · (x+x′)
)

·
(

∂U0
j�

∂xk
(x−x′)+

∂Ug
j�

∂xk
(x−x′)

)
−βkUj�(x,x′). (29)

Although the derivative of U0
j� is strongly singular,

this term eventually produces the Kelvin traction
kernel for a homogeneous material; the expres-
sions can be found in París and Cañas (1997) and

Aliabadi (2002). The derivative of Ug
j� is weakly

singular and can be expressed, in view of (5), as

∂Ug
j�

∂xk
(x−x′) =

− δ j�

4πμ0

{
e−β r(β r,k)

r
− (1−e−β r)r,k

r2

}
+

∂A j�

∂xk
(x−x′), (30)

where the derivative of A jl is, according to (7),
decomposed into the sum of the derivatives of the
integrals Ii

∂A jl

∂xk
(x−x′) = − β

4π(1−ν)μ0

∂I1

∂xk

− β
2π2(1−ν)μ0

(
∂I2

∂xk
− ∂I3

∂xk
+

∂I4

∂xk
− ∂I5

∂xk

)
.

(31)

Note that the weakly singular character of
∂Ug

j�/∂xk directly follows from the boundedness
of Ug

j� and the Gauss divergence theorem.

When differentiating Ii (i = 2, . . .,5), involving
double integrals with respect to η and θ , it should
be taken into account that while their superior lim-
its are constant, their inferior limits are varying
with the positions of the field and source points, x
and x′, as follows:

• Inferior limit of the integral in θ : θm =
θm(x,x′),

• Inferior limit of the integral in η: ηm =
ηm(x,x′,θ ).

Thus, derivatives of these double integrals are
evaluated by applying the following rule twice:

d
dx

∫ B

A(x)
f (x, t)dt =

∫ B

A(x)

∂ f (x, t)
∂x

dt− f (x,A(x))
dA
dx

.

(32)

By also taking into account that ηm(θ = θm) =
π/2 and Ψs(η = ηm) = 0, see Criado (2005), the
following expressions are obtained after some al-



Analysis of Isotropic Elastic Solids 155

gebraic manipulations:

∂I1

∂xk
=

2

∑
s=0

2

∑
n=0

∫ π/2

0
e−|k|ys sinθ

{
∂R

(n)
s

∂xk
In(Kys)

+R
(n)
s

(
−ys

∂ |k|
∂xk

In(Kys)+
∂ In(Kys)

∂xk

)}
dθ

(33)

∂I2

∂xk
=

2

∑
s=0

∫ π/2

θm

sinθ
{

∂R
(0)
s

∂xk

∫ π/2

ηm

sinhΨs dη

+R
(0)
s

{∫ π/2

ηm

coshΨs
∂Ψs

∂xk
dη
}}

dθ (34)

∂I3

∂xk
=

2

∑
s=0

∫ π/2

θm

sinθ
{

∂R
(2)
s

∂xk

∫ π/2

ηm

sinhΨs cos2ηdη

+R
(2)
s

{∫ π/2

ηm

coshΨs cos2η ∂Ψs

∂xk
dη
}}

dθ

(35)

∂I4

∂xk
=

2

∑
s=1

∫ π/2

θm

sinθ
{(

∂M
(1)
s

∂xk

)∫ π/2

ηm

coshΨs sinηdη

+M
(1)
s

{∫ π/2

ηm

sinhΨs sinη
∂Ψs

∂xk
dη

− ∂ηm

∂xk
sinηm

}}
dθ (36)

∂I5

∂xk
=

2

∑
s=1

∫ π/2

θm

sinθ

·
{(

∂M̃
(1)
s

∂xk
sgn(k)

) ∫ π/2

ηm

sinhΨs sinηdη

+M̃
(1)
s sgn(k)

{∫ π/2

ηm

coshΨs sinη
∂Ψs

∂xk
dη
}}

dθ

(37)

where

∂R(n)
s

∂xk
= 0, n = 0 and n = 1 with s = 0, (38)

