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Investigation of the Effect of Frictional Contact in III-Mode Crack under
Action of the SH-Wave Harmonic Load

A.N. Guz1 and V.V. Zozulya2

Abstract: The frictional contact interaction of
the edges of a finite plane crack is studied for
the case of normal incidence of a harmonic SH-
shear wave which produces antiplane deforma-
tion. The forces of contact interaction and dis-
placement discontinuity are analyzed. Influence
of the wave frequency on the stress intensity fac-
tor for different coefficients of friction is studied
here.
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1 Introduction

In numerous publications of Guz and Zozulya it
was shown that in the cracked body under ac-
tion of a harmonic loading, taking into account
of the crack edge contact interaction is very im-
portant. The problem of the crack edges con-
tact interaction in 2-D and 3-D elastodynamics
have been investigated in details in monograph
[Guz and Zozulya (1993)] published in Russian
and reviews [Guz and Zozulya (1995), (2001)
and (2004)] published in English. For more de-
tailed information see bibliography cited there. In
above mentioned publications boundary element
method has been used. Alternatively meshless
methods can be used. For resent development in
this area see [Atluri (2004), Atluri S.N., Liu H.T.,
Han Z.D. (2006a), Atluri S.N., Liu H.T., Han Z.D.
(2006b)]. In some situation under action of the
harmonic loading antiplane deformation in vicin-
ity of crack may occur. In the case if there is
load perpendicular to the crack surface, the crack
edges are in a close contact and their frictional
interaction take place. Influence of the frictional
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contact interactions of the crack edges on fracture
mechanics criterions in the III-mode cracks is not
investigated yet. This lack is made up in this pub-
lication.

2 Statement of the problem

Let consider an unbounded homogeneous
isotropic elastic body in 3-D Euclidean space.
There is a finite crack located in the plane
R2 = {x : x3 = 0}. The crack surface is described
by its Cartesian coordinates

Ω = {x : −l ≤ x1 ≤ l,x2 = 0,−∞ ≤ x3 ≤ ∞}

A harmonic horizontally polarised shear SH-wave
with frequency ω propagates in the plane R2. The
shear axis and axis Ox3 are coinciding as it is
shown in Fig.1.

The incident wave is defined by the potential
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Figure 1: Finite crack under antiplane deforma-
tion
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function

ψ(xα , t) = ψ0ei(k2n·xα−ωt),

k2 = ω/c2, c2 =
√

μ/ρ

where ψ0 is the amplitude, k2 is the wave number,
c2 is the velocity of the SH-wave, ω = 2π/T is the
frequency, T is the period of wave propagation,
μ are the Lame constant, and ρ is the density of
the material, n = (cosα , sinα) is the unit vector,
normal to the front of the incidence wave, α is
the angle of the incident wave, xα = (x1,x2) are
Cartesian coordinates in the plane R2.

This wave generate the stress-strain state that de-
pend on two space coordinates xα ⊂ R2 and time
t ∈ ℑ and is called antiplane deformation [Achen-
bach (1973)]. The deformation is described by the
shear component u3(xα , t). The corresponding
stress tensor components are defined by Hooke’s
law

σ3α = μ∂α u3. (1)

The stress equation of motion has the form

μ∂β σ3β +b3 = ρ∂ 2
t u3 (2)

Here ∂β and ∂t are derivatives with respect to the
coordinates and time, respectively, b3 is the vol-
ume force.

Eliminating the σ3α from Eq. 2 using Eq. 1 we
find that the displacement u3(xα , t) is governed by
the scalar wave equation of the form

μ∂β ∂β u3 +b3 = ρ∂ 2
t u3, ∀(xα , t) ∈ V ×ℑ (3)

Wave propagation in cracked body is a classical
diffraction problem [Achenbach (1973), Guz and
Zozulya (1993)]. Usually this problem may be
divided in two separate problems: the problem
for incident waves and the problem for reflection
waves. Obviously, the problem for incident wave
is trivial in the case under consideration. If the
wave function ψ(xα , t) is known, then the compo-
nents of the stress tensor and displacements vector
under action of the incident wave are determined
in the form

u3 = −∂2ψ = −ik2n2ψ0ei(k2n·xα−ωt),

σ3α = μ∂α ∂2ψ = μk2
2nα n2ψ0ei(k2n·xα−ωt)

Therefore we will pay more attention to solution
of the problem for reflected waves.

