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Modeling of Degraded Composite Beam Due to Moisture Absorption For
Wave Based Detection.

Shamsh Tabrez, Mira Mitra and S. Gopalakrishnan1

Abstract: In this paper, wave propagation is
studied in degraded composite beam due to mois-
ture absorption. The obtained wave responses
are then used for diagnosis of the degraded zone.
Moisture absorption causes an irreversible hy-
grothermal deterioration of the material. The
change in temperature and moisture absorption
changes the mechanical properties. Thus this
affects the structure in dimensional stability as
well as material degradation due to reduction
in mechanical properties. Here, the compos-
ite beam is modeled as Timoshenko beam us-
ing wavelet based spectral finite element (WSFE)
method. The WSFE technique is especially tai-
lored for simulation of wave propagation. It in-
volves Daubechies scaling function approxima-
tion in time and spectral finite element approach.
The simulated wave responses are then used as
surrogate experimental results to predict degrada-
tion using a measure called damage force indica-
tor (DFI). Numerical experiments are presented
for moisture absorbed composite beam due to
modulated sinusoidal excitation. The responses
are studied for different environmental conditions
in term of relative humidity and at a temperature.

Keyword: Composite; moisture absorption;
material degradation; damage detection; wave
propagation; spectral finite element

1 Introduction

In the recent years there has been tremendous
growth in composite technology as well as it’s
uses due to it’s excellent strength to weight ra-
tio, tailor-ability, thermal insulation to name few.
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These days it is extensively used in automobile
and aerospace industries. Besides the advantages
mentioned it has some inherent disadvantages
too. Here, we will discuss about the degradation
in material property due to moisture absorption.
When composite material is exposed to humid at-
mosphere, many polymeric matrix composites ab-
sorb moisture by instantaneous surface absorption
followed by diffusion through the matrix. Mois-
ture will enter the interface of fiber and matrix
due to the capillary action [Jihua and Maosheng
(2004)]. The polymer matrix and the interface
between the matrix and fiber can be degraded by
hydrolysis reaction of unsaturated groups within
the resin [Kootsooks and Mouritz (2004); Vera
and Vazquez (2004)]. Debonding may occur
at fiber/matrix interface [Imielinska and Guillau-
mat (2004)]. Composite material degradation
occurs as cracks of the matrix material or/and
fiber/matrix debonding, resulting from differen-
tial swelling of fiber and matrix. The weaken-
ing of bonding between fiber and matrix and soft-
ening of matrix material are also the reasons be-
hind decrease in composite strength. In order to
utilize the full potential of composite materials
for the structural applications, the moisture con-
tent of composite material has to be well defined
in advance. Few researchers have done experi-
ments in standard laboratory conditions to estab-
lish the effects of moisture concentration on the
tension modulus of composite material [Tsai and
Hahn (1980)]. The hygrothermal deformation of
an unidirectional composite is much higher in the
transverse direction than in the longitudinal direc-
tion. Such difference in deformation in two direc-
tions induces residual stresses in composite lam-
inates. This is because the multi directionality of
fiber orientation resists free deformations. Also,
the change in temperature and moisture absorp-
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tion changes the mechanical properties. This af-
fects the structure in dimensional stability as well
as material degradation due to reduction in me-
chanical properties. The physical effect of mois-
ture absorption is the reduction in glass transition
temperature Tg of the resin. At room temperature,
the performance of resin may not change with re-
duction in Tg but at elevated temperature proper-
ties are severely affected.

With the composite material getting degraded af-
ter moisture absorption, i.e the tension modulus
first slightly increases with relative humidity (RH)
up to 50 percent of RH and then decreases with
further increases in RH. Thus, stiffness of the
structure varies with RH. This reduction in stiff-
ness affect the performance of the structure. This
problem is very important when composite is used
for fabrication of aircraft structures. Structural
design is primarily guided by stiffness due to the
aeroelastic phenomenon. Presently, this degrada-
tion in stiffness in due course of time is taken care
by over design of structure, which results in heav-
ier components. This problem of over design can
be tackled by periodic structural health monitor-
ing to check the stiffness of the structure. In this
paper we use wavelet based spectral finite element
to capture the effects of material degradation on
wave response. Moisture absorption and hence
the variation in tension modulus of composite ma-
terial is very critically dependent on the atmo-
sphere on which the composite material is sub-
jected to, and hence, the laboratory test of coupon
alone will not not be sufficient for the health mon-
itoring of actual composite structure. Hence, one
needs to resort to some kind of non-destructive
evaluation (NDE) techniques.