= −∂M (1)
s

∂xk
− ∂M̃ (1)

s

∂xk
sgn(k), (39)

n = 1 with s = 1,2,

= −∂M
(2)
s

∂xk
, n = 2, (40)

∂Ψs

∂xk
=

∂K
∂xk

ys(sinηm − sinη)+K ys cosηm
∂ηm

∂xk
,

(41)

∂ In

∂xk
=

2

π(−1)n/2

∫ π/2

0
cos(nη) sinh(K ys sinη)

(42)

· ∂K
∂xk

ys sinηdη, n = 0,2,

=
2
π

∫ π/2

0
sin(η) cosh(K ys sinη)

∂K
∂xk

ys

(43)

· sinηdη, n = 1.

The derivative of ηm is expressed as

∂ηm

∂xk
=

1
K cosηm

{
∂ |k|
∂xk

− sinηm
∂K
∂xk

}
, (44)

where

∂k
∂xk

= β
(

∂ r
∂xk

cosθ cosΘ+ r cosθ
∂cosΘ

∂xk

)
,

(45)

∂K
∂xk

= β
(

∂ r
∂xk

sinθ sinΘ+ r sinθ ∂ sinΘ
∂xk

)
.

(46)

The derivatives of M
(n)
s and M̃

(n)
s appearing in
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the above expressions are given by:

∂M
(n)
s

∂xk
= 0, n = 0, (47)

=
1

D′(ys)
∂ f1

∂xk
(ys), n = 1, (48)

=
1

D(1)
∂ f2

∂xk
(1), n = 2 with s = 0,

(49)

=
1

(1−ys
2)D′(1)

∂ f2

∂xk
(1), (50)

n = 2 with s = 1,2,

∂M̃
(1)
s

∂xk
=

1
D′(ys)

∂ f̃1

∂xk
(ys), (51)

where

∂ f1

∂xk
(x) = x3(4ν −1)

(
∂ s j

∂xk
β̂l − ∂ sl

∂xk
β̂ j

)
sinθ

(52)

∂ f2

∂xk
(x) =−0.5[8νx4−(−x2+1)(−2x2q+1)] (53)

·
{

n j

(
nl

∂cos2Φ
∂xk

+ml
∂ sin2Φ

∂xk

)
+m j

(
nl

∂ sin2Φ
∂xk

−ml
∂cos2Φ

∂xk

)}
sin2 θ

(54)

∂ f̃1

∂xk
(x) = −0.5

(
∂ s j

∂xk
β̂l +

∂ sl

∂xk
β̂ j

)
· (−2x2q+1) sin2θ . (55)

Finally,

∂ s j

∂xk
= n j

∂cosΦ
∂xk

+m j
∂ sinΦ

∂xk
(56)

∂
∂xk

=
∂

∂ x̃ j

∂ x̃ j

∂xk
= Ljk

∂
∂ x̃ j

, (57)

where L1k = nk, L2k = mk, L3k = β̂k, and

∂cosΘ
∂ x̃ j

=
δ j3

r
− r3

r2

∂ r
∂ x̃ j

, (58)

∂ sinΘ
∂ x̃ j

=
1

r
√

r2 − r2
3

(
r

∂ r
∂ x̃ j

− r3 δ j3

)
(59)

−
√

r2− r2
3

r2

∂ r
∂ x̃ j

,

∂cosΦ
∂ x̃ j

=
δ j1√
r2 − r2

3

(60)

− r1

(r2 − r2
3)3/2

(
r

∂ r
∂ x̃ j

− r3 δ j3

)
,

∂ sinΦ
∂ x̃ j

=
δ j2√
r2 − r2

3

(61)

− r1

(r2 − r2
3)3/2

(
r

∂ r
∂ x̃ j

− r3 δ j3

)
.

Note that the finite integrals in (33-37) can be
computed by the standard Gaussian quadrature,
except for the integral in (36) where the func-
tion ∂ηm

∂xk
appears. This function is weakly sin-

gular for θ → θm (including a square root sin-
gularity) and accurate values of this integral can
be achieved, e.g., by the singularity subtraction
technique or a special Gauss-Jacobi quadrature.
For further details and a comparison of both tech-
niques, which showed that the special quadrature
is slightly more accurate, see Criado (2005).

