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A New Uncertain Optimization Method Based on Intervals and An
Approximation Management Model

C. Jiang1 and X. Han1,2

Abstract: A new uncertain optimization
method is developed based on intervals and an
approximation management model. A general
uncertain optimization problem is considered
in which the objective function and constraints
are both nonlinear and uncertain, and intervals
are used to model the uncertainty existing in the
system. Based on a possibility degree of inter-
val, a nonlinear interval number programming
(NINP) method is proposed. A deterministic
objective function is constructed to maximize
the possibility degree of the uncertain objec-
tive function, and the uncertain constraints are
changed into deterministic ones by introducing
some possibility degree levels. If the optimal
possibility degree of the objective function
reaches 1.0, a robustness criterion is introduced
and a corresponding robustness optimization is
performed for the uncertain objective function.
To improve the optimization efficiency, the NINP
method is combined with an approximation
management model to form an efficient uncertain
optimization method. The trust region method
is employed to manage a sequence of NINP
problems which are based on the approximation
models of the uncertain objective function and
constraints within the uncertainty space and
current design space. Two numerical examples
are investigated to demonstrate the effectiveness
of the present method.
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1 Introduction

In the traditional engineering optimization
(Haftka and Gurdal, 1992; Sedaghati et al.,
2001; Mathur et al., 2003; Tapp et al., 2004;
Fedelinski and Gorski, 2006; Amirante et al.,
2007; Lamberti and Pappalettere, 2007), the
system parameters are always treated as de-
terministic values. However, uncertainties in
geometric dimensions, material properties, loads,
boundary conditions and etc widely exist in
practical engineering problems. In order to obtain
a reliable analysis or design, the uncertainty in
the system must be considered. The probability
method has been widely and successfully used
to model the uncertainty, and based on it various
kinds of stochastic programming methods have
been developed (Charnes and Cooper, 1959;
Kall, 1982; Liu and Iwamura, 1997; Liu et al.,
2003; Gyeong-Mi, 2005; Abbas and Bellahcene,
2006). In these methods, the uncertain param-
eters are treated as random variables, and the
uncertain optimization problem is transformed
into a deterministic optimization problem based
on the statistics theory. Using the stochastic
programming method, a precondition should
be satisfied that the sufficient information on
the uncertainty is available for constructing the
precise probability distributions of the uncertain
parameters. Unfortunately, for many engineering
problems, the information on the uncertainty is
deficient and sometimes very expensive. For this
class of problems, the stochastic programming
will encounter difficulties. Additionally, there is
research indicating that even a small deviation
of the probability distribution may lead to a very
large error of the reliability analysis (Ben-Haim
and Elishakoff, 1990).

In recent years, many researchers intend to de-
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velop some new methods to model the uncertainty
and whereby overcome the deficiency of the prob-
ability method, among which the interval method
seems a very promising and inspiring one. Inter-
val represents a closed bounded set of real num-
bers, and in interval mathematics (Moore, 1979),
it is regarded as a number, namely interval num-
ber. Using the interval method, the lower and
upper bounds of an uncertain parameter are only
needed, not necessarily knowing its precise prob-
ability distribution. Thus the uncertainty descrip-
tion can be accomplished through a small quan-
tity of information on the uncertainty. Based on
the interval method, a kind of uncertain optimiza-
tion method named interval number programming
has been developed. The references (Tanaka et
al., 1984; Rommelfanger, 1989; Ishibuchi and
Tanaka, 1990) investigated the linear problems
with interval coefficients in the objective func-
tion. Problem with uncertainties in both of the ob-
jective function and constraints was studied, and
the possible interval of the solution was obtained
by taking the maximum value range and mini-
mum value range inequalities as constraint con-
ditions (Tong, 1994). A fuzzy satisfactory degree
of interval was constructed to deal with the un-
certain constraints with interval coefficients (Liu
and Da, 1999). Based on a comparative study on
ordering interval numbers, a linear interval num-
ber programming method was developed (Sen-
gupta et al., 2001). A new possibility degree of
interval was constructed based on the probabil-
ity method and whereby a multi-criteria decision
problem was solved (Zhang et al., 1999). These
methods all belong to the linear interval number
programming method, namely the objective func-
tion and constraints are linear functions with re-
spect to the design variables and uncertain param-
eters. To make the interval number programming
applicable for practical engineering problems, the
research on the nonlinear interval number pro-
gramming (NINP) has been attracting more and
more attentions and so far some NINP methods
have been also developed. The reference (Ma,
2002) seems the first attempt to study the NINP
problem, in which only the uncertain objective
function was considered and the uncertain op-
timization was transformed into a deterministic

three-objective optimization. This work was im-
proved by the reference (Jiang et al., 2007a), in
which the uncertainty in the nonlinear constraints
was also considered. A neural network was em-
ployed to create an approximation model between
the design variables and the bounds of the un-
certain objective function and whereby an effi-
cient NINP method was constructed (Jiang et al.,
2007b). The interval analysis method was used
to compute the bounds of the objective function
and constraints at each iterate, and hence the time-
consuming nesting optimization of the NINP was
avoided (Jiang et al., 2007c and 2007d). The ap-
proximate management framework was firstly in-
troduced into the NINP method, and through a se-
quential optimization process the optimal design
vector could be achieved by a small amount of
evaluations of the actual simulation model (Jiang
et al., 2007e). In the above linear interval number
programming and NINP methods, the uncertain
objective function is generally changed into a de-
terministic multi-objective optimization problem
based on an order relation of interval. However,
solving the multi-objective optimization problem
is a complicated and time-consuming task. Espe-
cially for NINP problems, the nesting optimiza-
tion is generally involved, in which the outer
layer optimization is used to optimize the design
vector and the inner layer optimization is used
to obtain the intervals of the objective function
and constraints. Once the nesting optimization
is coupled with the multi-objective optimization,
the uncertain optimization process will be made
much more complicated and difficultly treated.
On the other hand, in the existing interval number
programming methods we usually use two differ-
ent mathematical tools to deal with the uncertain
objective function and constraints, namely order
relation of interval for the objective function and
possibility degree of interval for the constraints.
A uniform treatment method which is effective
for both of the uncertain objective function and
constraints is still unavailable. Thus if we could
develop a new NINP method which can avoid the
multi-objective problem and furthermore provide
a uniform treatment form for the uncertain objec-
tive function and constraints, the uncertain opti-
mization can be treated much more conveniently
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and this NINP method will be more applicable for
practical engineering problems. This paper just
aims to develop such an NINP method, and simul-
taneously ensure a high optimization efficiency
for this NINP method.