In this paper, wave based technique is used for
detection of degraded zone in moisture absorbed
beam. A proper understanding of the effects of
such material degradation on the wave propaga-
tion characteristics is required prior to their ap-
plication to damage detections. Here, first the
moisture absorbed composite beam is modeled as
Timoshenko beam with three degrees of freedom
(dofs) namely, axial, transverse and rotation. The
modeling of composite structures for wave prop-
agation analysis has been presented by Murthy,

Gopalakrishnan, and Nair (2007) and Han, Liu,
and Li (2004). In the present paper, the model-
ing is done using wavelet based spectral finite ele-
ment (WSFE) method [Mitra and Gopalakrishnan
(2006a)] which is specially suited for wave prop-
agation analysis. In WSFE, the governing partial
differential equations are reduced to ODEs using
compactly supported Daubechies scaling function
for time approximation. These ODEs are solved
exactly to derive the shape functions which gives
the elemental dynamic stiffness matrix. The ele-
mental matrix can be assembled similar to con-
ventional finite element(FE) approach to model
more complex structures. The method is compu-
tationally very efficient as compared to conven-
tional finite element (FE) method, particulary for
wave problems where the later method proves to
be computationally prohibitive. In addition, un-
like the prevalent Fourier transform based spectral
finite element (FSFE) method, WSFE can accu-
rately model finite length structures.

In wave propagation analysis, any impedance
mismatch such as presence of boundary, de-
fects or change in stiffness results in additional
waves due to reflection. By capturing these ad-
ditional reflections, one can identify the presence
of damage/discontinuty. Verbis, Tsinopoulos, and
Polyzos (2002), Smojver and Soric (2006) and
Han, Ingber, and Schreyer (2006) have reported
wave propagation in damaged composite struc-
tures. However, when the change in stiffness or
defect size is very small, the change in velocity
is very small and hence, the amplitude of these
reflected wave will be very small and in general
not interpretable visually from the response plot.
For these circumstances, damage force indicator
(DFI) [Schulz, Naser, Pai., and Chung (1998)]
appears as a helpful measure. In brief, DFI is
a force measure, which calculates the difference
between the damaged and undamaged responses
multiplied with the stiffness matrix of the un-
damaged structure. The value of DFI is max-
imum between the two nodes where the dam-
age exits. Apart from this, the value of the DFI
is a relative indicator of the extent of damage.
References [Kumar, Mahapatra, and Gopalakrish-
nan (2004); Nag, Mahapatra, and Gopalakrish-
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nan (2002)] explain the derivation of DFI in fre-
quency domain in the context of FSFE modeling.
In the present work, WSFE is used to model the
degraded composite beam. As mentioned earlier,
this numerical technique can easily model finite
length waveguide and thus accurately simulate the
wave response in time domain unlike FSFE. Here,
DFI is calculated from the time domain responses.
The method is described in detail in the later part
of the paper.

The paper is organized as follows. In section 2,
the wavelet transform and the spectral finite el-
ement formulation is explained for a composite
Timoshenko beam with axial, transverse and rota-
tional degrees of freedom. The next section deals
with the derivation of damage force indicator, fol-
lowed with a section on modeling of moisture ab-
sorbed degraded composite beam. Section 5 is
on numerical experiments performed. Here, first
wave propagation in moisture absorbed compos-
ite beam is studied for different extent of mois-
ture absorption and locations of the degraded re-
gion. Next, these simulated responses are used
as a replacement for experimental results to in-
versely detect the position and extend of degra-
dation using damage force indicator. At the end
conclusions are discussed.

2 Mathematical Modeling

2.1 Daubechies Compactly Supported
Wavelets

In this section, a concise review of orthogonal ba-
sis of Daubechies wavelets [Daubechis (1992)] is
provided. Wavelets, ψ j,k(t) forms compactly sup-
ported orthonormal basis for L2(R). The wavelets
and associated scaling functions ϕ j,k(t) are ob-
tained by translation and dilation of single func-
tions ψ(t) and ϕ(t) respectively.