The strains Ei j�(x,x′) associated with the funda-
mental solution in displacements Uj�(x,x′) are
given by

Ei j�(x,x′) =
1
2

(
∂Ui�

∂x j
(x,x′)+

∂Uj�

∂xi
(x,x′)

)
,

(62)

and incorporating them into the constitutive law
defining the elastic stiffnesses (2-3), yields the
corresponding stresses

Σ i j� = 2μ(x)Ei j�(x,x′)+λ (x)Ekk�(x,x′)δi j.

(63)

Then, substituting (62) into (63) and using (29)
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yields

Σ i j�(x−x′) =

exp
(
βββ · (x−x′)

)(
Σ0

i j�(x−x′)+Σg
i j�(x−x′)

)
,

(64)

where the strongly singular term Σ0
i j�(x−x′) rep-

resents the stress tensor σi j at x originated by a
unit point force in direction � at x′ in the homoge-
neous elastic isotropic material having Lamé con-
stants μ0 and λ0 (see París and Cañas (1997); Ali-
abadi (2002)). The weakly singular grading term
Σg

i j�(x−x′) is expressed as:

Σg
i j�(x−x′) =

μ0

(
∂Ug

i�

∂x j
+

∂Ug
j�

∂xi
−βi

(
U0

j� +Ug
j�

)
−β j

(
U0

i�+Ug
i�

))

+λ0

(
∂Ug

k�

∂xk
−βk

(
U0

k� +Ug
k�

))
δi j. (65)

It is important to notice the differences between
the exponential prefactors in the expressions of
the kernels Uj� and Σ i j� in (4) and (64) and their
implications for the behaviour of these kernels.

First, these prefactors imply that while Uj�(x,x′)
depends on the position of both the source and
field points, x′ and x, Σ i j�(x−x′) depends only
on the difference of these points. This difference
can be explained by the fact that the equilibrium
equation for the displacement fundamental solu-
tion Uj� includes the graded material properties
[Martin et al. (2002)], whereas the equilibrium
equation for the stress fundamental solution Σ i j�:

∂Σ i j�

∂x j
+δi�δ (x−x′) = 0, (66)

with δ (x) being the three-dimensional Dirac
delta, is naturally independent of these material
properties.

Second, taking the source point x′ fixed (e.g., at
the origin of coordinates), the exponential prefac-
tor in (4) diminishes the values of the displace-
ments Uj� in stiffer zones and increases them
in more compliant zones, whereas the exponen-
tial prefactor in (64) increases the values of the

stresses Σ i j� in stiffer zones and diminishes them
in more compliant zones.

The traction fundamental solution Ti�(x,x′), as-
sociated with the unit outward normal vector
n(x), is obtained from Σ i j�(x−x′) by the Cauchy
lemma:

Ti�(x,x′)
= Σ i j�(x−x′)n j(x) (67)

= exp
(
βββ · (x−x′)

)(
T 0

i�(x,x′)+T g
i�(x,x′)

)
,
(68)

where, as for the stress, T 0
i�(x,x′) represents the

well-known strongly singular fundamental solu-
tion in tractions for a homogeneous material (with
parameters μ0 and λ0) [París and Cañas (1997);
Aliabadi (2002)], and T g

i�(x,x′) is the weakly sin-
gular grading term obtained from Σg

i j�(x− x′),
T g

i�(x,x′) = Σg
i j�(x−x′)n j(x).

The behaviour of the stresses originated by a
unit point force is illustrated in Figure 1, where
three-dimensional plots of some components of
the stress fundamental solution Σ i j�(x− x′) are
shown, the origin of coordinates being coinci-
dent with the force application point, i.e. x′ = 0.
All the components presented show some singu-
lar behaviour at x = 0. Nevertheless, as can be
guessed looking at the values and/or variations of
the stresses plotted, these singularities are not al-
ways of the same kind, which will be explained
in the following. The differences between these
plots in Figure 1 can be more easily understood
if the symmetry and skew-symmetry planes in the
corresponding elastic problems for exponentially
graded and homogeneous materials are consid-
ered.

