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Envelope frequency Response Function Analysis of Mechanical Structures
with Uncertain Modal Damping Characteristics

D. Moens1, M. De Munck and D. Vandepitte

Abstract: Recently, an interval finite element
methodology has been developed to calculate en-
velope frequency response functions of uncertain
structures with interval parameters. The method-
ology is based on a hybrid interval implementa-
tion of the modal superposition principle. This
hybrid procedure consists of a preliminary opti-
mization step, followed by an interval arithmetic
procedure. The final envelope frequency response
functions have been proved to give a very good
approximation of the actual response range of the
interval problem. Initially, this method was de-
veloped for undamped structures. Based on the
theoretical principles of this approach, this paper
introduces a new method for the analysis of struc-
tures with uncertain modal damping factors. In
the proposed procedure, next to the classical inter-
val parameters that affect stiffness and mass prop-
erties of the model, additional independent modal
damping parameter intervals describe the uncer-
tainty on the damping factor of each mode that is
taken into account in the response function. The
algorithm adopts the general modal superposition
strategy of the undamped procedure. The effect of
the introduction of the modal damping intervals
in the interval arithmetic part of the procedure is
studied analytically, and a new interval arithmetic
procedure is developed according to the observa-
tions from this study. In order to validate the pro-
cedure, it is applied to a realistic industrial model
with geometric as well as modal damping uncer-
tainty.
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1 Introduction

Non-deterministic approaches are gaining mo-
mentum in the field of finite element analysis. The
ability to include non-deterministic properties is
of great value for a design engineer. It enables re-
alistic reliability assessment that incorporates the
uncertain aspects of the design. Furthermore, the
design can be optimized for robust behavior un-
der varying external influences. Recently, criti-
cism arises on the general application of the prob-
abilistic concept in this context. Especially when
objective information on the uncertainties is lim-
ited, the subjective probabilistic analysis result
proves to be of little value, and does not justify
its high computational cost (see e.g. [Elishakoff
(2000); Moens and Vandepitte (2005)]). Conse-
quently, alternative non-probabilistic concepts are
used for non-deterministic finite element analysis,
as interval of fuzzy finite element analysis. Fuzzy
finite element analysis forms the core of possi-
bilistic analysis, which has been applied for non-
probabilistic reliability studies [Stroud, Krishna-
murthy, and Smith (2002)].

The Interval FE (IFE) analysis is based on
the interval concept for the description of non-
deterministic model properties, and so far has
been studied only in limited publications (see
e.g. [Köylüoǧlu, Çakmak, and Nielsen (1995);
Mullen and Muhanna (1999); Dessombz, Thou-
verez, Laîné, and Jézéquel (2001); Qiu, Wang,
and Chen (2006)]). Recently, Muhanna intro-
duced a penalty-based solution procedure for
the IFE analysis [Muhanna, Mullen, and Zhang
(2005)]. Also, new developments in the area of
linear systems with interval parameters have been
proposed by Neumaier [Neumaier (2006)]. The
Fuzzy FE (FFE) analysis is basically an exten-
sion of the IFE analysis. It was first introduced by
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Rao [Rao and Sawyer (1995)]. It has been stud-
ied in a number of specific research domains, as
e.g. static structural analysis (see [Hanss (2003);
Massa, Tison, and Lallemand (2006)]) and dy-
namic analysis (see [Chen and Rao (1997); Wasfy
and Noor (1998); Donders, Vandepitte, Van de
Peer, and Desmet (2005)]).

Recently, an interval finite element methodology
to calculate envelope frequency response func-
tions (FRF) of uncertain structures has been de-
veloped by the authors [Moens and Vandepitte
(2004)]. This procedure forms the basis for
the implementation of the fuzzy finite element
method. The goal of the interval analysis is to
calculate the envelope of the FRF taking into ac-
count that the input uncertainties can vary within
the bounded space defined by their combined in-
tervals. For this purpose, a hybrid procedure in-
volving both a global optimization step and an in-
terval arithmetic step has been developed. The re-
sulting envelope response function gives a clear
view on the possible variation of the response in
the frequency domain.

While the efficiency and accuracy of the envelope
FRF procedure has been proved, the method in its
current form has an important shortcoming, as it
cannot handle uncertainty on the damping proper-
ties of the analyzed model. Performing a realistic
quantification of damping properties of a physi-
cal mechanical structure is generally not straight-
forward. This is mainly due to unknown inter-
nal characteristics of the used materials. But also
the connecting parts in assemblies of components
tend to have a high yet fairly unpredictable effect
on the damping characteristics of a mechanical
structure. Generally, the lack of information on
damping properties forms a major source of non-
determinism, especially in the dynamic response
analysis of structures. Therefore, the possible ex-
tension of the proposed envelope FRF procedure
toward the analysis of structures with imprecise
damping properties constitutes a fundamental ex-
tension of the applicability and practical value of
the dynamic interval finite element analysis.

Section 2 of this work first summarizes the
undamped envelope FRF procedure as it was
initially developed in [Moens and Vandepitte

(2004)]. The effect of the introduction of indepen-
dent modal parameter intervals on the procedure
is then analyzed in section 3. Finally, section 4
illustrates the newly developed procedure by ap-
plying it on a realistic case study.

2 Envelope FRF analysis of undamped struc-
tures

The goal of the envelope FRF analysis is to cal-
culate the bounds on the dynamic response of
a structure in a specific frequency region given
that a set of model parameters x is uncertain but
bounded. The intervals on these parameters are
specified in an interval vector xI. The methodol-
ogy for the envelope dynamic response analysis
as developed by the authors is based on a hybrid
interval solution strategy, consisting of a prelim-
inary optimization step, followed by an interval
arithmetic step. In the first part of this procedure,
the optimization is used to translate the interval
properties defined on the finite element model to
the exact interval modal stiffness and mass param-
eters of the structure. The calculation of the enve-
lope FRFs in the second part is done by apply-
ing the interval arithmetic equivalent of the modal
superposition procedure on these interval modal
parameters. The final envelope FRFs have been
proved to contain only a very limited amount of
conservatism. A brief overview of the basic prin-
ciples of the method is given in this section. The
complete mathematical description of the method
can be found in [Moens and Vandepitte (2004)].

2.1 The deterministic modal superposition
principle

For undamped structures, the deterministic modal
superposition principle states that, considering the
first nmodes modes, the frequency response func-
tion between degrees of freedom j and k equals:

FRFjk =
nmodes

∑
i=1

FRFi
jk =

nmodes

∑
i=1

φi j φik

φi
T Kφi −ω2φi

T Mφi

(1)

with φi the ith eigenvector of the system and φi j

the jth component of the ith eigenvector. Simplifi-
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cation of Eq. 1 yields:

FRFjk =
nmodes

∑
i=1

1

k̂i −ω2m̂i
(2)

with k̂i and m̂i the modal parameters defined as:

k̂i = φi
T Kφi

φi j φik
=

1
φ K

i j
φ K

ik

(3)

m̂i = φi
T Mφi

φi j φik
=

1
φ M

i j
φ M

ik

(4)

with φ K
i and φ M

i the stiffness and mass normal-
ized eigenvectors of the system.

2.2 Interval finite element FRF analysis

The modal superposition principle has been trans-
lated into an interval finite element method for
FRF analysis. Figure 1 gives a graphical overview
of the translation of the deterministic algorithm
into an interval procedure. On the left-hand side
is the deterministic algorithm as described in the
previous section. On the right-hand side is the
same procedure translated to an equivalent inter-
val algorithm.