ψ j,k(t) = 2 j/2ψ(2 jt −k), j,k ∈ Z (1)

ϕ j,k(t) = 2 j/2ϕ(2 jt −k), j,k ∈ Z (2)

The scaling functions ϕ(t) are derived from the
dilation or scaling equation,

ϕ(t) = ∑
k

akϕ(2t −k) (3)

and the wavelet function ψ(t) is obtained as

ψ(t) = ∑
k

(−1)ka1−kϕ(2t −k) (4)

ak are the filter coefficients and they are fixed for
specific wavelet or scaling function basis. For
compactly supported wavelets only a finite num-
ber of ak are nonzero. The filter coefficients ak

are derived by imposing certain constraints on the
scaling functions.

Let Pj( f )(t) be the approximation of a function
f (t) in L2(R) using ϕ j,k(t) as basis, at a certain
level (resolution) j, then

Pj( f )(t) = ∑
k

c j,kϕ j,k(t), k ∈ Z (5)

2.2 Reduction of wave equations to ODEs

The governing differential wave equations for
composite Timoshenko beam are obtained from
those derived by Mitra and Gopalakrishnan
(2006b) for higher order composite beam.

I0
∂ 2u
∂ t2 − I1

∂ 2φ
∂ t2 −A11

∂ 2u
∂x2 +B11

∂ 2φ
∂x2 = 0 (6)

I0
∂ 2w
∂ t2 −A55

(
∂ 2w
∂x2 − ∂φ

∂x

)
= 0 (7)

I2
∂ 2φ
∂ t2 − I1

∂ 2u
∂ t2 −A55

(
∂w
∂x

−φ
)

+B11
∂ 2u
∂x2 (8)

−D11
∂ 2φ
∂x2 = 0 (9)

u(x, t), w(x, t) and φ (x, t) are the axial, flex-
ural and shear displacements respectively (see
Fig. 1(a)). The stiffness coefficients are functions
of ply properties, orientations etc and are obtained
by integrating over the beam cross section as

[Ai j, Bi j, Di j] = ∑
∫ zi+1

zi

Qi j[1, z, z2]bdz (10)

where, Qi j are the transformed stiffness coeffi-
cients of each ply. zi and zi+1 are the thickness
coordinate of the ith layer and b is the correspond-
ing width. Similarly, the inertial constants are ob-
tained as

[I0, I1, I2] = ∑
∫ zi+1

zi

ρ [1, z, z2]bdz (11)
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Figure 1: (a) Beam cross section and the displacements (b) Composite beam element with nodal displace-
ments and forces

where, ρ is the mass density. The force boundary
conditions associated with the governing differen-
tial equations are

A11
∂u
∂x

−B11
∂φ
∂x

= P (12)

A55
∂w
∂x

−A55φ = V (13)

−B11
∂u
∂x

+D11
∂φ
∂x

= M (14)

where, P(x, t), V (x, t) and M(x, t) are the axial,
transverse forces and moment respectively.

The first step of formulation of WSFE is the re-
duction of the governing differential wave equa-
tions (Eqns 6 to 9) to ODEs using Daubechies
scaling functions for approximation in time. Let
u(x, t) be discretized at n points in the time win-
dow [0 t f ]. Let τ = 0, 1, . . ., n−1 be the sampling
points, then

t = �tτ (15)

where, �t is the time interval between two sam-
pling points. The function u(x, t) can be approx-

imated by scaling function ϕ(τ) at an arbitrary
scale as

u(x, t) = u(x,τ) = ∑
k

uk(x)ϕ(τ −k), k ∈ Z

(16)

where, uk(x) (referred as uk hereafter) are the ap-
proximation coefficient at a certain spatial dimen-
sion x. The other displacements w(x, t), φ (x, t)
can be transformed similarly and Eqn. 6 can be
written as

I0

�t2 ∑
k

ukϕ ′′(τ −k)− I1

�t2 ∑
k

φkϕ ′′(τ −k)

+∑
k

(
−A11

d2uk

dx2 +B11
d2φk

dx2

)
ϕ(τ −k) = 0

(17)

Taking inner product on both sides of Eqns. 17
with the translates of scaling functions ϕ(τ − j),
where j = 0, 1, . . .,n−1 and using their orthogo-
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nal properties, we get n simultaneous ODEs as,