The stronger singular behaviour of Σ0
i j� at x = 0

in comparison with Σg
i j� is dominant in Figures 1

a) and f). Slight differences between behaviour
of stresses in these plots can be attributed to the
effect of the exponential prefactor, not present in
Figure 1 a), and to different contributions due to
Σg

i j�.

The components Σ0
i j� corresponding to plots in

Figures 1 b) to e) vanish (which can be shown by
applying standard symmetry arguments), hence
the stress values shown in these plots are exclu-
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(a) Σ111(x1,x2,0)
(b) Σ231(x1,x2,0)

(c) Σ113(x1,x2,0)
(d) Σ123(x1,x2,0)

(e) Σ333(x1,x2,0)
(f) Σ333(0,x2,x3)

Figure 1: Components of the Σ i jk kernel for μ0 = 4, ν = 0.35 and grading parameter βββ = (0,0,0.1).
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sively given by the components of Σg
i j� times the

exponential prefactor.

Finally, in order to show in a very clear way
the differences between the stress fundamen-
tal solutions in homogeneous and exponentially
graded materials, components Σ333(0,0,x3) and
Σ0

333(0,0,x3) are plotted in Figure 2. It can
be seen how the skew-symmetric character of
stresses in the homogeneous material is changed
in presence of a grading, in agreement with the
above explained effect of the exponential prefac-
tor.

Figure 2: Component Σ0
333(0,0,x3) (corre-

sponding to the homogeneous material) and
Σ333(0,0,x3) for μ0 = 4, ν = 0.35 and grading pa-
rameter βββ = (0,0,5).

4 Boundary Element Method

The boundary integral formulation for an
isotropic, exponentially graded body Ω ⊂ R

3

with a bounded (Lipschitz and piecewise smooth)
boundary ∂Ω = Γ will be briefly discussed in
this section. The derivation follows the standard
procedures for a homogeneous material [París
and Cañas (1997); Aliabadi (2002)]. Starting
from the 2nd Betti Theorem of reciprocity of
work for a graded material, one can derive the
corresponding Somigliana identity:

Ci�(x′)ui(x′)+−
∫

Γ
Ti�(x,x′)ui(x)dS(x)

=
∫

Γ
Ui�(x,x′)ti(x)dS(x), (69)

expressing the displacements ui(x′) at a domain
or boundary point x′ ∈ Ω ∪ Γ in terms of the

boundary displacements ui(x) and tractions ti(x),
x ∈ Γ. Notice that zero body forces have been
considered in (69). The strongly singular traction
kernel integral is evaluated in the Cauchy princi-
pal value sense, and

Ci�(x′) = lim
ε→0+

∫
Sε(x′)∩Ω

Ti�(x,x′)dS(x) (70)

is the coefficient tensor of the free term, Sε(x′) be-
ing a spherical surface of radius ε centered at x′

and oriented by the unit normal vectors pointing
to the center. It is important to note that, despite
the complexity of the Ti� kernel expression, this
evaluation is not a problem. The weakly singular
grading term and the exponential prefactor in (68)
will play no role in the limit procedure in (70).
Thus, the value of Ci� in (70) coincides with the
value of Ci� for the homogeneous isotropic ma-
terial whose properties are defined by the Lamé
constants λ0 and μ0, i.e.,

Ci�(x′) = lim
ε→0+

∫
Sε(x′)∩Ω

T 0
i�(x,x′)dS(x). (71)

Hence, Ci�(x′) = δi� for x′ ∈ Ω, Ci�(x′) = 1
2 δi� for

x′ ∈ Γ situated at a smooth part of Γ, and for an
edge or corner point of Γ, Ci�(x′) is given by the
size, shape and spatial orientation of the interior
solid angle at x′. A general explicit expression of
the symmetric tensor Ci�(x′) in terms of the unit
vectors tangential to the boundary edges and the
unit outward normal vectors to the boundary sur-
faces at x′ can be found in Mantič (1993).