The interval method consists of the calculation of
the result ranges of the sub functions appearing
in the consecutive steps of the deterministic algo-
rithm. Therefore, the deterministic algorithm is
split into three sub functions. In the first step, step
1.1, the modal stiffness k̂i and mass m̂i are cal-
culated for each considered mode. Step 1.2 then
consists of the calculation of the modal FRF con-
tributions FRFi

jk. Step 1.1 and 1.2 have to be per-
formed for each mode that is taken into consider-
ation in the modal superposition. Therefore, it is
referred to as the modal part. In step 2, the su-
perposition is performed by a summation of the
modal FRF contributions.

The interval procedure follows the same outline as
the deterministic algorithm. Each step now con-
centrates on the derivation of the range of the sub
functions in the deterministic algorithm:

step 1.1 For all nmodes taken into account, the
ranges of possible values that the modal stiff-
ness and mass can adopt have to be deter-
mined, taking into account that the uncertain

parameters in x can vary within their respec-
tive intervals. These correct ranges of the
modal parameters denoted by k̂S

i and m̂S
i are

determined using a minimization and maxi-
mization over the uncertain interval space xI.
For numerical convenience, the global opti-
mization is performed on the inverted modal
parameters, after which the obtained inter-
vals are inverted in order to obtain the actual
modal parameter ranges:

k̂S
i =

[
min
x∈xI

(
φ K

i j
φ K

ik

)
, max
x∈xI

(
φ K

i j
φ K

ik

)]−1

(5)

m̂S
i =

[
min
x∈xI

(
φ M

i j
φ M

ik

)
, max
x∈xI

(
φ M

i j
φ M

ik

)]−1

(6)

If the inverted modal parameter range con-
tains zero, the inversion results in the union
of two interval ranging from respectively
plus and minus infinity to a finite value.
These modes are referred to as switch modes.
The modes for which the inverted modal pa-
rameter interval has a constant sign, are re-
ferred to as strict modes, and classified in ei-
ther positive or negative modes, based on the
sign of the interval.

step 1.2 The modal envelope FRF is calculated
by substituting the ranges of the modal pa-
rameters in the deterministic expression of
the modal FRF contribution:

(
FRFi

jk

)I
=

1

k̂S
i −ω2m̂S

i

(7)

This is an analytical procedure performed
using the interval arithmetic approach.

step 2 Finally, the total interval FRF is obtained
by the summation of the contributions of all
considered modes:

FRFI
jk =

n

∑
i=1

(
FRFi

jk

)I
(8)

Also this final step is performed using inter-
val arithmetics.



132 Copyright c© 2007 Tech Science Press CMES, vol.22, no.2, pp.129-149, 2007

}

}

deterministic algorithm interval algorithm
m

o
d
a
l
p
a
rt

su
m

m
a
ti
o
n

step 1.1 step 1.1

step 1.2step 1.2

step 2step 2

o
p
ti
m

a
li
sa

ti
o
n

in
te

rv
a
l
a
ri

th
m

et
ic

k̂i =
φi

T Kφi

φij φik

=
1

φK
ij

φK
ik

m̂i =
φi

T Mφi

φij φik

=
1

φM
ij

φM
ik

FRF i
jk =

1

k̂i − ω2m̂i

FRFjk =
n

i=1

FRF i
jk

k̂S
i = min

x∈xI
φK

ij
φK

ik
, max
x∈xI

φK
ij

φK
ik

−1

m̂S
i = min

x∈xI
φM

ij
φM

ik
, max
x∈xI

φM
ij

φM
ik

−1

FRF i
jk

I
=

1

k̂S
i − ω2m̂S

i

FRF I
jk =
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Figure 1: Translation of the deterministic modal superposition algorithm to an equivalent interval procedure

2.3 Eigenvalue interval correction

The method as described above is enhanced based
on a graphical interpretation of the modal part of
the interval algorithm. For each mode, consider
the domain of modal mass and stiffness pairs that
are achieved by considering the complete range of
models defined by the interval uncertainty space
xI:

〈k̂i, m̂i〉 =
{(

k̂i, m̂i
) |

(
x ∈ xI

)}
(9)

This domain defines a bounded area in a k̂i, m̂i-
workspace. The exact bounds of this domain how-
ever, are generally unknown. The modal part of
the interval algorithm now is interpreted in this
workspace. From the optimization as described
in step 1.1, it is clear that, for a strict mode, the
calculated ranges on the modal parameters k̂S

i and
m̂S

i represent a rectangular approximation of the
actual 〈k̂i, m̂i〉-domain. Therefore, this method is
referred to as the Modal Rectangle (MR) method.
Figure 2 shows a general 〈k̂i, m̂i〉-domain and its
approximation using the MR method.

The interval arithmetic procedure for the calcula-
tion of the modal envelope FRF contributions in
step 1.2 is interpreted in the same graphical do-

〈k̂i, m̂i〉

k̂i

m̂i

k̂S
i

m̂S
i

Figure 2: Graphical illustration of a mode’s
〈k̂i, m̂i〉-domain and its approximation using the
modal rectangle method

main. The goal in this step is to derive the bounds
on the deterministic modal FRF, taking into ac-
count that k̂i and m̂i are located anywhere inside
their intervals. By considering the modal FRF
contribution as defined in Eq. 7 as an analytical
function of k̂i and m̂i, the bounds on this function
over the modal rectangle have to be determined. It
has been shown that this can be done analytically
for the complete frequency domain, by consider-
ing only the function evaluations at the upper left
and the lower right corner points of the rectan-
gle. For switch modes, the modal domain spans
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out over the first and third quadrant of the modal
parameter space. Still, a similar interpretation is
possible (see [Moens and Vandepitte (2004)]).

Based on these observations, it becomes clear
that the calculation based on the modal rectan-
gle introduces conservatism in the procedure if
the actual 〈k̂i, m̂i〉-domain differs strongly from
the approximate rectangle. This is often the case,
as the modal parameters are generally strongly
coupled through the global system and therefore
show a high degree of correlation. Therefore, an
enhanced procedure has been introduced. The
enhancement is based on an improved approxi-
mation of the 〈k̂i, m̂i〉-domain. This is achieved
by using information on the eigenvalue ranges,
which are obtained using an additional eigenvalue
optimization step in the modal part of the algo-
rithm. An eigenvalue interval λ I

i introduces an
extra restriction on the quotient of possible com-
binations of the modal parameters. This restric-
tion is mathematically expressed as:

λi ≤ k̂i

m̂i
≤ λi (10)

Graphically, the eigenvalue bounds represent lines
through the origin of the k̂i, m̂i-space tangent to
the actual 〈k̂i, m̂i〉-domain. These lines are extra
delimiters for the 〈k̂i, m̂i〉-domain approximation,
and therefore give rise to an improved 〈k̂i, m̂i〉-
domain approximation as illustrated in figure 3.
This domain is referred to as the Modal Rectan-
gle with Eigenvalue interval correction (MRE).