1

�t2

j+N−2

∑
k= j−N+2

Ω2
j−k(I0uk − I1φk)−A11

d2u j

dx2

+B11
d2φ j

dx2 = 0 j = 0, 1, . . . ,n−1 (18)

where, N is the order of the Daubechies wavelet
and Ω2

j−k are the connection coefficients defined
as

Ω2
j−k =

∫
ϕ ′′(τ −k)ϕ(τ − j)dτ (19)

Similarly, for first order derivative Ω1
j−k are de-

fined as

Ω1
j−k =

∫
ϕ ′(τ −k)ϕ(τ − j)dτ (20)

For compactly supported wavelets, Ω1
j−k, Ω2

j−k
are nonzero only in the interval k = j−N + 2 to
k = j + N −2. The details for evaluation of con-
nection coefficients for different orders of deriva-
tive is given by [Beylkin (1992)].

It can be observed from the ODEs given by
Eqn. 18 that certain coefficients u j near the vicin-
ity of the boundaries ( j = 0 and j = n − 1)
lie outside the time window [0 t f ] defined by
j = 0, 1, . . .,n − 1. This coefficients must be
treated properly for finite domain analysis. Sev-
eral approaches like capacitance matrix meth-
ods, penalty function methods for treating bound-
aries are reported in the literature. In this paper,
a wavelet based extrapolation scheme [Williams
and Amaratunga (1997)] is implemented for solu-
tion of boundary value problems. This approach
allows treatment of finite length data and uses
polynomial to extrapolate the coefficients lying
outside the finite domain either from interior co-
efficients or initial/boundary values. The method
is particularly suitable for approximation in time
for the ease to impose initial values. The above
method converts the ODEs given by Eqns 18 to a
set of coupled ODEs given as

[
Γ1]2 (I0{u j}− I1{φ j})−A11

{
d2u j

dx2

}
+ B11

{
d2φ j

dx2

}
= 0 (21)

where Γ1 is the first order connection coefficient
matrix obtained after using the wavelet extrapola-
tion technique. It should be mentioned here that
though the connection coefficients matrix, Γ2, for
second order derivative can be obtained indepen-
dently, here it is written as [Γ1]2 as it helps to im-
pose the initial conditions [Mitra and Gopalakr-
ishnan (2005)]. These coupled ODEs are simi-
larly decoupled using eigenvalue analysis

Γ1 = ΦΠΦ−1 (22)

where, Π is the diagonal eigenvalue matrix and Φ
is the eigenvectors matrix of Γ1. Let the eigenval-
ues be iγ j, then the decoupled ODEs correspond-
ing to Eqns. 21 are

− I0γ2
j û j + I1γ2

j φ̂ j −A11
d2û j

dx2 +B11
d2φ̂ j

dx2 = 0

j = 0, 1, . . .,n−1 (23)

where, û j and similarly other transformed dis-
placements are

û j = Φ−1u j (24)

Following exactly the similar steps, the final
transformed form of the Eqns. 7 and 9 are

− I0γ2
j ŵ j −A55

(
d2ŵ j

dx2
− dφ̂ j

dx

)
= 0 (25)

− I2γ2
j φ̂ j − I1γ2

j û j −A55

(
dŵ j

dx
− φ̂ j

)
+B11

d2û j

dx2 −D11
d2φ̂ j

dx2 = 0 (26)

(27)

Similarly, the transformed form of the force
boundary conditions given by Eqns. 12 to 14 are

A11
dû j

dx
−B11

dφ̂ j

dx
= Pj (28)

A55
dŵ j

dx
−A55φ̂ j = Vj (29)

−B11
dû j

dx
+D11

dφ̂ j

dx
= Mj j = 0, 1, . . . ,n−1

(30)

where, Pj and similarly Vj, Mj are the trans-
formed P(x, t) and V(x, t), M(x, t) respectively.



82 Copyright c© 2007 Tech Science Press CMES, vol.22, no.1, pp.77-89, 2007

2.3 Spectral finite element formulation

The degrees of freedom associated with the ele-
ment formulation is shown in Fig. 1(b). The el-
ement has 3 degrees of freedom per node, which
are û j, ŵ j and φ̂ j. From the previous sections,
we get a set of ODEs (Eqns. 23, 25 and 26) for
composite beam with axial, transverse and shear
modes, in a transformed wavelet domain. These
equations are required to be solved for û j, ŵ j, φ̂ j

and the actual solutions u(x, t), w(x, t), φ (x, t) are
obtained using inverse wavelet transform. For fi-
nite length data, the wavelet transform and its in-
verse can be obtained using a transformation ma-
trix [Williams and Amaratunga (1994)].