The on the crack’s edges n1 = 0 and x2 = 0, there-
fore load caused by incident wave has the form

p3(x1, t) = −σ32(x1, t) = p0ei(k2x1−ωt),

p0 = −μk2
2ψ0

With considering of the crack edges contact inter-
action the load on the crack edges has the form

ps
3(x1, t) =

{
p3(x1, t), ∀x1 /∈ Ωe

p3(x1, t)+q3(xα , t), ∀x1 ∈ Ωe

where Ωe = Ω+ ∩ Ω− is a region of close fric-
tional contact, which is varied during time.

The force of the crack edges contact interaction
q3 and displacement discontinuity Δu3 = u+

3 −u−3
should satisfy the contact constrains in form of
Coulomb friction [Panagiotopoulos (1985)]

|q3| ≤ k∗qn → ∂tΔu3 = 0,

|q3| = k∗qn → ∂tΔu3 = −λ∗q3,
(4)

where k∗ and λ∗ are coefficients dependent on the
contacting surfaces properties, qn is the normal to
the crack surface force of contact interaction. In
the problem under consideration we assume that
it is known beforehand.

Because of contact constrains defined by Eq. 4 the
problem under consideration is nonlinear. There-
fore, as it was shown in [Guz and Zozulya (1993),
(1995), (2001) and (2004)], the problem for re-
flected waves presents the periodic steady-state,
but not harmonic, process. As a result, compo-
nents of the stress-strain state, caused by the re-
flected waves can not be represented as functions
of coordinates xα , multiplied by factor e−iωt , as
it is usually does in elastodynamics in the case of
the harmonic loading [Achenbach (1973)]. That
is why we have to expand components of the dis-
placement vector and stress tensor into Fourier se-
ries with the parameter of loading ω

u3(xα , t) = Re

{
∞

∑
−∞

uk
3(xα)eiωkt

}
,

σ3β (xα , t) = Re

{
∞

∑
−∞

σ k
3β (xα)eiωkt

} (5)
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where

uk
3(xα) =

ω
2π

T∫
0

u3(xα , t)eiωktdt,

σ k
3β (xα) =

ω
2π

T∫
0

σ3β (xα , t)eiωktdt

In the same way, traction p3(x1, t) on the crack
edges and their opening Δu3(x1, t) may be ex-
panded into Fourier series

p3(x1, t) = Re

{ ∞

∑
-∞

pk
3(x1)eiωkt

}
,

Δu3(x1, t) = Re

{ ∞

∑
-∞

Δuk
3(x1)eiωkt

}

where

pk
3(x1) =

ω
2π

T∫
0

p3(x1, t)eiωktdt,

Δuk
3(x1) =

ω
2π

T∫
0

Δu3(x1, t)eiωktdt

3 Integral equations and fundamental solu-
tions

Inserting Fourier series expansions defined by Eq.
5 into governing equation, instead of the wave
equation defined by Eq. 3 we obtain a countable
set of steady-state wave equations of the from

∂β ∂β uk
3 +

ω2

c2
2

uk
3 +

ρ
μ

bk
3 = 0, k = 0,±1,±2, . . .,∞

(6)

In [Guz and Zozulya (1993), (1995), (2001)
and (2004)] it was shown that the Fourier se-
ries expansions of the displacement discontinu-
ity Δuk

3(xα) and traction pk
3(xα)are related by the

boundary integral equations (BIE) of the form

pk
3(xα) = −F.P.

∫
Ω

F3(xα −yα ,ωk)Δuk
3(yα)dΩ,

k = 0,±1,±2, . . .,±∞, ∀xα ∈ Ω. (7)

3.1 Fundamental solutions

The kernels F3(xα − yα ,ωk) may be obtained
from the fundamental solutions U3(xα − yα ,ωk)
for the steady-state wave equations defined by Eq.
6. The fundamental solutions for the steady-state
wave equation is well known and may be find any-
where, for example in [Dominguez (1993)]. It has
the form

U3(xα −yα ,ωk) =
i

4μ
H(1)

0

(
lk
2

)
, lk

2 = rωk/c2

where r = |xα −yα |
√

(x1 −y1)2 +(x2 −y2)2 is
the length between points xα and yα , H1

0 (z) is
the Bessel function of the third kind and zero or-
der (Hankel function) [Abramowitz and Stegun
(1964)].

Applying the operator of derivation in normal di-
rection twice with respect to x1 and y2 corre-
spondingly to the fundamental solutions U3(xα −
yα ,ωk) we obtain

F3(xα ,yα ,ωk) = −μ2∂n∂nU3(xα −yα ,ωk),

where ∂n = nα ∂α is the normal derivative.