〈k̂i, m̂i〉

k̂i

m̂i

c1

c2

c3

c4

k̂i = λim̂i

k̂i = λim̂i

Figure 3: Effect of the introduction of the exact
eigenvalue interval in the 〈k̂i, m̂i〉-domain approx-
imation of a positive mode

It has been shown that the conservatism in the
modal envelope FRF contributions derived in step
1.2 is substantially reduced by considering the
MRE domain instead of the MR domain as area of
possible modal parameter pairs. The correspond-
ing modal envelope FRF contributions are deter-
mined analytically by calculating the determinis-
tic modal FRFs at the vertex points of the MRE-
domain (indicated with ci, i = 1 . . .4 in figure 3).
This yields:

(
FRFi

jk

)I
=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣ λi

k̂i

(
λi −ω2

) ,
λi

k̂i
(
λi −ω2

)
⎤
⎦for ω2 ≤ λi

⎡
⎣ λi

k̂i

(
λi −ω2

) ,
1

m̂i
(
λi −ω2

)
⎤
⎦for λi < ω2 < λi

⎡
⎣ 1

m̂i

(
λi −ω2

) ,
1

m̂i
(
λi −ω2

)
⎤
⎦for λi ≤ ω2

(11)

for positive modes, and:

(
FRFi

jk

)I =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣ λi

k̂i
(
λi −ω2

) ,
λi

k̂i

(
λi −ω2

)
⎤
⎦for ω2 ≤ λi

⎡
⎣ 1

m̂i
(
λi −ω2

) ,
λi

k̂i

(
λi −ω2

)
⎤
⎦for λi < ω2 < λi

⎡
⎣ 1

m̂i
(
λi −ω2

) ,
1

m̂i

(
λi −ω2

)
⎤
⎦for λi ≤ ω2

(12)

for negative modes. A similar procedure was de-
rived for the bounds on the modal FRF contribu-
tions of switch modes. It has been shown that
after applying the final summation step, this en-
hancement on the modal level of the algorithm
leads to a close and guaranteed outer approxima-
tion of the actual modal envelope FRF contribu-
tion [ Moens and Vandepitte (2004)].
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3 Introduction of independent modal damp-
ing intervals in the envelope FRF proce-
dure

3.1 Overview of the algorithm

For damped structures with modal damping pa-
rameters ĉi defined for each mode taken into
consideration, the modal superposition procedure
states that the total FRF equals:

FRFjk =
n

∑
i=1

1

k̂i + jĉiω −ω2m̂i
(13)

=
n

∑
i=1

FRFi
jk (14)

with FRFi
jk the ith modal FRF and k̂i and m̂i the

normalized modal parameters as defined in equa-
tions Eq. 3 and Eq. 4, and ĉi the corresponding
modal damping parameter, expressed as:

ĉi = 2ηi

√
k̂im̂i (15)

using ηi in its classical definition as the modal
damping ratio.

Equation 13 shows that the damped FRF calcu-
lation through the modal superposition principle
is very similar to the undamped case. Compared
to the undamped FRF, the main difference caused
by the addition of damping is that the modal FRF
contributions FRFi

jk are complex functions. Also,
the modal damping parameter ĉi appears explic-
itly in the expression of the modal contributions.
Again, the strategy for the calculation of the range
of the modal contributions is based on the defini-
tion of a domain of possible modal parameters.
The evolution of the real and imaginary part of a
modal contribution over this domain then deter-
mines the envelope bounds of both parts.

For the modal mass and stiffness parameters, the
feasible domain is inherited from the undamped
MRE-concept as described in section 2.3. The
MRE 〈k̂i, m̂i〉-domain has to be extended in order
to take the damping uncertainty into account. By
placing an interval on the modal damping ratio for
each mode, an interval on the modal damping pa-
rameters is obtained using Eq. 15. This means
that the two-dimensional MRE 〈k̂i, m̂i〉-domain is

extended in a third dimension in which the modal
damping parameter range is represented. As this
modal damping interval is implemented as an in-
dependent model uncertainty, it has no relation
with the other modal parameters. Hence, the ex-
tension in this third dimension comes down to
an extrusion of the existing MRE 〈k̂i, m̂i〉-domain
over the interval defined for the corresponding
modal damping parameter. Figure 4 illustrates the
resulting polyhedron in the new three dimensional
modal

(
k̂i, m̂i, ĉi

)
-space.

〈k̂i, m̂i, ĉi〉

k̂i

m̂i

ĉi

Figure 4: Graphical representation of the approx-
imation of the 〈k̂i, m̂i, ĉi〉-domain after addition of
the independent modal damping interval to the
MRE 〈k̂i, m̂i〉-domain approximation

Now that we have an outer approximation of the
modal 〈k̂i, m̂i, ĉi〉-domain, the range of the modal
contributions FRFjk as defined in Eq. 13 have to
be calculated. The algorithm processes the real
and complex parts of the response separately. For
both parts, the response range is calculated for
each mode. The superposition then constructs the
range of the real and imaginary parts of the to-
tal response by adding together all real respec-
tively imaginary modal FRF contributions. Fi-
nally, based on these results, the amplitude and
phase are directly derived from the total real and
imaginary envelope FRFs.

In summary, the outline of the MRE algorithm ex-
tended to structures with modal damping uncer-
tainties is the following:

1. for all considered modes:

(a) calculate the MRE 〈k̂i, m̂i〉-domain ap-
proximation by calculating the range of
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the modal mass and stiffness parame-
ters and the eigenfrequency

(b) derive the intervals on the modal damp-
ing parameters based on modal damp-
ing ratio intervals

(c) calculate the range of the modal real
and imaginary FRF based on the MRE
〈k̂i, m̂i, ĉi〉-domain approximation

2. sum the modal real and imaginary envelope
FRFs to obtain a conservative approxima-
tion of the total real and imaginary envelope
FRFs

3. post-process the real and imaginary parts to
obtain the total amplitude and phase enve-
lope FRF

Step 1a is completely similar to the undamped
case (see section 2.3 or [Moens and Vandepitte
(2004)] for details). Also, step 1b is straightfor-
ward, and results directly from the definition of
the treated problem. The core of the theoretical
development is in step 1c which consists of the
analytical derivation of the modal real and imag-
inary envelope FRFs given the MRE 〈k̂i, m̂i, ĉi〉-
domain approximation as illustrated in figure 4.
Sections 3.1.1 and 3.1.2 describe these in detail
for a positive mode. Sections 3.1.3 and 3.1.4
describe how to obtain the equivalent procedure
for negative respectively switch modes. The final
processing of the real and imaginary parts to the
amplitude and phase envelopes is briefly summa-
rized in section 3.2.

3.1.1 Modal real envelope FRF calculation for
positive modes

The real part of the modal FRF in Eq. 13 equals:

ℜ
(
FRFi

jk

)
=

k̂i −ω2m̂i(
k̂i −ω2m̂i

)2
+ ĉ2

i ω2
(16)

This is further referred to as the modal real FRF.
At a specific frequency ω , it can be regarded as an
analytical function of the three modal parameters
k̂i, m̂i and ĉi. The range of this function taking into
account that the modal parameters are inside the
used polyhedral 〈k̂i, m̂i, ĉi〉-domain approximation
is now derived analytically.

A first important observation is made regard-
ing the evolution of the modal real FRF for(
k̂i, m̂i, ĉi

)
-locations on a line parallel to the ĉi-

axis in the modal parameter space. By taking
the derivative of the real part function in the ĉi-
direction at constant values for m̂i and k̂i, it is
easily shown that the real part function always
evolves monotonically over these lines. There-
fore, in order to find the bounds on the range
of this function over these lines, only the lower
and upper bound of the modal damping param-
eter interval have to be taken into considera-
tion. This means that the global bounds of the
real part response function over the polyhedral
〈k̂i, m̂i, ĉi〉-domain can be calculated by analyzing
the

(
k̂i, m̂i, ĉi

)
-locations in the two-dimensional

MRE domains at ĉi = ĉi and ĉi = ĉi.