It can be seen that the transformed ODEs have
a form which is similar to that in FSFE [Doyle
(1999)] and thus, WSFE can be formulated fol-
lowing the same method as for FSFE formulation.
In this section, the subscript j is dropped here-
after for simplified notations and all the following
equations are valid for j = 0, 1, . . ., n−1.

The exact interpolating functions for an element
of length L, obtained by solving Eqns. 23, 25 to
26 respectively, can be written as,{

û(x), ŵ(x), φ̂(x)
}T

= [R][ΘΘΘ]{a} (31)

where, [Θ][Θ][Θ] is a diagonal matrix with the di-
agonal terms [e−k1x, e−k1(L−x), e−k2x, e−k2(L−x),

e−k3x, e−k3(L−x)] and [R] is a 3×6 amplitude ratio
matrix for each set of k1, k2 and k3.

[R] =

⎡⎣ R11 . . . . . . R16

R21 . . . . . . R26

R31 . . . . . . R36

⎤⎦ (32)

k1, k2 and k3 are obtained by substituting Eqn. 31
in Eqns 23, 25 and 26 and solving the character-
istic equation. The characteristic equation is ob-
tained by equating the determinant of the 3× 3
companion matrix to zero. The corresponding
[R] is obtained using singular value decomposi-
tion of the matrix. This method of determining
wavenumbers and corresponding amplitude ra-
tios was developed to formulate FSFE for graded
beam with Poisson’s contraction by Chakraborty
and Gopalakrishnan (2004). k1, k2 and k3 corre-
sponds to the three modes i.e axial, transverse and

shear respectively and as explained in reference
[Mitra and Gopalakrishnan (2005)], these are the
wavenumbers but only up to a certain fraction of
Nyquist frequency.

Here, {a} = {A, B, C, D, E, F} are the un-
known wave coefficients to be determined from
transformed nodal displacements ûe, where ûe =
{û1 ŵ1 φ̂1 û2 ŵ2 φ̂2} and û1 ≡ û(0), ŵ1 ≡ ŵ(0),
φ̂1 ≡ φ̂ (0) and û2 ≡ û(L), ŵ2 ≡ ŵ(L), φ̂2 ≡ φ̂ (L),
(see Fig. 1(b) for the details of degree of freedom
the element can support). Thus we can relate the
nodal displacements and unknown coefficients as

ûe = [B]{a} (33)

From the forced boundary conditions, (Eqns. 28
to 30), nodal forces and unknown coefficients can
be related as

F̂e = [C]{a} (34)

where, F̂e = {P̂1 V̂1 M̂1 P̂2 V̂2 M̂2} and P̂1 ≡
P̂(0), V̂1 ≡ V̂(0), M̂1 ≡ M̂(0) and P̂2 ≡ −P̂(L),
V̂2 ≡ −V̂(L), M̂2 ≡ −M̂(L) (see Fig. 1(b)). From
Eqns. 33 and 34 we can obtain a relation between
transformed nodal forces and displacements sim-
ilar to conventional FE

F̂e = [C][B]
−1

ûe = K̂eûe (35)

where K̂e is the exact elemental dynamic stiffness
matrix. After the constants {a} are known from
the above equations, they can substituted back to
Eqn. 31 to obtain the transformed displacements
û, ŵ, φ̂ at any given x.

3 Identification of Degraded Material Zone
Using Damage Force Indicator Method

The concept of damage force has been used by
Schulz, Naser, Pai., and Chung (1998) to de-
rive a damage indicator, which can detect the el-
ements having flaws in a finite element model.
Kumar, Mahapatra, and Gopalakrishnan (2004);
Nag, Mahapatra, and Gopalakrishnan (2002) used
this technique effectively to identify delamina-
tion and transverse crack in composite beam us-
ing FSFE model. Here, DFI was calculated in the
frequency domain for the FSFE model. In brief,
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DFI is a force measure which calculates the dif-
ference between the damaged and undamaged re-
sponses multiplied with the stiffness matrix of the
undamaged structure. In the absence of the ex-
perimental data, simulated responses of both the
healthy and damage structure models are used to
compute the damage force indicator, which actu-
ally demonstrate a simulated sequence of identi-
fication procedure in real life. In this work, the
moisture absorbed degraded beam is modeled us-
ing WSFE method discussed elaborately in the
previous section. The global dynamic stiffness
matrix of the healthy structure K̂G

h is obtained by
assembling the element dynamic stiffness matrix
K̂e given in Eqn. 35. The damage force vector at
each sampling point; is given as