For an unbounded domain Ω, the form of the
Somigliana identity in (69) holds if the following
radiation condition [Costabel and Dauge (1997)]
for the displacement solution ui and the corre-
sponding traction solution ti is fulfilled for any
fixed x′ ∈ Ω:

lim
ρ→∞

∫
Γρ

(
Ui�(x,x′)ti(x)−Ti�(x,x′)ui(x)

)
dS(x)

= 0, (72)

where Γρ is the spherical surface of radius ρ cen-
tered at the origin of coordinates. In fact, (72) im-
plies that the integral in (72) vanishes for any suf-
ficiently large Γρ including Γ in its interior and
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any x′ ∈ Ω, ‖x′‖ < ρ . A further study of (72)
using a detailed knowledge of the behaviour of
Ug

jl(x− x′) for r → ∞ (apparently not available
at present due to the cumbersome expression of
A jl given in (7)) might be necessary in the deduc-
tion of a more explicit and equivalent expression
of this radiation condition in the classical form
(see Costabel and Dauge (1997) for some stan-
dard examples). This classical form of (72) would
be very useful for practical applications of (69) to
infinite domains.

The numerical implementation of (69) in this
work employs standard approximation tech-
niques. A collocation approximation based upon
a nine-node continuous quadrilateral quadratic
isoparametric element is employed to interpolate
the boundary and the boundary functions. The
evaluation of regular integrals is accomplished by
Gaussian quadrature with 8×8 integration points,
whereas an adaptive element subdivision follow-
ing the procedure developed in Lachat and Wat-
son (1976) is utilized for nearly singular inte-
grals. A standard triangle to square transforma-
tion [Lachat and Watson (1976)] is employed to
handle the weakly singular integrals involving the
kernel Ui�, and the rigid body motion procedure is
invoked for evaluating the sum of the coefficient
tensor of the free term Ci� and the Cauchy princi-
pal value integral with the kernel Ti�.

5 Numerical Results

The expression for the Ti�(x,x′) kernel is clearly
quite complicated, and thus it is necessary to ver-
ify that these formulas and their numerical imple-
mentation are correct. This is accomplished in
this section using two relatively simple problems
having known exact solutions.

Consider the cube Ω = (0, �)3 wherein the ma-
terial is exponentially graded in the x3-direction.
The grading coefficient β in the numerical tests
will be chosen as (ln2)/� or (ln7)/�; thus, the
Young modulus increases in the x3-direction 4 or
49 times, respectively, i.e., E(x3 = �)/E0 = 4 or
49, where E0 = E(x3 = 0). In both test prob-
lems, symmetry boundary conditions are imposed
on the three faces coincident with the coordinate
planes: x1 = 0, x2 = 0 and x3 = 0. Elastic solu-

tions in this cube having different loads and dif-
ferent Poisson ratios ν will be studied using three
very coarse meshes, denoted as A, B and C. Mesh
A has one element per face, and therefore a to-
tal of 6 elements, while the meshes B and C are
obtained by dividing each element of mesh A par-
allel to the x3-direction into 2 and 3 uniform ele-
ments, respectively. This results in a total of 10
and 14 elements. These meshes are shown in Fig-
ure 3, together with the above symmetry boundary
conditions.

x1x3

x2

l

l

l

A

B C

Figure 3: Three BEM discretizations of cube (A,
B and C) using 6, 10 and 14 elements, respec-
tively.

The percentages of the normalized error in
stresses and displacements will be computed as

%Err(σi j) =
σBEM

i j −σ anal.
i j

σ0
×100,

%Err(ui) =
uBEM

i −uanal.
i

max uanal.
i

×100,

(73)

where σ0 is a nominal stress involved in the defi-
nition of each problem.
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Table 1: Normalized errors in σ33 at the plane
x3 = 0. Grading coefficient β = (ln2)/�. Meshes
A, B and C.