The behavior of the real part response function
over horizontal, vertical and sloped lines in the
two-dimensional MRE domain at a specific modal
damping value c∗ is now first analyzed. This will
lead to the the procedure for the calculation of the
modal real envelope FRF described at the end of
this section.

Lines parallel to the k̂i-axis For the analysis
of the behavior of the modal real FRF for modal
parameter combinations on vertical lines (parallel
to the k̂i-axis) in the modal parameter space, the
constant values m∗ and c∗ are introduced for the
modal mass and damping parameters in Eq. 16.

This results in a function ℜ
(

FRFi
jk

)
m∗,c∗

which

has only k̂i as variable. The analysis now focuses
on the variation of this function when the modal
stiffness parameter varies over a positive interval[
k,k

]
. It can be shown that the modal real FRF as

a function of k̂i has exactly one minimum and one
maximum as illustrated in figure 5. The extrema
are reached for k̂i equal to respectively:

k+(ω) = m∗ω2 +c∗ω (17)

k−(ω) = m∗ω2 −c∗ω (18)

The explicit function of ω indicates that the lo-
cations of the extrema depend on the frequency.
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k̂i

� FRF i
jk m∗,c∗

k+(ω)

k−(ω)

Figure 5: Evolution of the modal real FRF over
the k̂i domain for a constant modal mass and
damping value

k̂i

ω

k+(ω) k−(ω)

Figure 6: Evolution of k−(ω) and k+(ω) in the
frequency domain

Figure 6 illustrates the global form of both the lo-
cation of the maximum k+(ω) and the minimum
k−(ω) as a function of the frequency.

Both functions start in the origin of the k̂i-axis.
This means that for low frequencies, both extrema
in figure 5 are located to the left-hand side of any
positive

[
k,k

]
interval on the k̂i-axis. For increas-

ing frequency, both extrema approach and possi-
bly cross the interval. This can be interpreted as if
the response function of figure 5 evolves globally
to the right relative to the

[
k,k

]
interval. The im-

plications of this evolution for the lower and upper
bound of the response is discussed by analyzing
the frequency domain in increasing direction.

• The lower response bound:
For small frequencies, both extrema are situ-
ated to the left of the

[
k,k

]
interval. There-

fore, the lower bound on the real response
corresponds to the upper bound of the inter-
val as indicated in figure 7(a). When the
frequency increases, the response function
shifts to the right and the response maxi-

mum enters the
[
k,k

]
interval. Further, a

frequency is reached for which the response
values are equal for k and k (figure 7(b)).
From this frequency on, the response min-
imum is located on the lower bound of the[
k,k

]
interval (figure 7(c)). When the fre-

quency increases further, the response mini-
mum enters the

[
k,k

]
interval for some fre-

quency. Starting from this frequency, the re-
sponse minimum is located in the extremum
inside the

[
k,k

]
interval (figure 7(d)) and the

minimal value of the response is obtained for
the corresponding k−(ω) values. Finally, the
response minimum reaches the upper bound
of the interval for some frequency. From this
frequency on, the function over the interval
becomes monotonically decreasing and the
response minimum is located in the upper
bound of the interval (figure 7(e)).

• The upper response bound:
For small frequencies, both extrema are situ-
ated to the left of the

[
k,k

]
interval. There-

fore, the upper bound on the response cor-
responds to the lower bound of the interval
as indicated in figure 7(a). Since k+(ω) is
monotonically increasing, the location of the
response maximum always enters the

[
k,k

]
interval for some frequency. Starting from
this frequency, the response maximum is lo-
cated in the extremum inside the

[
k,k

]
inter-

val (figure 7(b)). For these frequencies, the
maximal value of the response is obtained
for the corresponding k+(ω) values. Once
the response maximum has reached the up-
per bound of the

[
k,k

]
interval, the response

maximum is located in the upper bound of
the interval (figure 7(c)). When the fre-
quency increases further, the response min-
imum enters the

[
k,k

]
interval. A frequency

is reached for which the response values are
equal for k and k (figure 7(d)). From this fre-
quency on, the response maximum is located
on the lower bound of the

[
k,k

]
interval (fig-

ure 7(e)).

This description shows that the exact upper and
lower bounds on the modal real FRF above an
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Figure 7: (a)-(e) Evolution of the modal real FRF above an interval on a vertical line in the modal parameter
space for increasing frequencies

interval on a vertical line in the modal parame-
ter space follow directly from an analytical proce-
dure. The procedure consists of selecting the cor-
rect k̂i value which, combined with the m∗ value
at the vertical line, yields the bounds of the modal
real FRF at c∗. This correct k̂i value always lies
either on one of the bounds of the

[
k,k

]
interval,

either in an extremum of the modal real FRF in-
side the interval. The evolution of this k̂i value
as a function of ω is illustrated in figure 8(a) for
the lower bound and in figure 8(b) for the upper
bound.

The frequencies ω l
1, ω l

2, ωu
1 and ωu

2 represent the
points where respectively k−(ω) and k+(ω) cross

with k̂i = k and k̂i = k. Therefore, they satisfy:

k = m∗ω l
1

2 −c∗ω l
1 (19)

k = m∗ω l
2

2 −c∗ω l
2 (20)

k = m∗ωu
1

2 +c∗ωu
1 (21)

k = m∗ωu
2

2 +c∗ωu
2 (22)

Furthermore, ω l
= and ωu

= follow directly from sat-
isfying the equation:

ℜ
(
FRFi

jk(ω=)
)

k,m∗,c∗ = ℜ
(
FRFi

jk(ω=)
)

k,m∗,c∗

(23)

This means that the curves of k̂i values that yield
the bounds on the response at any frequency ω as
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=
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Figure 8: Evolution of the k̂i value corresponding
to the extrema of the modal real FRF at a verti-
cal line in the modal parameter space - (a) lower
bound (b) upper bound

m̂i

� FRF i
jk k∗,c∗

m+(ω)

m−(ω)

Figure 9: Evolution of the modal real FRF over
the m̂i domain for a constant modal mass and
damping value

m̂i

ω

m+(ω)

m−(ω)

Figure 10: Evolution of m−(ω) and m+(ω) in the
frequency domain

given in figure 8 are completely described analyt-
ically. Hence, the bounds on the real FRF over the
vertical line can be calculated by substituting the
values on this curves into Eq. 16.

Lines parallel to the m̂i-axis The procedure to
calculate the bounds on the modal real FRF above
a horizontal line in the modal parameter space is
very similar to the one for the vertical lines de-
scribed above. Constant values k∗ and c∗ are in-
troduced for the modal stiffness and damping pa-
rameters in Eq. 16. This results in a function

ℜ
(

FRFi
jk

)
k∗,c∗

which has only m̂i as variable.

When the modal mass parameter varies over a
positive interval [m,m], the modal real FRF as a
function of m̂i has exactly one minimum and one
maximum as illustrated in figure 9. The extrema
are reached for m̂i equal to respectively:

m+(ω) =
k∗

ω2 +
c∗

ω
(24)

m−(ω) =
k∗

ω2 −
c∗

ω
(25)

Also here, the locations of the extrema depend
on the frequency as illustrated in figure 10. Both
functions tend to infinity at ω = 0, and tend to
zero when ω tends to infinity.