ΔF̂ = K̂G
h (ûd − ûh); (36)

= K̂G
h ûd − K̂G

h ûh

where, subscripts d and h refer to degraded and
healthy structures respectively. The basic proce-
dure is as follows; first of all the rotational ve-
locity and transverse velocity is measured exper-
imentally at different locations. Then these mea-
sured velocities v are transformed from time do-
main to wavelet domain v̂ using Daubechies scal-
ing function approximation. After this transfor-
mation to wavelet domain the velocity is con-
verted to displacement at each sampling point.
The relation between v̂ and û is given as, v̂ j =
−ıγ jû j. This experimentally measured and trans-
formed displacement vectors when multiplied by
the stiffness matrix of healthy structure gives the
force at each corresponding nodes at all sampling
points. The summation of the square of real part
of the force vector for all the sampling point gives
the DFI. From Eqn. 36, it is evident that DFI mea-
sures the change in state of stress between dam-
aged and undamaged beams. Hence, ΔF̂ will be
zero if there is no damage (i.e. there is no change
in state of stress) and will have non-zero value at
that nodes where there is damage (i.e. there is
change in state of stress due to damage). Mag-
nitude of these non zero entries depends on the
extend of damage.

4 Modeling of Degradation

4.1 Moisture Absorption

When composite material is exposed to humid
atmosphere, many polymeric matrix composites
absorbs moisture by instantaneous surface ab-
sorption followed by diffusion through the ma-
trix. Moisture will enter the interface of fiber
and matrix due to the capillary action [Jihua and
Maosheng (2004)]. The polymer matrix and the
interface between the matrix and fiber can be
degraded by hydrolysis reaction of unsaturated
groups within the resin [Kootsooks and Mouritz
(2004); Vera and Vazquez (2004)]. Debond-
ing may occur at fiber/matrix interface [Imielin-
ska and Guillaumat (2004)]. Composite mate-
rial degradation occurs as cracks of the matrix
material or/and fiber/matrix debonding, resulting
from differential swelling of fiber and matrix. The
weakening of bonding between fiber and matrix
and softening of matrix material are also the rea-
sons behind decrease in composite strength. Few
researchers have done experiments in standard
laboratory conditions to establish the affect of
moisture concentration in the tension modulus of
composite material [Tsai and Hahn (1980)].
The moisture concentration increases with time
and reaches the saturation level after some pre-
scribed time. The maximum moisture content de-
pends on the environment. In humid air it is a
function of relative humidity. It has been found
that maximum moisture content, Cm can be re-
lated to the relative humidity φ by the expres-
sion [Shen and Springer (1976)].

Cm = aφ b (37)

where, a and b are constants which depend on ma-
terial. The value of these constants can be ob-
tained by fitting the line through the data points.
Table 1 gives the values of a and b obtained
by various researchers. It has been found that
maximum moisture content is insensitive to the
ambient temperature but depends on the rela-
tive humidity (RH) of the environment [Shen and
Springer (1976)]. This is evident from Eqn. 37.

Figs. 2(a), (b) and (c), give the variation of
Young’s modulus Ex, Ey and Ez respectively in
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Table 1: Values of a and b (used in Eqn. 37) for AS/3501

Investigator a b
Loos and Springer (1979) 0.019 1

DeIasi and Whiteside (1978) 0.0186 1.6,φ < 60 % RH
- - 1.9,φ > 60 % RH

Whitney and Browing (1978) 0.016 1.1

composite with moisture concentration C, which
is reproduced from reference [Tsai and Hahn
(1980)]. These curves can be approximated as
a higher order polynomial in moisture concentra-
tion. These approximations are given in the fol-
lowing equations for different temperature. This
polynomial model is fed directly to the WSFE
code for modeling and detection purpose. For
temperature T = 366 K,

EX =16.344C6−66.161C5 +92.479C4−57.29C3

+13.769C2−81.049C+134.39 (38)