In this paper, an uncertain optimization method
is developed based on a new NINP method and
an approximation management model. It should
be declared that the research work in this pa-
per concerning with the approximation manage-
ment model is partly based on the authors’ pre-
vious work (Jiang et al., 2007e). In the NINP
method, the uncertain objective function is trans-
formed into a deterministic single-objective op-
timization problem to maximize the possibility
degree that the interval of the uncertain objec-
tive function is larger than a performance in-
terval. The uncertain constraints are changed
into deterministic constraints by giving a possi-
bility degree level for each constraint. Then us-
ing the penalty function method, a determinis-
tic non-constraint optimization problem can be fi-
nally obtained, which is a nesting optimization.
If the optimal possibility degree of the uncertain
objective function reaches 1.0, a robustness op-
timization is then carried out, in which the ra-
dius of the uncertain objective function is min-
imized and a new constraint that the possibility
degree of the uncertain objective function is equal
to 1.0 is added. To improve the optimization ef-
ficiency, an approximation management model is
combined with the NINP method. A sequence of
sub-optimization problems are generated, and for
each sub-optimization the approximation models
are constructed for the uncertain objective func-
tion and constraints. The NINP method is used to
solve each sub-optimization problem based on the
nesting optimization of the efficient approxima-
tion models. The trust region method is employed
to manage the approximation models and make
the iterative sequence converge at an optimal de-
sign vector. Finally, the present method is applied
to a benchmark test and a practical engineering
problem, and the computation results show the ef-
fectiveness of the present method.

2 Statement of the problem

A general NINP problem can be given in the fol-
lowing form:

max
X

f (X,U)

subject to

gi(X,U)≤V I
i =

[
V L

i ,VR
i

]
, i = 1, . . ., l

U ∈ UI =
[
UL,UR]

,

Ui ∈UI
i =

[
UL

i ,UR
i

]
, i = 1,2, . . .,q

Xl ≤ X ≤ Xr (1)

where f and gi denote the objective function and
the ith constraint, respectively, and they are gen-
erally computed based on the simulation models
in practical applications. l is the number of the
constraints. X is an n-dimensional design vector,
and Xl and Xr denote the allowable minimum and
maximum vectors of X, respectively. U is a q-
dimensional uncertain vector which collects all of
the uncertain parameters in the system, and its un-
certainty is modeled by an interval vector UI. The
superscript I denotes an interval, and L and R de-
note the lower and upper bounds of the interval,
respectively. V I

i represents an allowable interval
of the ith constraint. Here, the objective function
f and constraints g are both nonlinear functions of
X and U, and continuous with respect to X and U.
In our problem, the uncertainty level, namely the
interval of each uncertain parameter is assumed to
be relatively small, which is often true for practi-
cal engineering problems.

For a specific design vector X, the possible val-
ues of f or gi caused by the uncertainty will form
an interval, as the uncertain parameters are all in-
tervals, and f and g are continuous with respect
to U. However, in a deterministic optimization
problem, a specific design vector always corre-
sponds to a specific value of the objective func-
tion or constraint. Thus the above NINP problem
is much more difficultly treated than the deter-
ministic optimization problems. In the following
section, an uncertain optimization method will be
suggested to solve the above problem based on a
new NINP method and an approximation manage-
ment model.
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Figure 1: Six possible positional relations between intervals AI and BI

3 A new nonlinear interval number program-
ming (NINP) method

3.1 A possibility degree of interval

In deterministic optimization problems, we can
appraise the design vectors through the real num-
ber values of the objective function and con-
straints at these design vectors. However, in an
NINP problem, the values of the uncertain ob-
jective function and constraints at a specific de-
sign vector are all intervals, instead of real num-
bers. Thus to evaluate the design vectors, a math-
ematical tool should be used to compare the inter-
vals. The possibility degree of interval is such a
mathematical tool, which represents an extent that
one interval is larger than another. Zhang et al.
(1999) proposed a construction method of possi-
bility degree based on the probability method, and
this work was improved by Jiang et al. (2007a).
Comparing with the widely used possibility de-
grees based on the fuzzy sets (e.g. Sengupta et al.,
2001), this kind of construction method can give
a more intuitive and stricter mathematical expla-
nation for the possibility degree of interval. Be-
tween intervals AI and BI , there exist six possible
positional relations as shown in Fig. 1, and based

on these relations a possibility degree P
(
AI ≥ BI

)
can be constructed (Jiang et al., 2007a):

P
(
AI ≥ BI) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 AL ≥ BR

AR−BR

AR−AL + BR−AL

AR−AL · AL−BL

BR−BL

+0.5 · BR−AL

AR−AL · BR−AL

BR−BL BL ≤ AL < BR ≤ AR

AR−BR

AR−AL +0.5 · BR−BL

AR−AL AL < BL < BR ≤ AR

0.5 · AR−BL

AR−AL · AR−BL

BR−BL AL < BL ≤ AR < BR

AL−BL

BR−BL +0.5 · AR−AL

BR−BL BL ≤ AL < AR < BR

0 AR < BL

(2)

Here intervals AI and BI are treated as random
variables Ã and B̃ with uniform distributions,
and the probability for random variable Ã larger
than B̃ is regarded as P

(
AI ≥ BI

)
. In Eq. (2),

P
(
AI ≥ BI

)
= 0 or 1 means that interval AI is ab-

solutely smaller or larger than BI . When BI is de-
generated into a real number b or AI is degener-
ated into a real number a, Eq. (2) can be rewrit-
ten:

P
(
AI ≥ b

)
=

⎧⎪⎨
⎪⎩

0 b > AR

AR−b
AR−AL AL < b ≤ AR

1 b ≤ AL

(3)
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P
(
a ≥ BI) =

⎧⎪⎨
⎪⎩

0 a < BL

a−BL

BR−BL BL ≤ a < BR

1 a ≥ BR

(4)

In these two cases, only AI or BI is regarded as
random variable. It can be found that P

(
AI ≥ b

)
behaves a linear relation with respect to b when
b is inside AI, and similarly P

(
a ≥ BI

)
behaves a

linear relation with respect to a when a is inside
BI .