Normalized error (%)

Node Coordinates A B C
1 (0, 0, 0) -0.9931 -0.2070 0.0149
2 (0.5�, 0, 0) 0.0311 -0.0080 0.0123
3 (�, 0, 0) -0.4273 -0.1961 -0.1951
4 (0, 0.5�, 0) 0.0311 -0.0078 0.0128
5 (0.5�, 0.5�, 0) 1.0948 0.1920 -0.0544
6 (�, 0.5�, 0) 0.3084 -0.0583 0.0260
7 (0, �, 0) -0.4276 -0.1967 -0.1966
8 (0.5�, �, 0) 0.3085 -0.0581 0.0266
9 (�, �, 0) 0.2416 -0.1283 -0.368

Table 2: Normalized errors in u3 along the edge
x1 = x2 = �. Grading coefficient β = (ln2)/�.
Meshes A, B and C.

Normalized error (%)

Node Coordinates A B C
1 (�, �, 0.17�) 0.0010
2 (�, �, 0.25�) -0.0245
3 (�, �, 0.33�) 0.0000
4 (�, �, 0.50�) -0.2638 -0.0335 -0.0006
5 (�, �, 0.67�) -0.0015
6 (�, �, 0.75�) -0.0411
7 (�, �, 0.83�) -0.0029
8 (�, �, �) -0.3913 -0.0383 -0.0031

Table 3: Normalized errors in σ33 at the plane
x3 = 0. Grading coefficient β = (ln7)/�. Mesh
B.

Normalized error (%)

Node Coordinates B
1 (0, 0, 0) 0.0145
2 (0.5�, 0, 0) 0.8022
3 (�, 0, 0) -0.4717
4 (0, 0.5�, 0) 0.8924
5 (0.5�, 0.5�, 0) 0.1422
6 (�, 0.5�, 0) 0.8024
7 (0, �, 0) 0.6548
8 (0.5�, �, 0) 0.8927
9 (�, �, 0) 0.0140

5.1 Example 1

Let the cube Ω, with the Poisson ratio ν = 0.0,
be subjected to a constant normal traction σ0 on
its face x3 = � (i.e. σ33(x1,x2, �) = σ0), the other
faces, x1 = � and x2 = �, being traction free.

The exact solution of this problem can be
found in Criado et al. (2008): u3(x) = (1 −
exp(−2β x3))σ0/2β E0, u1 = u2 = 0, σ33(x) = σ0

and the remaining stresses vanishing, σi j = 0 for
(i, j) �= (3,3).

The accuracy of the solution when refining the
mesh can be observed in Tables 1 and 2 where
the percentage of the normalized error in the
normal stress σ33(x1,x2,0) and the displacement
u3(�, �,x3) are presented for the smaller value of
the grading coefficient (β = (ln2)/�). Although
the convergence is not uniform, due to the very
coarse meshes used, the level of the errors is ex-
cellent. In particular, for the extremely coarse
mesh A the maximum error in stresses is already
about 1%, whereas mesh C provides errors less
than 0.2%. Errors in displacements are even
smaller, less than 0.4% for mesh A and less than
0.004% for mesh C.

The results obtained for the substantially stronger
grading (β = (ln7)/�) are shown in Tables 3
and 4. Although, as could be expected, the level
of error is somewhat higher than in the previous
case, errors in stresses and displacements, respec-
tively, under 0.9% and 0.5% are still excellent in
view of the relatively coarse mesh B used.

5.2 Example 2

In this example, let the cube Ω be subjected to a
constant normal displacement σ0�/E0 on its face
x1 = � (i.e. u1(�,x2,x3) = σ0�/E0), the other faces,
x2 = � and x3 = �, being traction free. In addition,
the Poisson ratio is specified as ν = 0.3 and the
grading coefficient β = (ln2)/�.

The exact solution of this problem can also be
found in Criado et al. (2008): u1(x) = σ0x1/E0,
u2 = −νσ0x2/E0, u3 = −νσ0x3/E0, σ11(x) =
σ0 exp(2β x3), with the remaining stresses vanish-
ing, σi j = 0 for (i, j) �= (1,1).