EY =4.5804C6−20.11C5 +32.943C4−24.297C3

+7.7994C2−1.8376C+9.6732 (39)

EZ =1.2694C6−6.2108C5+11.629C4−10.281C3

+4.129C2−0.4398C+6.0866 (40)

For Temperature, T = 394K;

EX =16.344C6−66.161C5 +92.479C4−57.29C3

+13.769C2−81.049C+134.39 (41)

EY =−5.8703C4 +11.744C3−5.3871C2

−2.3500C+7.7277 (42)

EZ =−0.7275C4 +1.8871C3−1.6856C2

−0.3426C+5.5415 (43)

In this work, the degradation of composite due to
moisture absorption is modeled with appropriate
modulus as given by Eqn. 38 to 43 and location
of this degraded zone is assumed at 0.25 m from
the fixed end of the cantilever beam of 0.75 m to-
tal length. The length of this degradation zone is
assumed to be 0.025 m. The schematic diagram
of degraded beam is shown in Fig. 3.

5 Numerical Experiments

In this section, numerical examples are presented
for a degraded (moisture absorbed) composite

(AS/3501) cantilever beam. As said earlier, first
the effects of degradation on the wave propaga-
tion are studied for different extents of degrada-
tion and location. Next, these simulated responses
are used as surrogate experimental results to pre-
dict the damage inversely using damage force in-
dicator.

5.1 Wave propagation analysis

The beam used for numerical experiments has a
length, L = 0.75 m , width, b = 0.05 m, num-
ber of ply, n = 4 and ply thickness, t = 0.0013 m.
The material properties are as follows, the Young
modulus (E) is a function of moisture absorption
and is given in Eqn. 38 to 43. In absence of data
available for the variation of G with moisture ab-
sorption it is assumed to be constant and it’s value
is taken as, G12 = G13 = 6.13 GPa; G23 = 4.80
GPa; ν12 = 0.42; mass density = 1449 kg/m3; The
Daubecheis scaling function used in these exam-
ples has an order of N = 22 and the sampling rate
is Δt = 1μs. To calculate the moisture concentra-
tion, Eqn. 37 is used, where a = 0.0018 and b =
1 [Loos and Springer (1979)].

A sinusoidal pulse modulated at 37.6 kHz as
shown in Fig. 4 is used as input signal. The mod-
ulated pulse contain maximum energy within a
very small frequency band and peak energy will
be at the frequency at which it is modulated. It is
used extensively in experimental investigations as
well as computational simulations for wave based
diagnostics.

Fig. 5 shows the tip transverse velocity in beam
due to modulated load applied at tip in transverse
direction. The degraded region is at 0.25 m from
the fixed end and is modeled with single WSFE.
The responses are plotted for different values of
relative humidity (RH) from 0 to 80 percent in
the step of 20 percent. Fig. 6 gives the exploded
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Figure 2: Variation of modulus (a) EX , (b) Ey and
(c) Ez with moisture concentration, Temp = 394K,
366K Tsai and Hahn (1980).

Figure 3: Schematic model of degraded compos-
ite beam
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view of the reflection from the degraded zone. On
careful observation from Fig. 6 it is found that
the magnitude of response is increasing from 0
percent RH to 40 percent RH, subsequently it is
decreasing and at 80 percent RH it’s phase get
changed. To investigate further, the response is
further plotted as shown in Fig. 7 at smaller steps
of increment in the percent of RH. Again on care-
ful observation from Fig. 7 it is found that the
magnitude of response is increasing from 0 per-
cent RH to 50 percent RH and subsequently is
decreasing and at magnitude corresponding to 30
percent RH and 60 percent RH, the responses are
nearly same, which means that stiffness at these
two values of RH is nearly same. When RH is
increased from 70 percent, the phase get altered,
which is in accordance with the variation in ten-
sion modulus EX , which first increase up to 50
percent RH and then it decreases. After 70 per-
cent RH, response decreases rapidly. Here, WSFE
captures these variations in modulus effectively.