The normal derivatives of the fundamental solu-
tions U3(xα −yα ,ωk) are calculated in the form

∂nU3(xα −yα ,ωk) =
nα xα

r
dU3(r,ωk)

dr

∂n∂nU3(xα −yα) =
nαnβ

r

(
δαβ − xα xβ

r2

) dU3(xα −yα)
dr

+
nα xα

r

nβ xβ

r
d2U3(xα −yα)

dr2

In these equations we have used expressions for
normal derivatives of the function r which is the
distance between points xα and yα in the form

∂nr =
nα xα

r
, ∂n (∂nr) =

nαnβ

r

(
δαβ −

xα xβ

r2

)
Taking into account that in the case under con-
sideration n1 = 0, n2 = 1 and x2 = 0, the normal
derivative for the fundamental solution U3(xα −
yα ,ωk) have the form

∂n∂nU3(xα −yα ,ωk) =
dU3(r,ωk)

rdr
.
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Using formula for the derivative of the Bessel
function H1

0 (z)

d
dr

H(1)
0

(
ωr
c2

)
= −ω

c2
H(1)

1

(
ωr
c2

)

we obtain the kernels F3(xα −yα ,ωk) for our spe-
cific case have the form

F3(xα −yα ,ωk) = μ
iωk

rc2
H(1)

1

(
lk
1

)
These kernels are complex value functions. They
may be represented in the form

F3(xα −yα ,ωk) = FRe
3 (xα −yα ,ωk)

+ iFIm
3 (xα −yα ,ωk) (8)

In order to separate real and imaginary parts of
the fundamental solutions we substitute the Han-
kel functions by the Bessel functions of the first
and the second kind using relation

H(1)
ν = Jv(z)+ iYv(z).

Now real and imaginary parts of the fundamental
solutions have the form

FRe
3 (xα −yα ,ωk) = −μ

ωk

rc2
Y1(l2)

FIm
3 (xα −yα ,ωk) = μ

ωk

rc2
J1(l2)

(9)

Let us consider in details the structure of the ker-
nels F3(xα −yα ,ωk). The Bessel functions of the
first and second kind and the first order may be
represented by the series expansion [Abramowitz
and Stegun (1964)]

J1(z) =
z
2

[
1− 1

1!2!

( z
2

)2
+

1
2!3!

( z
2

)4 − . . .

]

Y1(z) =
2
π

(ln(z/2)+ γ)J1(z)

+
z

2π

[
1− (1+1/2)

1
1!2!

( z
2

)2

+(2+1+1/3)
1

2!3!

( z
2

)4

− (2+1+2/3+1/4)
1

3!4!

( z
2

)6
. . .

]
− 2

πz
.

From these representations follows that

J1(z)→ z and Y1(z)→ 1
z

for z → 0

and therefore for xα → yα

FRe
3 (xα −yα ,ωk)→ 1

r2 , FIm
3 (xα −yα ,ωk) → 0

The kernels of these integral equations defined by
Eq. 7 are hypersingular and must be considered
in the sense of the Hadamard finite part in the
same way as it was done in [Zozulya (2006a,b),
Zozulya and Gonzalez-Chi (1999)] for 2-D and
3-D elastodynamic problems.

3.2 Boundary integral equations

From Eq. 8 it is follows that the BIE defined
by Eq. 10 establish connection between complex
functions pk

3(xα) and Δuk
3(xα). Separating real

and imaginary parts

pk
3(xα) = pRe

3 (xα ,k)+ ipIm
3 (xα ,k),

Δuk
3(xα) = ΔuRe

3 (xα ,k)+ iΔuIm
3 (xα ,k)

and using representation from Eq. 8 for the ker-
nels F3(xα −yα ,ωk) we obtain the system of in-
tegral equations for each k in the form

pRe
3 (xα ,k) =

F.P.

∫
Ω

FRe
3 (xα −yα ,ωk)ΔuRe

3 (yα ,k)dΩ

−
∫
Ω

FIm
3 (xα −yα ,ωk)ΔuIm

3 (yα ,k)dΩ

pIm
3 (xα ,k) =∫

Ω

FIm
3 (xα −yα ,ωk)ΔuRe

3 (yα ,k)dΩ

+F.P.
∫
Ω

FRe
3 (xα −yα ,ωk)ΔuIm

3 (yα ,k)dΩ

(10)