The implications of the evolution of m−(ω) and
m+(ω) for the lower and upper bound of the re-
sponse is similar to the description for the vertical
boundary in figure 7. The difference is that in this
case the locations of the extrema decrease for in-
creasing ω and that the minimum and maximum
have switched positions. Still, the exact upper and
lower bounds on the modal real FRF above an in-
terval on a horizontal line in the modal parame-
ter space follow directly from a similar analyti-
cal procedure. The procedure consists of selecting
the correct m̂i value which, combined with the k∗

and c∗ value at the horizontal line, yields the lower
and upper bound of the modal real FRF. The evo-
lution of this correct m̂i value as a function of ω is
illustrated in figure 11(a) for the lower bound and
in figure 11(b) for the upper bound.

Again, the curves in figure 11 are fully described
analytically, as the frequencies ω l

1, ω l
2, ωu

1 and
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=
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Figure 11: Evolution of the m̂i value correspond-
ing to the extrema of the modal real FRF at a
horizontal line in the modal parameter space - (a)
lower bound. (b) upper bound

ωu
2 represent the points where respectively m+(ω)

and m−(ω) cross with m̂i = m and m̂i = m, and ω l
=

and ωu
= follow directly from satisfying:

ℜ
(
FRFi

jk(ω=)
)

m,k∗,c∗ = ℜ
(
FRFi

jk(ω=)
)

m,k∗,c∗

(26)

Lines with a constant slope in the modal pa-
rameter space The bounds on the modal real
FRF above a line with a constant slope are de-
rived analytically. In Eq. 16, a constant value
c∗ is introduced for the modal damping parame-
ter. The sloped line is represented by introducing
k̂i = λ ∗m̂i into the same equation. This results in
the function:

ℜ
(
FRFi

jk

)
=

m̂i(λ ∗−ω2)
m̂2

i (λ ∗−ω2)2 + ĉ2
i ω2

(27)

which has only m̂i as variable. The analysis now
focuses on the variation of this function when the

modal mass parameter varies over a positive inter-
val [m,m]. Similar as for the horizontal and ver-
tical lines in the modal parameter space, it can be
shown that the modal real FRF as a function of m̂i

has exactly one minimum and one maximum. The
extrema are reached for m̂i equal to respectively:

mλ
+(ω) =

c∗ω
λ ∗ −ω2 (28)

mλ
−(ω) =

c∗ω
ω2 −λ ∗ (29)

Also here, the explicit function of ω indicates that
the locations of the extrema vary with the fre-
quency. In this case however, the exact evolution
of these extrema strongly depends on the gradi-
ent of the slope λ ∗. Similar to the horizontal and
vertical lines, the extrema of the modal real FRF
will be reached either on the bounds of the inter-
val [m,m], or on the extrema for the frequencies
for which the functions m+(ω) and m−(ω) are
located within the interval [m,m]. Therefore, the
following procedure is applied:

1. (a) calculate the modal real FRF given
in Eq. 27 for all frequencies at the
lower and upper bounds of m̂i, result-

ing respectively in ℜ
(

FRFi
jk

)
m

and

ℜ
(

FRFi
jk

)
m

(b) calculate the modal real FRF given
in Eq. 27 at mλ

+(ω+) and mλ−(ω−) with:

ω+ = {ω | m < mλ
+(ω) < m} (30)

ω− = {ω | m < mλ
−(ω) < m} (31)

resulting respectively in ℜ
(

FRFi
jk

)
mλ

+

and ℜ
(

FRFi
jk

)
mλ−

2. calculate the lower bound on the modal real
FRF using:

min
(

ℜ
(
FRFi

jk

)
m

,ℜ
(
FRFi

jk

)
m

)
(32)

for ω /∈ ω−, and

min
(

ℜ
(
FRFi

jk

)
m

,ℜ
(
FRFi

jk

)
m

,ℜ
(
FRFi

jk

)
mλ−

)
(33)

for ω ∈ ω−
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3. calculate the upper bound on the modal real
FRF using:

max
(

ℜ
(
FRFi

jk

)
m

,ℜ
(
FRFi

jk

)
m

)
(34)

for ω /∈ ω+, and

max
(

ℜ
(
FRFi

jk

)
m

,ℜ
(
FRFi

jk

)
m

,ℜ
(
FRFi

jk

)
mλ

+

)
(35)

for ω ∈ ω+

From these equations, the bounds on the modal
real FRF are now determined for the complete fre-
quency domain.

Minimum and maximum response locations in
MRE 〈k̂i, m̂i〉-domain The analytical analysis
of the modal real FRF over vertical and horizon-
tal lines in the MRE 〈k̂i, m̂i〉-subdomain of the
〈k̂i, m̂i, ĉi〉-domain indicates that local optima are
possibly present inside the domain. Figure 12
shows the locations k+ and k− of local optima of
the modal real FRF on a vertical line at m̂i = m∗.
The response value at the local optima locations
on the line, however, proves to be independent of
the location of the line. Indeed, as the local maxi-
mum of the modal real FRF at the frequency ω on
a vertical line at (m∗,c∗) is found at k+(ω), sub-
stituting k+(ω) as defined in Eq. 17 together with
m∗ and c∗ in Eq. 16 yields the response value at
the local maximum:

ℜ
(
FRFi

jk

)
m∗,c∗,k+

=
1

2c∗ω
(36)

Since this value is independent from m∗, the re-
sponse value at the local maximum found on a
vertical line in the domain does not depend on
the location of the line. Consequently, the same
maximum response value is reached at

(
k̂i, m̂i

)
-

combinations located on the line represented by
k+(ω):

k̂i = m̂iω2 +c∗ω (37)

This equation represents a straight line in the
〈k̂i, m̂i〉-domain, as indicated in figure 12. As this
line crosses with the MRE 〈k̂i, m̂i〉-bounds, it is

concluded that if a local maximum is reached in-
side the domain, it will also be present on the
boundary lines of the domain. This observation
can be generalized toward local minima. The line
of constant local modal real FRF minimum is il-
lustrated in figure 12, and yields:

k̂i = m̂iω2 −c∗ω (38)

k̂i

m̂i
m∗

k+

k−

k̂i = m̂iω
2 + c∗ω

k̂i = m̂iω
2 − c∗ω

Figure 12: Locations of the local maximum of the
modal real FRF at a vertical line at m̂i = m∗ and
the corresponding lines of constant optima

In conclusion, we can state the if local optima are
present inside the two-dimensional MRE subdo-
main, they are also present on the boundary lines
of this subdomain. Therefore, the final procedure
to derive the modal real FRF bounds focuses ex-
clusively on the behavior of the modal real FRF
above the MRE 〈k̂i, m̂i〉-domain boundary lines.

Modal real envelope FRF procedure In order
to find the range of values that the modal real FRF
can reach inside the polyhedral 〈k̂i, m̂i, ĉi〉-domain
illustrated in figure 4, the following procedure ap-
plies:

1. for both the MRE 〈k̂i, m̂i〉-subdomains at ĉi

and ĉi:

(a) analyze the optima of the modal real
FRF for the vertical boundary lines

(b) analyze the optima of the modal real
FRF for the horizontal boundary lines



Envelope frequency Response Function Analysis 141

(c) analyze the optima of the modal real
FRF for the sloped boundary lines
representing the eigenvalue interval
bounds

2. envelope the ranges of the modal real FRF
obtained in the previous step

The implementation is done based on the defi-
nition of the MRE 〈k̂i, m̂i〉-domain as illustrated
in figure 3. Step 1a is implemented by applying
the vertical line procedure on the line segments at
m̂i = m̂i and m̂i = m̂i with k̂i ranging respectively

from k̂i to m̂iλi and from m̂iλi to k̂i. Step 1b is
implemented by applying the horizontal line pro-

cedure on the line segments at k̂i = k̂i and k̂i = k̂i

with m̂i ranging respectively from m̂i to k̂i/λi and

from k̂i/λi to m̂i. Step 1c is implemented by ap-
plying the sloped line procedure with λ ∗ respec-
tively equal to λi and λi, and m̂i ranging respec-

tively from k̂i/λi to m̂i, and from m̂i to k̂i/λi.