3.2 Treatment of the uncertain objective func-
tion and constraints

In stochastic optimization (e.g. Liu et al., 2003),
we often make the constraints satisfied with a
confidence level and transform the uncertain con-
straints into deterministic ones. Additionally,
through maximizing the probability that the ob-
jective function satisfies the performance require-
ment of the system, the uncertain objective func-
tion can be also transformed into a deterministic
one. In the same way, for an NINP problem, we
can maximize the possibility degree of the uncer-
tain objective function and simultaneously make
each uncertain constraint satisfied with a possibil-
ity degree level, and hence Eq. (1) can be changed
into the following optimization problem:

max
X

P
(
FI ≥ GI)

subject to

P
(
CI

i ≤V I
i

) ≥ λi, i = 1,2, . . ., l (5)

Xl ≤ X ≤ Xr

where

FI =
[

f L(X), f R(X)
]
, GI =

[
GL,GR]

CI
i =

[
gL

i (X),gR
i (X)

]
, V I

i =
[
V L

i ,V R
i

]
(6)

In Eq. (5), FI and CI
i are the intervals of the objec-

tive function f and gi caused by the uncertainty at
a specific X. GI is an interval (termed as “per-
formance interval”) which represents a perfor-
mance requirement that the objective function is
expected to achieve. GI can be also a real number,
and it should be determined based on the prac-
tical problem. P

(
FI ≥ GI

)
represents the possi-

bility degree that the objective function satisfies

the performance requirement of the system un-
der the uncertainty circumstance, and P

(
CI

i ≤V I
i

)
represents the possibility degree that the ith con-
straint is satisfied. The values of P

(
FI ≥ GI

)
and

P
(
CI

i ≤V I
i

)
can be calculated through Eq. (2), (3)

or (4) based on the different forms of GI and V I
i .

0 ≤ λi ≤ 1.0 is a predetermined possibility degree
level of the ith constraint. Obviously, λ can be
used to adjust the feasible field of the design vec-
tor X. A larger λ means a stricter constraint and
whereby a smaller feasible field of X.

Bounds of the intervals FI and CI
i can be ex-

pressed in the following form:

f L(X) = min
U∈Γ

f (X,U), f R(X) = max
U∈Γ

f (X,U)

gL
i (X) = min

U∈Γ
gi(X,U), gR

i (X) = max
U∈Γ

gi(X,U)

U ∈ Γ =
{

U
∣∣UL≤U≤UR}

(7)

Thus it can be seen that to obtain the intervals
of the objective function and constraints caused
by the uncertainty should involve some sub-
optimization processes in the uncertainty space.

Through Eq. (7), the uncertain vector U is elimi-
nated, and Eq. (5) actually becomes a determinis-
tic optimization problem. Using the penalty func-
tion method (Chen, 2002), a non-constraint opti-
mization problem can be obtained in terms of a
penalty function fp:

max
X

fp (X) =

P
(
FI ≥ GI)−σ

l

∑
i=1

ϕ
(
P

(
CI

i ≤ V I
i

)−λi
)

(8)

where σ is a penalty factor which is always spec-
ified as a large value, and ϕ is a function in the
following form:

ϕ
(
P

(
CI

i ≤V I
i

)−λi
)

=(
max

(
0,−(

P
(
CI

i ≤V I
i

)−λi
)))2

(9)

Equation (8) can be solved by the traditional de-
terministic optimization methods.

3.3 A robustness criterion for the uncertain
objective function

Through optimizing Eq. (8), an optimal X can be
obtained which makes P

(
FI ≥ GI

)
reach a max-

imal value Pm. We are likely to achieve a mostly
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expected value of Pm, namely Pm = 1.0. It means
that the objective function absolutely satisfies the
performance requirement, regardless of the varia-
tion of the uncertain parameters. In this case, gen-
erally, there exist a set of optimal designs which
lead to Pm = 1.0. In theory, each one of these
optimal designs satisfies our design requirement
and can be selected as the final design. However,
among these designs it is still possible to select
a best one through introducing a second optimal-
ity criterion. In practical engineering problems,
we generally expect to find a design which is in-
sensitive to the uncertainty and whereby guaran-
tee the robustness of the system. Therefore, here
a robustness criterion is introduced, and Eq. (5)
can be transformed into the following optimiza-
tion problem:

min
X

Fw

subject to

P
(
FI ≥ GI) = 1.0

P
(
CI

i ≤V I
i

) ≥ λi, i = 1,2, . . ., l (10)

Xl ≤ X ≤ Xr

where

Fw =
f R(X)− f L(X)

2

=
max
U∈Γ

f (X,U)−min
U∈Γ

f (X,U)

2

(11)

Fw denotes the radius of the interval of the objec-
tive function. Through minimizing Fw, the vari-
ation of the objective function caused by the un-
certainty will be decreased, namely, the optimal
design can make the objective function insensi-
tive to the fluctuation of the uncertain parameters.
Thus a robust design can be ensured.

Eq. (10) can be also transformed into a non-
constraint optimization problem in terms of a
penalty function f ′p:

min
X

f ′p (X) = Fw +σ
l

∑
i=1

ϕ
(
P

(
CI

i ≤V I
i

)−λi
)

+σ
(
P

(
FI ≥ GI)−1.0

)2
(12)

3.4 Difficulty of the conventional optimization
methods

The transformed problems defined by Eqs. (8)
and (12) are both deterministic non-constraint op-
timization problems. If we use a conventional op-
timization method to solve these two problems,
the optimization process can be outlined as shown
in Fig. 2. It can be found that the optimization
consists of two layers in which the outer layer is
used to optimize the design vector X and the in-
ner layer is used to compute the bounds of the
objective function and constraints caused by the
uncertainty. At each iterate of X, the inner layer
optimization operator will be called 2 times to
compute the lower and upper bounds of the ob-
jective function or each constraint. Furthermore
each time of inner layer optimization needs an
amount of evaluations of the objective function
and constraints which are generally computation-
intensive simulation models. Thus the nesting op-
timization of the actual simulation models will be
caused inevitably, and it will lead to an extremely
low computation efficiency which is unacceptable
for most practical engineering problems.