The BIEs are solved numerically, transforming
them into linear finite-dimensional system of the
boundary element equations using collocation
method. In [Menshykov, Menshykova M. and
Wendland, (2005)] it was shown that solutions of
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2-D elastodynamic contact problem obtained us-
ing collocation and Galerkin BIE methods coin-
cides for all considered frequencies. For zero or-
der interpolation polynomials with piecewise con-
stant approximation of the boundary elements the
system of boundary element equations has the
form

pRe
3 (xm,ωk) =

N

∑
n=1

[
FRe

3 (xm −yn,ωk)ΔuRe
3 (yn,k)

−FIm
k (xm −yn,ωk)ΔuIm

3 (yn,k)
]

pIm
3 (xm,k) =

N

∑
n=1

[
FIm

3 (xm −yn,ωk)ΔuRe
3 (yn,k)

−FRe
3 (xm −yn,ωk)ΔuIm

3 (yn,k)
]
(11)

Their coefficients are defined by the equations

FRe
k (xm −yn,Δn) =

∫
2Δn

FRe
3 (xm −y,ωk)dy (12)

FIm
k (xm −yn,Δn) =

∫
2Δn

FIm
3 (xm −y,ωk)dy (13)

Let us consider in detail how to calculate these
coefficients. If points xα and yα , belong to dif-
ferent boundary elements the integrals in Eq. (12)
and Eq. (13) are non-singular and their calcula-
tion gives no difficulties. For example, the Gauss
quadrature formula may be applied to the numeri-
cal calculation of those integrals. If points xα and
yα , belong to the same boundary elements the in-
tegrals in Eq. 12 are hypersingular. For their cal-
culation the finite parts of the divergent integrals
according to Hadamard will be used. We will use
for this purpose the relationship

FRe
k (xm −yn,Δn) =∫

2Δn

[
FRe

3 (xm −y,k)−FSt
3 (xm −y)

]
dy

+ F.P.

∫
2Δn

FSt
3 (xm −y)dy

Here FSt
3 (xα − yα) = 2μ

πr2 is the fundamental so-
lution for the elastostatic problem, extracted from

FRe
3 (xα −yα ,k) by a limit transition ωk → 0. This

fundamental solution is hypersingular. Calculat-
ing the finite part integral according to Hadamard
we obtain

FSt
3 (xm −yn,Δn) = −4μ

π
Δn

(xm −yn)2 −Δ2
n

Now the residuary integrals in Eq. 12 are regu-
lar and can be calculated using standard numeri-
cal approaches. Since the rectilinear crack under
consideration, these regular integrals can be cal-
culated analytically using metodology presented
in [Guz and Zozulya (2001)]. For this purpose let
us consider the integrals

γmn
k (Δn,cα) =

Δn∫
−Δn

(r∗ω/2cα)2kdβ

=
(ω/2cα)2k

2k +1
(r2k+1

+Δ + r2k+1
−Δ )

Δn∫
−Δn

(r∗ω/2cα)2k ln(r∗ω/2cα)dβ

= ηmn
k (Δn,cα)− γmn

k (Δn,cα)/(2k +1)

ηmn
k (Δn,cα) =

(ω/2cα)2k

2k +1

(
r2k+1
+Δ ln(rω

+Δ/2cα)

+ r2k+1
−Δ ln(rω

−Δ/2cα)
)

where r∗ = |ym −xn +β | , r+Δ = |ym −xn +Δn| ,
r−Δ = |ym −xn −Δn|.
After integration of the Bessel functions we ob-
tain the following expressions

J∗1 (m,n,cα) =
Δn∫

−Δn

(ω/cα r)J1(l∗α)dβ

= (ω/2cα)2

[
2Δn +

∞

∑
k=0

(−1)k γmn
k (Δn,cα)

(k!)(k +1)!

]

Y ∗
1 (m,n,cα) =

Δn∫
−Δn

(ω/cαr)Y1(l∗α)dβ

= γJ∗1(m,n,cα)−
(

ω
2cα

)2

(2Δn+A)+2

(
ω

2cα

)2

B
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where

A =
∞

∑
k=0

(−1)k γmn
k (Δn,cα)
k!(k +1)!

(ψ(k +1)+ψ(k +2))

B =
∞

∑
k=0

(−1)k

k!(k +1)!

ηmn
k (Δn,cα)− γmn

k (Δn,cα)
(2k +1)

Utilization of these equations allows significantly
reduce time of the boundary element equations
coefficients calculation. In contrast with other
approaches (see for example [Loeber and Sih
(1968)]) the methods developed here demonstrate
good accuracy where ωk is low or high. The sys-
tem of boundary element equations does not lose
stability with increasing ωk.