Finally in step 2, the modal real FRF range for the
complete 〈k̂i, m̂i, ĉi〉-domain is derived by taking
the union of the modal real FRF envelopes found
in the MRE 〈k̂i, m̂i〉-subdomains at both ĉi and ĉi.

3.1.2 Modal imaginary envelope FRF calcula-
tion for positive modes

The imaginary part of the modal FRF in Eq. 13
equals:

ℑ
(
FRFi

jk

)
=

−ĉiω(
k̂i −ω2m̂i

)2
+ ĉ2

i ω2
(39)

This is further referred to as the modal imagi-
nary FRF. Also here, the range of this function
taking into account that the modal parameters are
inside the used polyhedral 〈k̂i, m̂i, ĉi〉-domain ap-
proximation is derived analytically by considering
the behavior of the function over specific lines in
the modal parameter space.

In this case, the domain of possible locations of
extreme values of the modal imaginary FRF is
reduced significantly by first considering radial
lines in the

(
k̂i, m̂i

)
-space at a specific ĉi. It can

be shown that on these lines, the modal imagi-
nary FRF has a monotonic behavior with respect

to the radial distance to the origin of the
(
k̂i, m̂i

)
-

space. Referring to the global polyhedral form
of the 〈k̂i, m̂i, ĉi〉-domain approximation as illus-
trated in figure 4, this means that no local op-
tima are present inside the domain, neither on the
planes resulting from extruding the MRE eigen-
value delimiters in the modal damping parame-
ter direction. The analytical search for optima
therefore is limited to the horizontal and vertical
boundary planes of the 〈k̂i, m̂i, ĉi〉-domain. These
planes are now analyzed by considering the lines
on these planes parallel to the modal parameter
axes.

Lines parallel to the ĉi-axis For the analysis
of the behavior of the modal imaginary FRF for(
k̂i, m̂i, ĉi

)
-locations on a line parallel to the ĉi-

axis, constant values m∗ and k∗ are introduced for
the modal mass and stiffness parameters in Eq. 39.

This results in a function ℑ
(

FRFi
jk

)
k∗,m∗

which

has only ĉi as variable. The analysis focuses on
the variation of this function when ĉi varies over
a positive interval [c,c]. It can be shown that the
modal imaginary FRF as a function of ĉi has ex-
actly one maximum and one minimum as illus-
trated in figure 13. The maximum and minimum
are reached for ĉi equal to respectively:

c+(ω) =
∣∣∣∣k∗

ω
−m∗ω

∣∣∣∣ (40)

c−(ω) = −
∣∣∣∣k∗

ω
−m∗ω

∣∣∣∣ (41)

It is clear that c−(ω) is negative for all frequen-
cies. Therefore, it is not of importance in the
derivation of the response bounds over a positive
[c,c] interval. Figure 14 illustrates the global form
of the evolution of c+(ω) over the frequency do-
main.

The exact upper and lower bounds on the modal
imaginary FRF above an interval on the analyzed
line in the modal parameter space follow directly
from an analytical procedure. The ĉi-values for
which the upper and lower bounds on the response
are reached are always located either on one of the
bounds of the [c,c] interval, or in the extremum lo-
cations c+ or c− inside the interval. The evolution
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Figure 13: Evolution of the modal imaginary FRF
over the ĉi domain for a constant modal stiffness
and mass value

ĉi

ω

c+(ω)

√
k∗
m∗

Figure 14: Evolution of c+(ω) in the frequency
domain

of this optimal ĉi value as a function of ω is illus-
trated in figure 15(a) for the lower bound and in
figure 15(b) for the upper bound.

The frequencies ω l
1 and ω l

2 represent the lower
points where c+(ω) crosses respectively with
m̂i = m and m̂i = m. Similarly, the frequencies ω l

3
and ω l

4 represent the upper points where c+(ω)
crosses respectively with m̂i = m and m̂i = m.
Therefore, they satisfy:

c =
k∗

ω l
1

−m∗ω l
1 (42)

c =
k∗

ω l
2

−m∗ω l
2 (43)

c = m∗ω l
3 −

k∗

ω l
3

(44)

c = m∗ω l
4 −

k∗

ω l
4

(45)

Furthermore, ωu
=1 and ωu

=2 follow directly as the

ĉi

c

c

c+(ω)

ωl
1 ωl

2 ωl
3 ωl

4 ω

(a) lower bound

ĉi

c

c

c+(ω)

ωu
=1 ωu

=2 ω

(b) upper bound

Figure 15: Evolution of the ĉi value correspond-
ing to the extrema of the modal imaginary FRF at
the analyzed line in the modal parameter space -
(a) lower bound (b) upper bound.

two roots resulting from the equation:

ℑ
(
FRFi

jk(ωu
=)

)
c,k∗,m∗ = ℑ

(
FRFi

jk(ωu
=)

)
c,k∗,m∗

(46)

This means that the curves of optimal ĉi values
given in figure 15 are completely described ana-
lytically, and the bounds on the imaginary FRF
over the analyzed line can be calculated by sub-
stituting the values on these curves into Eq. 39.

Lines parallel to the k̂i-axis The introduction of
constant values m∗ and c∗ for the modal mass and
damping parameters in equation (39) results in

a function ℑ
(

FRFi
jk

)
m∗,c∗

which has only k̂i as

variable. If k̂i varies over a positive interval
[
k,k

]
,

the modal imaginary FRF as a function of k̂i has
exactly one minimum as illustrated in figure 16.
This minimum is reached for k̂i equal to:

k1(ω) = m∗ω2 (47)



Envelope frequency Response Function Analysis 143

k̂i

� FRF i
jk m∗,c∗

k1(ω)

Figure 16: Evolution of the modal imaginary FRF
over the k̂i domain for a constant modal mass and
damping value

The location of the minimum k1(ω) is a monoton-
ically increasing function of the frequency.

Again, the exact upper and lower bounds on the
modal imaginary FRF above an interval on the an-
alyzed k̂i-line in the modal parameter space follow
directly from an analytical procedure. The evolu-
tion of the k̂i values that yield the bounding func-
tions of the response range is illustrated in fig-
ure 17(a) for the lower bound and in figure 17(b)
for the upper bound.

The frequencies ω l
1 and ω l

2 represent the points
where k1(ω) crosses respectively with k̂i = k and
k̂i = k. Therefore, they equal:

ω l
1 =

√
k

m∗ (48)

ω l
2 =

√
k

m∗ (49)

Furthermore, ωu
= follows directly from satisfying

the equation:

ℑ
(
FRFi

jk(ωu
=)

)
k,m∗,c∗ = ℑ

(
FRFi

jk(ωu
=)

)
k,m∗,c∗

(50)

which yields:

ωu
= =

√
k +k
2m∗ (51)

This means that the curves of optimal k̂i values
given in figure 17 are completely described ana-
lytically, and the bounds on the imaginary FRF

k̂i

k

k

k1(ω)

ωl
1 ωl

2
ω

(a) lower bound

k̂i

k

k

k1(ω)

ωu
= ω

(b) upper bound

Figure 17: Evolution of the k̂i value correspond-
ing to the extrema of the modal imaginary FRF at
the analyzed line in the modal parameter space -
(a) lower bound. (b) upper bound

over the analyzed line can be calculated by sub-
stituting the values on these curves into equa-
tion (39).