4 Uncertain optimization based on an ap-
proximation management model

In this section, an approximation management
model will be combined with the NINP to con-
struct an efficient uncertain optimization method.
In the optimization process, a series of sub-
optimization problems based on the approxima-
tion models and the NINP method are created, and
at the sth iterate the sub-optimization problem has
the following form:

max
X

P
(
F̃ I ≥ GI

)

subject to

P
(
C̃I

i ≤V I
i

) ≥ λi, i = 1,2, . . ., l (13)

max
[
Xl,X(s)−ΔΔΔ(s)

]
≤ X ≤ min

[
Xr,X(s) +ΔΔΔ(s)

]
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Figure 2: Nesting optimization based on the actual simulation models

where

F̃ I =
[

f̃ L(X), f̃ R(X)
]

=
[

min
U∈Γ

f̃ (X,U),max
U∈Γ

f̃ (X,U)
]

C̃I
i =

[
g̃L

i (X), g̃R
i (X)

]
=

[
min
U∈Γ

g̃i(X,U),max
U∈Γ

g̃i(X,U)
]

U ∈ Γ =
{

U
∣∣UL ≤ U ≤ UR}

(14)

where f̃ and g̃i are approximation models of the
objective function and the ith constraint, respec-
tively, and they are both explicit functions with re-
spect to X and U. F̃ I and C̃I

i are intervals of the ap-
proximate objective function and ith approximate

constraint, respectively. ΔΔΔ(s) is a move limit vector
which is placed on the current design vector X(s)

to ensure the approximation accuracy. ΔΔΔ(s) varies
with the proceeding of the optimization, and thus
the design spaces at the iterates will not be fixed.
Based on Eq. (8), Eq. (13) can be transformed
into the following optimization problem:

max
X

f̃p (X)

= P
(
F̃ I ≥ GI)−σ

l

∑
i=1

ϕ
(
P

(
C̃I

i ≤ V I
i

)−λi
)

max
[
Xl,X(s)−ΔΔΔ(s)

]
≤ X ≤ min

[
Xr,X(s) +ΔΔΔ(s)

]
(15)
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where f̃p is the penalty function based on the
approximation models (termed as “approximate
penalty function”).

4.1 Construction of the approximation models

The quadratic polynomial response surface (RS)
(Rodriguez et al., 2000) is used to construct the
approximation models of the uncertain objective
function and constraints. Considering a function
h(Y) with nd input variables and ns design sam-
ples, a quadratic polynomial model h̃(Y) of the
function h(Y) at the samples is given as follows:

h(k) = c0 +
nd

∑
i=1

ciY
(k)
i +

nd

∑
i=1

nd

∑
j=1

ci jY
(k)
i Y (k)

j ,

k = 1,2, . . .,ns (16)

where c0, ci and ci j are coefficients of the constant
term, linear term and quadratic term, respectively.
h(k) is the actual value of h at the kth sample. Y (k)

i

and Y (k)
j are values of the ith and jth input vari-

ables at the kth sample, respectively. In Eq. (16),
the total number of the unknown coefficients is
nt = (nd +1)(nd +2)/2 if ci j = c ji, and hence to
guarantee the proper characterization of Eq. (16)
ns should be not less than nt . Equation (16) can
be rewritten in the matrix form (Rodriguez et al.,
2000):

h = Mc (17)

where h is an ns-dimensional actual value vector
of the function h, and c is an nt -dimensional coef-
ficient vector. M is a following ns ×nt matrix:

M =

⎡
⎢⎢⎢⎣

1 Y (1)
1 Y (1)

2 . . .
(

Y (1)
nd

)2

...
...

...
. . .

...

1 Y (ns)
1 Y (ns)

2 . . .
(

Y (ns)
nd

)2

⎤
⎥⎥⎥⎦ (18)

A least-squares estimation c̃ to c can be obtained:

c̃ =
(
MT M

)−1
MT h (19)

Then substituting Eq. (19) into Eq. (16), the ap-
proximate value of h can be obtained at any in-
put vector Y. Generally, the value of h̃ is not
equal to the true value of h at a sample point,

as the coefficient vector c̃ is achieved through the
least-squares method instead of the interpolation
method.

In Eq. (13), we use the above RS to construct
the approximation models f̃ (X,U) and g̃(X,U)
for the objective function and constraints. In the
construction process, X and U are both used as the
input variables of the RS, namely here nd = n+q.
Therefore, f̃ (X,U) and g̃(X,U) are both explicit
functions with respect to the design vector X and
the uncertain vector U, instead of only X as we
usually do for deterministic optimization prob-
lems.

In this paper, the design samples used to con-
struct the approximation models are generated by
Latin Hypercube Design (LHD) (McKay et al.,
1979; Stephen et al., 2003). LHD is more accu-
rate than random sampling and stratified sampling
in estimating the means, variances and distribu-
tion functions of an output. Each input variable
is ensured to have all portions of its range repre-
sented, and many input variables can be treated
with a relatively low cost. Furthermore, the size
of an LHD sample set can be controlled arbitrarily
by the designer according to the budget, time and
other conditions, and hence LHD has a capability
to generate the saturated design samples.

4.2 Optimization based on the approximation
models at each iterate

In our formulation, the intergeneration projection
genetic algorithm (IP-GA) (Liu and Han, 2003) is
used to solve the optimization problem Eq. (13),
and the flowchart is shown in Fig. 3. In the
uncertainty space and current design space, one
set of sampling points are obtained by LHD, and
each point is a vector with size nd = n + q. Af-
ter inputting the sampling points into the actual
simulation models one by one, the samples can
be obtained to construct the approximation mod-
els of the objective function and constraints using
the above RS method. Then the actual simula-
tion models can be discarded temporally, and the
optimization process at current iterate can be per-
formed only based on these approximation mod-
els. In the outer layer IP-GA, an amount of in-
dividuals of the design vector X are generated,
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Figure 3: Nesting optimization based on the approximation models and IP-GA

and for each individual the inner layer IP-GA
will be called two times to compute the lower
and upper bounds of the approximate objective
function or each constraint. In Fig. 3, the nest-
ing optimization is still found to exist. However,
here, the nesting optimization is based on the ap-
proximation models which are explicit and simple
functions with respect to X and U instead of the
computation-intensive actual simulation models,
and therefore the optimization efficiency is still
very high.

4.3 Approximation model management based
on trust region method

The trust region method (Rodriguez and Renaud,
1998; Rodriguez et al., 2001) is used to manage
the approximation models and make the optimiza-

tion sequence converge at an optimal design vec-
tor. For each iterate defined by Eq. (13), a trust
region test is needed to appraise the validity of the
approximation models:

ρ (s) =
fp

(
X(s))− fp

(
X(s)∗)

fp
(
X(s)

)− f̃p
(
X(s)∗) (20)

where X(s)∗ is the optimum of Eq. (13) which is
obtained through the method in section 4.2. ρ (s)

is a reliability index which is a ratio of the actual
change of the penalty function to the predictive
change based on the approximation models. Thus
ρ (s) can be used to monitor how well the current
approximation models represent the actual simu-
lation models.