4 Algorithm for the problem solution.

For solution of the BIE defined by Eq. 11 with
considering the unilateral constrains with friction
defined by Eq. 4 we use the algorithms de-
veloped by Zozulya and presented in [Guz and
Zozulya (2001), (2002), Zozulya and Menshykov
O.V. (2003)]. The algorithm consists of the fol-
lowing steps:

• the initial distribution of the contact forces
q0

3(x1, t), ∀x ∈ Ω, ∀t ∈ ℑ is assigned;

• the problem without constrains is solved and
the unknowns quantities on the contact sur-
faces Δu3(x1, t) are defined;

• the normal and tangential components of the
vector of contact forces are corrected to sat-
isfy the unilateral restrictions

qk+1
3 (x1, t) = Pτ

[
qk

3(x1, t)−ρτ∂tΔuk+1
3 (x1, t)

]
,

where,

Pτ [q3] =

{
q3(x3, t), if |q3| ≤ kτ qn(x3, t)
kτ qn(x3, t)

q3
|q3| , if |q3|> kτqn(x3, t)

is operator of the orthogonal projection onto
set |q3| ≤ kτqn(x3, t), coefficient ρτ has been
chosen based on the conditions that give the
best convergence of the algorithm;

• proceed to the next step of the iteration.

5 Numerical results

The case of normal incidence of a harmonic shear
SH-wave which produce antiplane deformation
is studied here. For simplicity we suppose that
the force normal to the crack edges is constant
along the crack length for any time and unit i.e.
qn = 1. Assume that the incident shear SH-wave
has the unit amplitude and the crack is located in
the material with following mechanical character-
istics: elastic modulus E = 200GPa, Poisson’s ra-
tio ν = 0.25, specific density ρ = 7800kg/m3.

The crack opening and frictional contact force in
the middle point of the crack (x1 = 0 ) during pe-
riod of the wave action for different wave num-
bers and coefficients of friction are presented in
Fig. 2-7.

Graphs in Fig. 8-13 illustrate the crack opening
and frictional contact forces distribution along the
crack length during period of the wave action.

In our previous publications was shown that con-
tact interaction affects fraction mechanics criteri-
ons. Let us study influence of the frictional con-
tact interaction of the opposite crack surfaces on
the stress intensity factor. For the tearing (or an-
tiplane) mode III the displacement at the crack tip
has the form

u3 =
KIII

μ

√
2ε
π

sin(θ/2)

Using limit transition for θ = π we obtain

KIII = lim
ε→0

μ
√

π√
2ε

u3 (l−ε , t)

The stress intensity factor against wave number
for different coefficients of friction is presented
in Fig.14. The curves on the graphs correspond
to: 1- solution without contact and 2 and 3 - with
contact for kτ = 0.2 and kτ = 0.4 correspondently.
We have to mention that solution obtained with-
out crack edges contact interaction (curve 1) co-
incides with the one presented in [Loeber and Sih
(1968)].

From these graphs follow that contact interaction
of the crack edges has an influence on the crack
opening and affects fracture mechanics criterions.
It has to be taken into account in design construc-
tions using methods of fracture mechanics.
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Figure 2: Crack opening k2 = 0.25: 1− kτ = 0,
2−kτ = 0.2, 3−kτ = 0.4.

Figure 3: Friction contact force for k2 = 0.25: 1−
kτ = 0.2, 2−kτ = 0.4.

Figure 4: Crack opening k2 = 1.0: 1− kτ = 0,
2−kτ = 0.2, 3−kτ = 0.4.

Figure 5: Friction contact force for k2 = 1.0: 1−
kτ = 0.2, 2−kτ = 0.4.

Figure 6: Crack opening k2 = 1.75: 1− kτ = 0,
2−kτ = 0.2, 3−kτ = 0.4.

Figure 7: Friction contact force for k2 = 1.75: 1−
kτ = 0.2, 2−kτ = 0.4.
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Figure 8: Crack opening and friction contact force
for k2 = 0.25 and kτ = 0.2.

Figure 9: Crack opening and friction contact force
for k2 = 0.25 and kτ = 0.4.

Figure 10: Crack opening and friction contact
force for k2 = 1.0 and kτ = 0.2.

Figure 11: Crack opening and friction contact
force for k2 = 1.0 and kτ = 0.4.

Figure 12: Crack opening and friction contact
force for k2 = 1.75 and kτ = 0.2.

Figure 13: Crack opening and friction contact
force for k2 = 1.0 and kτ = 0.4.
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Figure 14: Stress intensity factor against wave
number: 1−kτ = 0, 2−kτ = 0.2, 3−kτ = 0.4.
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