Lines parallel to the m̂i-axis For the analysis
of the behavior of the modal imaginary FRF for(
k̂i, m̂i, ĉi

)
-locations on lines parallel to the m̂i-

axis, constant values k∗ and c∗ are introduced
for the modal stiffness and damping parame-
ters in equation (39). This results in a function

ℑ
(

FRFi
jk

)
k∗,c∗

which has only m̂i as variable.

Again, it can be shown that when m̂i varies over a
positive interval [m,m], the modal imaginary FRF
as a function of m̂i has exactly one minimum as
illustrated in figure 18. This minimum is reached
for m̂i equal to:

m1(ω) =
k∗

ω2 (52)

The location of the minimum m1(ω) starts from
infinity at ω = 0 after which it tends to zero when
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Figure 18: Evolution of the modal imaginary FRF
over the m̂i domain for a constant modal stiffness
and damping value

the frequency tends to infinity.

The exact upper and lower bounds on the modal
imaginary FRF above the analyzed line in the
modal parameter space follow directly from an
analytical procedure. The evolution of the m̂i val-
ues that yield the bounding functions of the re-
sponse range is illustrated in figure 19(a) for the
lower bound and in figure 19(b) for the upper
bound.

The frequencies ω l
1 and ω l

2 represent the points
where m1(ω) crosses respectively with m̂i = m
and m̂i = m. Therefore, they equal:

ω l
1 =

√
k∗

m
(53)

ω l
2 =

√
k∗

m
(54)

Furthermore, ωu
= follows directly from satisfying

the equation:

ℑ
(
FRFi

jk(ωu
=)

)
m,k∗,c∗ = ℑ

(
FRFi

jk(ωu
=)

)
m,k∗,c∗

(55)

which yields:

ωu
= =

√
2k∗

m+m
(56)

This means that the curves of optimal m̂i values
given in figure 19 are completely described an-
alytically, and the bounds on the imaginary FRF
over the analyzed line can be calculated by substi-
tuting the values on this curves into equation (39).

m̂i

m

m

m1(ω)

ωl
1 ωl

2
ω

(a) lower bound

m̂i

m

m

m1(ω)

ωu
= ω

(b) upper bound

Figure 19: Evolution of the m̂i value correspond-
ing to the extrema of the modal imaginary FRF at
the analyzed line in the modal parameter space -
(a) lower bound (b) upper bound.

Minimum and maximum response locations on
horizontal and vertical planes The analytical
analysis of the modal imaginary FRF over lines
parallel to the ĉi-axis in the 〈k̂i, m̂i, ĉi〉-domain in-
dicates that a local minimum is possibly present
inside the considered

[
ĉi, ĉi

]
interval. The re-

sponse value at the local minimum, however,
proves to be independent of the location of the
line. Indeed, if the location of the local minimum
is not on the boundary of the domain, it is found at
c+(ω). Substituting c+(ω) as defined in Eq. 40,
m∗ and k∗ in Eq. 39 yields:

ℑ
(
FRFi

jk

)
m∗,k∗,c+

= − 1
2c∗ω

(57)

Since this value is independent from both m∗ and
k∗, the response value at the local minimum found
on a line parallel to the ĉi-axis does not depend on
the location of the line. Hence, in order to find
the range of the modal imaginary FRF over a hor-
izontal or vertical plane in the

(
k̂i, m̂i, ĉi

)
-space,
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only the boundary lines of these planes have to be
analyzed.

Modal imaginary envelope FRF procedure
The procedure for the analytical response range
analysis of the modal imaginary FRF is the fol-
lowing:

1. analyze the optima of the modal imagi-
nary FRF for the 〈k̂i, m̂i, ĉi〉-domain bound-
ary lines parallel to the ĉi-axis

2. analyze the optima of the modal imaginary
FRF for the vertical boundary lines of the
polyhedral 〈k̂i, m̂i, ĉi〉-domain approximation

3. analyze the optima of the modal imaginary
FRF for the horizontal boundary lines of the
polyhedral 〈k̂i, m̂i, ĉi〉-domain approximation

4. envelope the ranges of the modal imaginary
FRF obtained in the previous steps

The implementation is done based on the defini-
tion of the MRE 〈k̂i, m̂i〉-domain as illustrated in
figure 3 and its extrusion in the ĉi-direction as il-
lustrated in figure 4. Step 1 is implemented based
on the analysis on lines parallel to the ĉi-axis
described above at the lines with the following

(k∗,m∗)-locations: (k̂i, m̂i), (m̂iλi, m̂i), (k̂i, k̂i/λi),

(k̂i, m̂i), (m̂iλi, m̂i) and (k̂i, k̂i/λi). Step 2 is im-
plemented by applying the vertical line procedure
on the line segments at m̂i = m̂i and m̂i = m̂i with
k̂i ranging respectively from k̂i to m̂iλi and from

m̂iλi to k̂i, both at ĉi and ĉi. Step 3 is imple-
mented by applying the horizontal line procedure

on the line segments at k̂i = k̂i and k̂i = k̂i with
m̂i ranging respectively from m̂i to k̂i/λi and from

k̂i/λi to m̂i, both at ĉi and ĉi. Finally in step 4,
the modal imaginary FRF range for the complete
〈k̂i, m̂i, ĉi〉-domain is derived by taking the union
of the modal imaginary FRF envelopes found in
the previous steps.

3.1.3 The modal envelope FRF for negative
modes

The analytical procedures in sections 3.1.1
and 3.1.2 consider only positive ranges for
the modal parameters. They require that the
〈k̂i, m̂i, ĉi〉-domain approximations of the ana-
lyzed modes are located in the first quadrant of the
modal parameter space, and, therefore, are lim-
ited to positive modes. The goal is to apply these
procedures also for negative modes. This can
be achieved by considering the MRE 〈k̂i, m̂i, ĉi〉-
domain approximation of a negative mode mir-
rored into the first quadrant of the modal param-
eter space. This is equivalent with switching the
sign of the modal parameters. The corresponding
horizontal and vertical boundaries on the mirrored
modal parameters are then:

−k̂i = −(k̂i) (58)

−k̂i = −(k̂i) (59)

−m̂i = −(m̂i) (60)

−m̂i = −(m̂i) (61)

−ĉi = −(ĉi) (62)

−ĉi = −(ĉi) (63)

It is easily shown that for negative modes, the cor-
rect modal real and imaginary envelope FRFs are
obtained by compensating for the modal parame-
ter sign inversion in the following way:

ℜ
(
FRFi

jk

)
k̂i,m̂i,ĉi

= −
(

ℜ
(

FRFi
jk

)
−k̂i,−m̂i,−ĉi

)
(64)

ℜ
(

FRFi
jk

)
k̂i,m̂i,ĉi

= −
(

ℜ
(
FRFi

jk

)
−k̂i,−m̂i,−ĉi

)
(65)

for the real part, and:

ℑ
(
FRFi

jk

)
k̂i,m̂i,ĉi

= −
(

ℑ
(

FRFi
jk

)
−k̂i,−m̂i,−ĉi

)
(66)

ℑ
(

FRFi
jk

)
k̂i,m̂i,ĉi

= −
(

ℑ
(
FRFi

jk

)
−k̂i,−m̂i,−ĉi

)
(67)

for the imaginary part. The conclusion is that
with an appropriate pre- and post-processing of
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the data used in and obtained from the procedures
for the positive modes, the equivalent procedure
for the negative modes is easily implemented.