According to the value of ρ (s), the move limit vec-
tor ΔΔΔ(s), namely the trust region radius vector can
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Figure 4: Uncertain optimization based on the NINP method and the trust region management

be updated: ρ (s) ≤ 0.0 implies that the approx-
imation models have a very poor precision, and
ΔΔΔ(s) should be reduced to improve the approxima-
tion precision at the next iterate; ρ (s) ≈ 1.0 im-
plies that the approximation models are precise,
and the trust region radius vector ΔΔΔ(s) should be
expanded if X(s)∗ is just located on the boundary

of the current design space; For 0.0 < ρ (s) < 1.0,
whether ΔΔΔ(s) needs to be unchanged, reduced or
expanded depends on how close ρ (s) is away from
0.0 or 1.0; ρ (s) 	 1.0 also means a poor approxi-
mation precision, however, a favorable search di-
rection has been achieved. Generally, we can se-
lect many sets of constants to reduce or expand
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the trust region radius vector. In this research, the
following updating procedure is used (Rodriguez
and Renaud, 1998):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔΔΔ(s+1) = 0.5ΔΔΔ(s),

X(s+1) = X(s) if ρ (s) ≤ 0.0

ΔΔΔ(s+1) = 0.5ΔΔΔ(s),

X(s+1) = X(s)∗ if 0.0<ρ (s) ≤ 0.25

ΔΔΔ(s+1) = ΔΔΔ(s),

X(s+1) = X(s)∗ if 0.25 < ρ (s) ≤ 0.75

ΔΔΔ(s+1) = 2.0ΔΔΔ(s),

X(s+1) = X(s)∗ if ρ (s) > 0.75, and X(s)∗ is

on the boundary of the

current design space

ΔΔΔ(s+1) = ΔΔΔ(s),

X(s+1) = X(s)∗ if ρ (s) > 0.75, and X(s)∗ is

inside the current design

space

(21)

The flowchart of the uncertain optimization based
on the trust region management is shown in Fig.
4. The whole optimization process consists of
a sequence of iterates. At each iterate, an un-
certain sub-optimization problem based on the
NINP method and the approximation models is
performed, and a predicative optimal design vec-
tor can be obtained. Then according to the value
of the reliability index, the design space at the
next iterate can be determined. The iterative pro-
cess will be terminated until a stopping criterion
is satisfied. In this paper, the maximum iterate
number is used as stopping criterion.

As shown in Eq. (20), when computing the reli-
ability index ρ (s), the values of the actual penalty
function and the approximate penalty function at
X(s) and X(s)∗ need to been known. Being dif-
ferent from the deterministic optimization prob-
lems, here to compute the actual and approxi-
mate penalty functions will involve several opti-
mization processes which are employed to com-
pute the intervals of the objective function and
constraints. Obviously, the approximate penalty

function can be computed very efficiently by call-
ing the approximation models based on Eq. (14).
However, if we use the optimization processes
based on the actual simulation models to compute
the actual penalty function, the computation ef-
ficiency will be very low. Thus we provide an
efficient approach to compute the actual penalty
function fp

(
x(s)) and fp

(
x(s)∗). Firstly, a set of

sampling points of U are selected through LHD
in the uncertainty space. Inputting each sampling
point of U into the actual simulation models in
which X is specified as x(s) or x(s)∗, several sets
of samples can be obtained to construct the ap-
proximation models of the objective function and
constraints using the RS. All of the approxima-
tion models are explicit functions of the uncertain
vector U. In the investigated optimization prob-
lem Eq. (1), the uncertainty level, namely the in-
terval of each uncertain parameter is assumed to
be small, thus these obtained approximation mod-
els which are defined within the small uncertainty
space can be ensured to be precise. Generally,
we can construct an infinitely precise approxima-
tion model using quadratic polynomial RS within
an infinitely small uncertainty space. Thus as
long as the uncertainty space is small enough, the
enough precise approximation models can be ob-
tained for the objective function and constraints.
Fortunately, this condition can commonly be sat-
isfied in practical applications as the uncertainty
of the parameters always behaves a small distur-
bance around the nominal values. Then based on
these approximation models, the intervals of the
objective function and constraints x(s) or x(s)∗ can
be obtained very precisely using also the IP-GA,
and whereby the penalty function can be also ob-
tained with a very fine precision. Thus in a rig-
orous sense, this obtained penalty function is still
an approximate value. Because it can be guaran-
teed to be very precise, it is addressed as “actual
penalty function” to distinguish from the approx-
imate penalty function.

4.4 Robustness optimization based on the ap-
proximation management model

Through the above uncertain optimization based
on the approximation management model, an op-
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timal possibility degree Pm can be obtained for
the uncertain objective function. If Pm = 1.0, a
robustness criterion should be considered as ad-
dressed in section 3.3. Then a robustness op-
timization can be performed based on the ap-
proximation management model. The optimiza-
tion process also consists of a sequence of sub-
optimization problems based on the approxima-
tion models, and at the sth iterate a following sub-
optimization problem can be formulated based on
Eq. (10):

min
X

F̃w

subject to

P
(
F̃I ≥ GI) = 1.0

P
(
C̃I

i ≤V I
i

) ≥ λi, i = 1,2, . . ., l (22)

max
[
Xl,X(s)−ΔΔΔ(s)

]
≤ X ≤ min

[
Xr,X(s) +ΔΔΔ(s)

]

where

F̃w =
f̃ R(X)− f̃ L(X)

2

=
max
U∈Γ

f̃ (X,U)−min
U∈Γ

f̃ (X,U)

2
F̃ I =

[
f̃ L(X), f̃ R(X)

]
=

[
min
U∈Γ

f̃ (X,U),max
U∈Γ

f̃ (X,U)
]

C̃I
i =

[
g̃L

i (X), g̃R
i (X)

]

=
[

min
U∈Γ

g̃i(X,U),max
U∈Γ

g̃i(X,U)
]

(23)

where F̃w is the radius of the approximate objec-
tive function. Then based on Eq. (12), Eq. (22)
can be transformed into the following optimiza-
tion problem in terms of an approximate penalty
function f̃ ′p:

min
X

f̃ ′p (X) = F̃w +σ
l

∑
i=1

ϕ
(
P

(
C̃I

i ≤V I
i

)−λi
)

+σ
(
P

(
F̃I ≥ GI)−1.0

)2

max
[
Xl,X(s)−ΔΔΔ(s)

]
≤ X ≤ min

[
Xr,X(s) +ΔΔΔ(s)

]
(24)

The above sequential optimization problem can
be solved by nearly the same way as the problem
Eq. (13), namely, using the RS to construct the
approximation models of the objective function
and constraints and obtaining the predicative de-
sign based on the nesting optimization of IP-GA
at each iterate, and then the trust region method is
used to make the optimization sequence converge
at an optimal design vector.