Tables 5, 6 and 7 present the normalized errors
obtained. As in the previous example, an excel-
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Table 4: Normalized errors in u3 along the edge
x1 = x2 = �. Grading coefficient β = (ln7)/�.
Mesh B.

Normalized error (%)

Node Coordinates B
1 (�, �, 0.25) 0.2521
2 (�, �, 0.5�) 0.4067
3 (�, �, 0.75�) 0.4452
4 (�, �, �) 0.4462

Table 5: Normalized errors in σ11 along the edge
x1 = x2 = 0. Grading coefficient β = (ln2)/�.
Meshes A, B and C.

Normalized error (%)

Node Coordinates A B C
1 (0, 0, 0) 0.713307 0.090730 0.019430
2 (0, 0, 0.17�) -0.035429
3 (0, 0, 0.25�) -0.005309
4 (0, 0, 0.33�) 0.009429
5 (0, 0, 0.50�) 0.023527 0.023982 -0.065233
6 (0, 0, 0.67�) -0.000443
7 (0, 0, 0.75�) -0.001453
8 (0, 0, 0.83�) -0.105120
9 (0, 0, �) -1.093050 -0.203555 -0.085220

Table 6: Normalized errors in u1 along the line
x2 = 0.5� and x3 = �. Grading coefficient β =
(ln2)/�. Meshes A, B and C.

Normalized error (%)

Node Coordinates A B C
1 (0.5�, 0.5�, �) 0.0639 0.0023 -0.0564
2 (�, 0.5�, �) 0.1677 0.0215 -0.0287

Table 7: Normalized errors in u3 along the line
x1 = � and x2 = 0.5�. Grading coefficient β =
(ln2)/�. Meshes A, B and C.

Normalized error (%)

Node Coordinates A B C
1 (�, 0.5�, 0.17�) 0.0004
2 (�, 0.5�, 0.25�) -0.0036
3 (�, 0.5�, 0.33�) 0.0018
4 (�, 0.5�, 0.50�) -0.0567 -0.0067 0.0076
5 (�, 0.5�, 0.67�) 0.0161
6 (�, 0.5�, 0.75�) -0.0063
7 (�, 0.5�, 0.83�) 0.0207
8 (�, 0.5�, �) -0.0642 -0.0117 0.0147

lent accuracy has been obtained, although the re-
sults do not show a uniform convergence, again
due to the very coarse meshes used. Specifically,
the errors in the normal stress σ11(0,0,x3) are less
than 1.1% for mesh A and 0.11% for mesh C,
errors in the displacement u1(x1,0.5�, �) are less
than 0.17% for mesh A and 0.06% for mesh C,
and errors in displacement u3(�,0.5�,x3) are less
than 0.07% for mesh A and 0.021% for mesh C.

6 Conclusions

The numerical solution of the 3D Somigliana
displacement identity for isotropic elastic expo-
nentially graded materials by a direct collocation
BEM code has been successfully developed.

First, a new expression of the strongly singular
fundamental solution in tractions, Tj�, for such
materials has been deduced. Then, the fundamen-
tal solutions in displacements, Uj�, and tractions,
Tj�, have been implemented in the BEM code. To
the best knowledge of the authors, this is the first
implementation of a 3D direct BEM code for such
materials. The numerical solution of a few exam-
ples with known analytic solutions have produced
excellent accuracy, confirming the correctness of
the kernel functions and their implementation.

The remaining problem to use this approach in
a convenient way for real size problems from
now on is simply computation time: the evalu-
ation of the Green’s function kernels for expo-
nentially graded materials is quite expensive and
techniques to reduce this cost, which is at present
substantially higher than for homogeneous mate-
rials (about 90 times higher CPU time for some
small problems), must be developed. One op-
tion is to develop faster techniques for comput-
ing the kernels, perhaps by means of suitable ap-
proximations of Uj� and Tj�, and another is to im-
plement the BEM code on a multi-processor ma-
chine. This last option can be carried out using
a domain decomposition method, this approach
currently in progress by the authors for the solu-
tion of some medium-scale problems.
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