3.1.4 The modal envelope FRF for switch modes

For a switch mode, the MRE 〈k̂i, m̂i〉-domain ap-
proximation ranges over infinity in the modal pa-
rameter space. It is easily shown that both the
modal real and imaginary FRF tend to zero when
the modal parameters tend to infinity inside the
MRE 〈k̂i, m̂i〉-domain approximation. Therefore,
the ranges of the modal real and imaginary FRF
should contain zero for all frequencies. Therefore,
the procedure consists of the following steps:

1. the calculation of the upper and lower
bounds on the modal real and imaginary FRF
for the MRE 〈k̂i, m̂i, ĉi〉-domain approxima-
tion both in the first and the third quadrant

2. taking the maximum of all upper bounds and
minimum of all lower bounds of the enve-
lope functions resulting from the previous
step

3. the calculation of the modal real and imag-
inary envelope FRFs by correcting positive
lower bounds and negative upper bounds in
the result of the previous step to zero

The derivation of the range of the modal FRFs in
step 1 results from applying the procedure for pos-
itive and negative modes described above to the
finite boundaries in respectively the first and third
quadrant of the MRE 〈k̂i, m̂i, ĉi〉-domain approxi-
mation of the switch mode.

3.2 Total amplitude and phase envelope FRF
calculation

After the calculation of the modal real and imag-
inary envelope FRF of all modes, the total ampli-
tude and phase envelope FRF are calculated using
the total real and imaginary envelope FRFs. These
result from the summation of the modal contribu-

tions derived in the previous sections:

ℜ
(
FRFjk

)I =
n

∑
i=1

ℜ
(
FRFi

jk

)I
(68)

ℑ
(
FRFjk

)I =
n

∑
i=1

ℑ
(
FRFi

jk

)I
(69)

The result of the summation is an interval range
for the real and imaginary part of the complex
response for every frequency. This means that
it defines a rectangle in the complex space in
which the response vector is contained. Based on
this rectangle, an approximation of the amplitude
range of the complex response is easily obtained
by taking the points on the rectangle which are
respectively the nearest and most distant from the
origin.

4 Numerical example

The presented methodology is now illustrated on
a realistic case study. The model under investiga-
tion represents a car windshield in free-free con-
ditions. The windshield is composed of five lay-
ers: two outer glass layers, and three inner lay-
ers of various polymers. During manufacturing,
the thicknesses of these layers are subject to tol-
erances. The tolerances are defined as a range
of thickness for the total of the five layers, and
a range of total thickness for the inner polymer
layers. Furthermore, damping variation has been
detected from experiments. The aim of this case
study is to analyze the effect of the manufacturing
design tolerances in combination with the damp-
ing uncertainty on the dynamical behavior of the
windshield.

Figure 20 shows the nominal finite element model
of the windshield (courtesy of Renault, France).
The model contains a total of 798 elements. In
the dynamic response analysis, a direct drive point
FRF along the Z-direction is considered, with the
input and response location as indicated in fig-
ure 20. At this location, the components of the
force and displacement normal to the surface are
considered. The response is analyzed up to a fre-
quency of 180 Hz, which corresponds to the range
covered by the 15 first modes.
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drive point location

input and output direction

Figure 20: Nominal finite element model of the
windshield, with indication of the response loca-
tion of the direct FRF

The windshield is modeled using layered compos-
ite elements, the individual layer thicknesses of
which are parametrized in order to perform the
global optimization on the modal parameters, nec-
essary for the MRE 〈k̂i, m̂i〉-domain approxima-
tion. The damping uncertainty is added to the
analysis as an individual uncertain modal damp-
ing parameter for each mode under consideration
in the modal superposition. The modal damping
factors are derived from a total of three experi-
ments performed on three different realizations of
the windshield. In the interval analysis, the modal
damping uncertainty is quantified as the inter-
val enveloping these experimental modal damp-
ing factors. This brings the total of independent
uncertain parameters to 17 (2 layer thicknesses,
15 modal damping factors).

Figure 21 illustrates the modal real and imaginary
envelope FRF for the third mode resulting from
the procedure as described in section 3 of this pa-
per. As a verification, a total of 1000 samples
has been generated, resulting in the cloud of re-
sponse curves (grey lines in the figure). The sam-
ples result from a Monte Carlo-simulation using a
uniform distribution over the tolerance and modal
damping intervals. This figure clearly indicates
that for this mode, the procedure introduced above
finds conservative but very tight bounds on the dy-
namic response range under the given interval un-
certainty.
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Figure 21: Predicted modal real and imaginary
envelope FRF of the third mode (black), com-
pared to 1000 samples randomly generated over
the interval uncertainty space (grey)

Figure 22 finally shows the total amplitude en-
velope response function obtained with the pre-
sented methodology. Again, the total envelopes
are compared to the samples generated with the
Monte Carlo-procedure. Also here, the predicted
bounds are conservative, but give a good indica-
tion of the upper bound on the feasible response
range. Especially in the critical area where the
response of the structure is high, the envelope de-
scribes very tight bounds around the sampled re-
sponse functions. From these results, conclusions
can be drawn regarding the possible dynamic be-
havior of the structure, given the uncertain inter-
val bounds on specific model properties. This can
be very valuable information for a designer who
is interested in the combined effect of defined tol-
erances and damping variability on the dynamic
behavior of his design.

5 Conclusions

This paper explains how the hybrid optimization
– interval arithmetic procedure developed for dy-
namic response analysis of undamped structures
can be extended to the analysis of structures with
uncertain modal damping factors. The developed
procedure adopts the hybrid interval translation
of the modal superposition principle, including
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Figure 22: Predicted amplitude and phase envelope FRF (black), compared to 1000 samples randomly
generated over the interval uncertainty space (grey)

the modal rectangle method with eigenvalue inter-
val correction. Addition of an independent modal
damping interval to the analysis results in a three-
dimensional modal domain. The modal parame-
ter range of each mode is extended in the modal
damping direction. The range of the real and
imaginary parts of the modal contributions to the
total frequency response function are calculated,
by taking into account that the modal parame-
ter triplets can be anywhere within this extended
modal parameter range. This results in an ana-
lytical procedure, which proves to be highly effi-
cient. The main advantage of the developed pro-
cedure is that the modal damping intervals are in-
troduced directly into the interval arithmetic part
of the procedure. This means that there is no ex-
tra preliminary optimization necessary. Conse-
quently, the computational efficiency of the pro-
cedure is hardly affected with respect to the un-
damped case.

The effect of uncertain geometric parameters in
combination with experimentally identified modal
damping uncertainty on the dynamic behavior of

a car windshield is analyzed. This analysis shows
the efficiency and correctness of the procedure.
Thanks to the efficient analytical treatment of
modal damping intervals, a relatively high amount
of independent interval uncertainties can be an-
alyzed. In the treated example, 17 independent
interval parameters are present, 15 of which are
modal damping parameter uncertainties. The re-
sulting envelopes on the response function of the
windshield prove to be very useful for dynamic
assessment of the structure under uncertain con-
ditions.
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