5 Numerical examples and discussion

5.1 Benchmark test

A benchmark test is presented as follows:

max
X

f [X,U] = U1(X1 +2)2 +U3
2 (X2 +1)+X2

3

subject to

U2
1 (X1 +X3)+U2 (X2 −4)2 ≤ V I (25)

2 ≤ X1 ≤ 14, 2 ≤ X2 ≤ 14, 2 ≤ X3 ≤ 14

The performance interval GI is specified as
[45,68] for the uncertain objective function. The
nominal values of the uncertain parameters U1

and U2 are both 1.0.

The population size and crossover probability are
set to 5 and 0.5 for the IP-GA, respectively. The
maximum generation number is set to 200 and
100 for the outer layer IP-GA and inner layer IP-
GA, respectively. The maximum iterate number
is specified as 10 for the optimization sequence.
At each iterate, the uncertain objective function
and constraint both need 30 samples to create their
approximation models, and 8 samples to compute
the actual penalty function. The possibility degree
level λ of the constraint and the penalty factor σ
are set to 0.8 and 1000, respectively. In the fol-
lowing text, the above problem will be analyzed
based on three cases.

5.1.1 Case I

In this case, the uncertainty level is set to ±10%
off from the nominal values for U1 and U2, namely
U1 ∈ [0.9,1.1] and U2 ∈ [0.9,1.1]. The interval V I

in the constraint is specified as V I = [8,9]. The
original design vector X(1) and the original trust
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Table 1: Optimization results of case I

Iterate s X(s) Penalty function fp
(
X(s)) Precise optimum X

(conventional method)
1 (8.00, 8.00, 8.00) -639.00

(5.45, 4.06, 2.05)

2 (3.49, 3.88, 2.36) 0.00
3 (3.87, 4.21, 3.29) 0.24
4 (4.79, 3.80, 2.39) 0.51
5 (4.79, 3.80, 2.39) 0.51
6 (4.89, 4.55, 2.24) 0.58
7 (4.94, 4.39, 2.20) 0.59
8 (5.44, 4.08, 2.05) 0.84
9 (5.44, 4.08, 2.05) 0.84

10
(5.44, 4.08, 2.07) 0.84
Possibility degree of the uncertain objective function: 0.84
Possibility degree of the uncertain constraint: 0.80
Deviations from the precise optimum: (0.2%, 0.5%, 1.0%)

region radius vector are set to (8.00,8.00,8.00)
and (6.00,6.00,6.00), respectively. The opti-
mization results at all of the iterates are listed in
Table 1. Additionally, we also use a conventional
optimization method illustrated in Fig. 2 to ob-
tain an optimum, in which the outer layer and in-
ner layer optimization operators are both IP-GA.
This optimum is regarded as a precise one to test
the precision of the present method, and it is also
listed in Table 1. It can be found that the penalty
function and whereby the design vector become
better and better as the iterate proceeds. At the
8th iterate, the penalty function converges at a sta-
tionary value 0.84. After 10 iterates, an optimal
design vector X(10) = (5.44,4.08,2.07) is finally
obtained which is very close to the precise opti-
mum, and the maximum deviation from the pre-
cise optimum is only 1.0% which occurs at X3. At
this optimal design vector, the possibility degree
of the uncertain objective function is 0.84, and the
possibilitydegree of the uncertain constraint is 0.8
which is just equal to the possibility degree level.
The convergence curve is shown in Fig. 5, and it
can be found that the present method has a high
convergence velocity.

In this numerical example, the objective function
in Eq. (25) is assumed as a computation-intensive
simulation model, and the evaluation number of
the objective function is our concern. At each it-
erate except the first one, 38 evaluations of the
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Figure 5: Convergence curve of case I

simulation model are needed among which 30
ones are used to construct the approximation op-
timization problem and 8 ones are used to cal-
culate the actual penalty function fp

(
X(s)∗), and

the actual penalty function fp
(
X(s)) can be inher-

ited from the preceding iterate. At the first iterate,
46 evaluations are needed, as 8 more evaluations
are required to compute the actual penalty func-
tion fp

(
X(1)). Thus for 10 iterates, our method

needs a total of 388 evaluations. On the other
hand, using the conventional method based on the
nesting optimization of IP-GA, we need a total of
1.0×106 evaluations. Obviously, comparing with
the conventional method, the present method has
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a much higher optimization efficiency.

5.1.2 Case II

In this case, the uncertainty level is also set to
±10% off from the nominal values of the uncer-
tain parameters, while the interval V I in the con-
straint is specified as V I = [8,11]. The original
design vector and trust region radius vector are
set as same as case I. The optimization results at
each iterate are listed in Table 2, and the conver-
gence curve is shown in Fig. 6. It is found that
at the 9th iterate the penalty function converges
at a maximum value 1.0. At the optimal design
vector (6.29,4.04,2.00), the possibility degrees
of the uncertain objective function and constraint
are 1.00 and 0.81, respectively. Thus as analyzed
in section 4.4, a robustness optimization based on
the approximation management model is then per-
formed for the numerical example. The corre-
sponding optimization results are listed in Table
3. An optimal design vector (5.89,3.92,2.35) is
obtained and the corresponding penalty function
is 7.84. At this optimum, the radius of the uncer-
tain objective function is 7.84. The possibility de-
grees of the uncertain objective function and con-
straint are 1.00 and 0.80, respectively, and they
both satisfy the requirements in Eq. (10), namely
the possibility degree of the objective function is
equal to 1.0 and the one of the constraint is not
less than the possibility degree level. The con-
vergence curve is shown in Fig. 7, and it can be
found that in the beginning phase a relatively fine
design vector can be obtained very quickly and as
the optimization proceeds the convergence veloc-
ity becomes relatively slow.

5.1.3 Case III

As mentioned before, the present method is based
on a precondition that the uncertainty level is rel-
atively small. Here the influences of the uncer-
tainty levels on the optimization results will be
investigated. In this case, the uncertainty level is
set to ±30% off from the nominal values for U1

and U2, namely U1 ∈ [0.7,1.3] and U2 ∈ [0.7,1.3].
The interval V I is set to V I = [8,9]. The orig-
inal design vector and trust region radius vector
are set as same as case I. The optimization results
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Figure 6: Convergence curve of case II (possibil-
ity degree optimization)
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Figure 7: Convergence curve of case II (robust-
ness optimization)
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Figure 8: Convergence curve of case III
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Table 2: Optimization results of case II (possibility degree optimization)

Iterate s X(s) Penalty function fp
(
X(s))