Finally, numerical experiments are performed us-
ing the measured transverse velocity responses to
detect the presence of degraded zone. Fig. 8,
shows the transverse velocity measured at the
tip of of the degraded beam due to the modu-
lated pulse load shown in Fig. 4 applied at tip
in transverse direction. The response are plotted
for different positions of degraded zone assumed,
namely 0.125, 0.175, 0.250 m from the fixed end.
The extent of degradation is at RH = 50%. It can
be seen from Fig. 8 that time of arrival of the re-
flected wave shifts with the shift in the position
of the degraded zone and this is as expected. The
position of damage can be also be predicted from
the time of arrival of the reflected wave. This can
be done by multiplying the wave velocity known
from dispersion relation with the time of arrival.
This gives twice the distance of the damage from
the point of application of load. However, in this
case, since the extent of stiffness reduction is very
small, the reflected waves are not visible in the re-
sponse unless magnified as done in Fig. 8. Thus,
for detection of such minute change in stiffness,
a force measure called damage force indicator is
used to detect the location and extend of damage.
The efficiency of DFI in predicting the position
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Figure 6: Transverse tip velocity in beam due to
tip modulated load.
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Figure 9: (a) Schematic of beam for 6 elements
and (b) Damage force indicator for 6 elements.

and extend of damage is emphasized through nu-
merical examples in the next subsection.

5.2 Identification of Degraded Zone Using
Damage Force Indicator

As mentioned earlier, DFI is a damage measure
based on force residue that locates the position of
damage and also predict the extent of damage. It
is a FE based method which identifies the nodes
between which the damage exits. In this work
DFI is formulated in the realm of WSFE. First, the
cantilever beam is divided into six equal elements
as shown in Fig. 9(a) and the global dynamics
stiffness matrix is formed for the healthy beam.
To simulate experimental condition, the time do-
main responses of the undamaged and damaged
beams are simulated and are then used as surro-
gate experimental data together with the dynamic
stiffness matrix of the undamaged beam to calcu-
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Figure 10: (a) Schematic of beam for 8 elements
and (b) Damaged force indicator for 8 elements.

late the DFI. Here, the undamaged beam example
used has the degraded portion of length 0.025 m
at 0.25 m from fixed end of the cantilever beam of
0.75 m length, and different sizes corresponds to
different values of RH. The DFI obtained are plot-
ted for each node and for different RH in Fig. 9(b).
It can be seen from the figure that the maximum
peaks occur at nodes 2 and 3. Apart from this,
it can observed from Fig. 9(b), that the magni-
tude of DFI is maximum for 80 % RH. This is in
tune to the model used for simulation of response.
Further, correlation can be developed between the
magnitude of the DFI and extent of degradation
to predict it from the DFI values. Next, know-
ing that the damage is in between nodes 2 and 3
from Fig. 9(a), the element between nodes 2 and 3
is again subdivided into 3 elements, to locate the
position of the damage more precisely. However,
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the discretization of remaining part of the beam
is left same as shown in Fig. 10(a). The DFI for
this new WSFE model of the beam is plotted in
Fig. 10(b) for all the eight nodes as function of
RH. Fig. 10(b) shows that the maximum DFI oc-
curs at nodes 3 and 4. Thus, the degradation lies in
the element between nodes 3 and 4. This is also in
accordance with the simulation performed to ob-
tain the wave response. This process of refining to
predict the position of damage can be done further
to obtain the exact location of damage. Thus, DFI
can accurately predict the location of damage and
also provide a measure of the extent of damage
with very minimal computational cost.

6 Conclusions

In this paper, moisture absorbed degraded beam
is modeled for wave propagation analysis and also
for detection of the damage. The beam is modeled
using Timoshenko beam theory with axial, trans-
verse and rotational degrees of freedom. Here, the
modeling is done using the wavelet based spec-
tral finite element method which is especially tai-
lored for wave propagation. The extent of degra-
dation changes with time and relative humidity
(RH) of the environment in which it is exposed.
Wave based techniques are most suited to predict
the presence of any small damages, because of the
high frequency content of the loading. However,
the effects of the minute damage/degradation on
the wave responses are not visually interpretable
due to minute dimension of damage. In this work,
a force measure called damage force indicator has
been implemented for prediction of position and
location of damage from the measured wave re-
sponse and dynamic stiffness matrix of the un-
damaged structures. The method efficiently pre-
dict the position and location of the damage. First,
wave propagation in moisture absorbed degraded
beam is simulated to study the effects of moisture
absorption on wave propagation characteristics.
Next, the simulated responses are used as surro-
gate experimental results to calculated the dam-
age force indicator which gives the position and
extent of damage.
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