1 (8.00, 8.00, 8.00) -639.00
2 (4.59, 3.92, 2.21) 0.37
3 (5.65, 3.99, 2.29) 0.92
4 (5.65, 3.99, 2.29) 0.92
5 (5.65, 4.27, 2.16) 0.93
6 (5.65, 4.46, 2.26) 0.94
7 (6.02, 4.41, 2.00) 0.99
8 (6.02, 4.41, 2.00) 0.99
9 (6.02, 4.10, 2.21) 1.00

10
(6.20, 4.04, 2.00) 1.00
Possibility degree of the uncertain objective function: 1.00
Possibility degree of the uncertain constraint: 0.81

Table 3: Optimization results of case II (robustness optimization)

Iterate s X(s) Penalty function f ′p
(
X(s))

1 (8.00, 8.00, 8.00) 652.71
2 (4.96, 4.26, 2.20) 171.75
3 (5.50, 4.25, 2.00) 25.74
4 (5.56, 3.81, 2.28) 16.23
5 (5.57, 3.64, 2.40) 13.68
6 (5.58, 3.91, 2.38) 12.63
7 (5.58, 3.91, 2.38) 12.63
8 5.96, 3.54, 2.00) 8.07
9 5.96, 3.54, 2.00) 8.07

10
(5.89, 3.92, 2.35) 7.84
Radius of the uncertain objective function: 7.84
Possibility degree of the uncertain objective function: 1.00
Possibility degree of the uncertain constraint: 0.80

are listed in Table 4, and the convergence curve
is shown in Fig. 8. It can be found that at only
the 4th iterate the penalty function converges at a
stationary value 0.10, and the corresponding opti-
mal design vector is (3.57,4.19,2.14). Compar-
ing with the precise optimum (3.47,4.26,2.34)
from the conventional method, the maximum de-
viation of this optimal design vector reaches 8.5%
which occurs at X3. As analyzed in case I, for un-
certainty level ±10% the maximum deviation of
the optimization results from the present method
and the conventional optimization method is only
1.0%. Thus, with the increasing of the uncertainty
level, the optimization precision of the present
method declines. This phenomenon can be ex-

plained from two aspects. Firstly, for a larger
uncertainty level, the intervals of the uncertain
parameters are wider and hence the uncertainty
space is larger. Thus the precision of the approx-
imation models at each iterate will be worse, as
the approximation models are created within the
uncertainty space and current design space. Fur-
thermore, the uncertainty space is not updated in
the sequential optimization, and hence even for a
very small design space a fine approximation pre-
cision is still difficult to achieve for a relatively
large uncertainty space. Secondly, when com-
puting the actual penalty function, some approxi-
mation models are also created within the uncer-
tainty space. Thus for a larger uncertainty level,
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Table 4: Optimization results of case III

Iterate s X(s) Penalty function fp
(
X(s)) Precise optimum X

(conventional method)
1 (8.00, 8.00, 8.00) -639.00

(3.47, 4.26, 2.34)

2 (2.00, 4.24, 2.00) 0.00
3 (2.74, 3.80, 2.55) 0.00
4 (3.57, 4.19, 2.14) 0.10
5 (3.57, 4.19, 2.14) 0.10
6 (3.57, 4.19, 2.14) 0.10
7 (3.57, 4.19, 2.14) 0.10
8 (3.57, 4.19, 2.14) 0.10
9 (3.57, 4.19, 2.14) 0.10

10
(3.57, 4.19, 2.14) 0.10
Possibility degree of the uncertain objective function: 0.10
Possibility degree of the uncertain constraint: 0.83
Deviations from the precise optimum: (2.9%, 1.6%, 8.5%)

these approximation models and whereby the ac-
tual penalty function have a larger error. Then the
precision of the reliability index will be also de-
creased and therefore the updating of the design
space will be influenced. As a result, to ensure
the optimization precision of the present method,
the uncertainty level should be guaranteed to be
relatively small.

5.2 Application

Thin-walled beams connected by spot welding
are major structures of an automotive body for
load-support and energy-absorption. Optimizing
the thin-walled beam structures to improve their
crashworthiness performance is very important to
the security design of vehicles. The closed-hat
beam is a kind of typical thin-walled beam struc-
ture in automotive body, and in this application
the optimization of a closed-hat beam impacting
a rigid wall with an initial velocity of 10 m/s is
investigated. As shown in Fig. 9, the closed-hat
beam is formed by a hat beam and a web plate
which are connected through some uniformly dis-
tributed spot-welding points along the two rims
of the hat beam. The time duration of the im-
pacting process is 20ms. Based on the refer-
ence (Kurtaran et al., 2002), the closed-hat beam
will be optimized to maximize the absorbed en-
ergy subjected to an axial impact force (average
normal impact force on the rigid wall). The re-

search (Wang, 2002) indicated that the plate thick-
ness t, round radius R of the hat beam and space
length d of each two neighboring spot-welding
points have prominent effects on the crashworthi-
ness performance of a closed-hat beam, and hence
these three parameters are employed as design
variables in our study. The finite element method
(FEM) is used to simulate the impacting process,
and an elasto-plasticity material model of bilin-
ear kinematic hardening is used for the closed-
hat beam, as given in Table 5. The nominal val-
ues of the yield stress σs and tangent Modulus Et

are 310Mpa and 763Mpa, respectively. Due to
the measuring and manufacturing errors, σs and
Et are treated as uncertain parameters, and the
uncertainty level is ±5% off from their nominal
values, namely σs ∈ [294.5Mpa,325.5Mpa] and
Et ∈ [724.85Mpa,801.15Mpa]. As a result, a fol-
lowing optimization problem can be formulated:

max
t,R,d

fe(t,R,d,σs,Et)

subject to

g f (t,R,d,σs,Et) ≤ [65KN,70KN]
σs ∈ [294.5Mpa,325.5Mpa] ,
Et ∈ [724.85Mpa,801.15Mpa]
0.5mm ≤ t ≤ 2.5mm,

1mm ≤ R ≤ 8mm,

10mm ≤ d ≤ 60mm (26)
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10 m/s 

Rigid wall 

Web plate 

Hat plate

Figure 9: A closed-hat beam impacting the rigid wall and its cross-sectional dimensions (mm)

Table 5: Material properties of the closed-hat beam

Young’s
Modulus E

Poisson’s
ratio ν

Density ρ Yield stress σs Tangent Modulus Et

2.0×105Mpa 0.27 7.85×10−3Kg/mm-3 310Mpa 763Mpa

Figure 10: FEM mesh and a possible deformation of the closed-hat beam impacting a rigid wall
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where the objective function fe and constraint g f

represent the absorbed energy (i.e. internal en-
ergy) of the closed-hat beam and the axial impact
force, respectively, and they are both obtained
through the FEM.

The FEM simulation is carried out on the
commercial software ANSYS/LS-DYNA. The
Belytschko-Tsay shell element is used to create
the FEM mesh of the impacting system, and the
total number of the elements is 4200. A con-
centrated mass as weight as 250Kg is attached to
the end of the closed-hat beam in order to supply
enough crushing energy. The FEM mesh and a
possible deformation of the impacting system are
shown in Fig. 10.
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Figure 11: Convergence curve of the close-hat
beam optimization

Firstly, the performance interval GI
e of the objec-

tive function is set to [8KJ,10KJ], namely we will
maximize the possibility degree that the interval
of the absorbed energy of the closed-hat beam is
larger than [8KJ,10KJ]. The possibility degree
level λ of the constraint g f and the penalty factor
σ are set to 0.8 and 1000, respectively. The orig-
inal design vector is (1.5mm,4.5mm,35.0mm),
and the original trust region radius vector is
(1.0mm,3.5mm,25.0mm). The maximum iterate
number is also set to 10. At each iterate, 30 sam-
ples are used to create the approximation mod-
els for the uncertain objective function and con-
straint, and 8 samples are used for calculation
of the actual penalty function. The optimization

results at all iterates are listed in Table 6, and
the corresponding convergence curve is shown in
Fig. 11. It can be found that the convergence
velocity of the iterative process is very high, as
at only the 5th iterate a stationary design vector
(2.10mm,2.45mm,35.41mm) is achieved with a
penalty function value 0.74. At this design vector,
the possibility degree of the uncertain constraint is
0.83 which is larger than the predetermined pos-
sibility degree level 0.8.

Secondly, the performance interval GI
e is set to

[7KJ,8KJ] which is a lower performance require-
ment for the objective function than the preceding
one. A new uncertain optimization based on this
GI

e is performed to maximize the possibility de-
gree of the uncertain objective function, and the
optimization results are listed in Table 7. Here
only three iterates are provided, as at the third it-
erate the possibility degree of the uncertain ob-
jective function reaches 1.00. Thus according
to the aforementioned analysis, a robustness cri-
terion is introduced, and an uncertain optimiza-
tion is then carried out to minimize the radius
of the uncertain objective function. In the op-
timization, the penalty factor σ is set to 10000,
and the other concerned parameters are kept same.
The optimization results are listed in Table 8.
The design vector converges at a stationary point
(2.00mm,4.50mm,33.20mm) at only the 4th it-
erate, and the corresponding penalty function is
0.17. At this design vector, the possibility de-
grees of the uncertain objective function and con-
straint are both 1.00 which is just what we ex-
pect. The radius of the objective function is 0.17,
namely under this optimal design vector, the un-
certainty of the absorbed energy of the closed-hat
beam caused by the uncertain plasticity parame-
ters is only 0.17×2 = 0.34KJ. Thus in practical
application, this closed-hat beam can be ensured
to possess a robust crashworthiness performance.

6 Conclusion

In this paper, an efficient uncertain optimiza-
tion method is developed by combining a new
NINP method with an approximation manage-
ment model. Intervals are used to model the pa-
rameter uncertainty, and hence the problems with
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Table 6: Optimization results of the closed-hat beam (GI
e = [8KJ,10KJ])

Iterate s X(s) (mm) Penalty function fp
(
X(s))

1 (1.50, 4.50, 35.00) 0.00
2 (2.06, 3.66, 35.02) 0.35
3 (2.06, 3.66, 35.02) 0.35
4 (2.09, 3.11, 35.40) 0.64
5 (2.10, 2.45, 35.41) 0.74
6 (2.10, 2.45, 35.41) 0.74
7 (2.10, 2.45, 35.41) 0.74
8 (2.10, 2.45, 35.41) 0.74
9 (2.10, 2.45, 35.41) 0.74

10
(2.10, 2.45, 35.41) 0.74
Possibility degree of the objective function: 0.74
Possibility degree of the constraint: 0.83

Table 7: Optimization results of the closed-hat beam (GI
e = [7KJ,8KJ], possibility degree optimization)

Iterate s X(s) (mm) Penalty function fp
(
X(s)

)
1 (1.50, 4.50, 35.00) 0.39
2 (1.50, 4.50, 35.00) 0.39

3
(1.70, 3.60, 28.75) 1.00
Possibility degree of the objective function: 1.00
Possibility degree of the constraint: 1.00

Table 8: Optimization results of the closed-hat beam (GI
e = [7KJ,8KJ], robustness optimization)

Iterate s X(s) (mm) Penalty function f ′p
(
X(s))

1 (1.50, 4.50, 35.00) 10000.26
2 (2.02, 6.59,20.80) 0.20
3 (2.02, 6.59, 20.80) 0.20
4 (2.00, 4.50, 33.20) 0.17
5 (2.00, 4.50, 33.20) 0.17
6 (2.00, 4.50, 33.20) 0.17
7 (2.00, 4.50, 33.20) 0.17
8 (2.00, 4.50, 33.20) 0.17
9 (2.00, 4.50, 33.20) 0.17

10
(2.00, 4.50, 33.20) 0.17
Radius of the objective function: 0.17
Possibility degree of the objective function: 1.00
Possibility degree of the constraint: 1.00
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a small amount of information on the uncertainty
can be treated effectively. In the suggested NINP
method, the uncertain objective function is trans-
formed into a deterministic single-objective op-
timization problem, instead of a multi-objective
optimization as usually done in the other NINP
methods. Additionally, the possibility degree of
interval is used as a mathematical tool to deal
with not only the uncertain objective function but
also the uncertain constraints. Thus a uniform
treatment form has been created for the uncer-
tain objective function and constraints. Therefore,
the uncertain optimization can be treated and per-
formed more easily and conveniently. An approx-
imation management model based on approxima-
tion models and trust region method is introduced
into the NINP, and the nesting optimization of
the actual simulation models is changed into the
iterative nesting optimization of the explicit ap-
proximation models. Thus the optimization effi-
ciency can be improved greatly. The optimiza-
tion results of the benchmark test indicate that
the present method has a fine convergence per-
formance and high optimization efficiency. Ad-
ditionally, through investigating different uncer-
tainty levels, the present method is found to have a
fine precision for a small uncertainty level. How-
ever, for a larger uncertainty level, the precision
of the present method will decline. Thus to obtain
an effective design, the uncertainty level of the pa-
rameters should be ensured to be relatively small.
The present method is also applied to the crash-
worthiness design of a closed-hat beam with un-
certain plasticity parameters. The fine optimiza-
tion results exhibit the applicability of the present
method to practical engineering problems.
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