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An Inverse Problem in Estimating Simultaneously the Time-Dependent
Applied Force and Moment of an Euler-Bernoulli Beam

Cheng-Hung Huang1,2 and Chih-Chun Shih1

Abstract: An inverse forced vibration problem,
based on the Conjugate Gradient Method (CGM),
(or the iterative regularization method), is exam-
ined in this study to estimate simultaneously the
unknown time-dependent applied force and mo-
ment for an Euler-Bernoulli beam by utilizing the
simulated beam displacement measurements. The
accuracy of this inverse problem is examined by
using the simulated exact and inexact displace-
ment measurements. The numerical experiments
are performed to test the validity of the present al-
gorithm by using different types of applied force
and moment, sensor locations and measurement
errors. Results show that excellent estimations
on the applied force and moment can be obtained
with any arbitrary initial guesses.

Nomenclature

E Young’s modulus
F(t) applied force
I moment of inertia
J functional defined by equation (3)
J′ i gradient of functional defined by

equations (16) and (17)

M(t) applied moment
Pi directions of descent defined by

equation (5)

t time
x axial coordinate
y(x, t) estimated displacement
Y (xi, t) measured displacement

Greeks
βi search step size defined by equation (11)
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γi conjugate coefficient defined by
equation (6)

λi(x, t) adjoint functions defined by
equation (14)

Δyi(x, t) sensitivity functions defined by
equations (7) and (8)

ε convergence criterion
ρ mass density
ω random number
σ standard deviation of measurement

errors

1 Introduction

Beams are very important elements in civil, me-
chanical, and aeronautical engineering. For in-
stance, bridges, cutting tools, robot arms, heli-
copter rotor blades and spacecraft antennae are all
examples of structures that may be modeled as an
Euler-Bernoulli beam. The vibration problem of
the Euler-Bernoulli beam is very well developed
and explored in details in many engineering ap-
plications.

The direct solutions for an Euler-Bernoulli beam
problem are concerned in determining the beam
displacements at any positions and times when
the initial and boundary conditions, beam param-
eters, applied force and moment are all speci-
fied. For instance, Andreaus, Batra and Por-
firi (2005) applied the Meshless Local Petrov-
Galerkin (MLPG) method to examine the vibra-
tions of cracked Euler-Bernoulli beams. Vinod,
Gopalakrishnan and Ganguli (2006) applied the
spectral finite element formulation for a rotating
uniform Euler-Bernoulli beam subjected to small
duration impact.

In contrast, the inverse forced vibration problem
for an Euler-Bernoulli beam that is going to be
discussed here involves the simultaneous deter-
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mination of the time-dependent applied force and
moment from the knowledge of the displacement
measurements at the some specified positions x
and times t. The inverse problem tends to be ill-
posed, in the sense that small variations in the
measured data can excite large excursion in the
estimated values. For this reason a suitable al-
gorithm should be chosen to avoid the ill-posed
phenomena.

For the inverse vibration problems, the textbook
by Gladwell (1986) contains a general presen-
tation of the inverse problem for undamped vi-
brating system. Desanghere and Snoeys (1985)
applied a condition number in forced identifica-
tion problems and observed it is a reliable indi-
cator for ill-conditioned matrix. Stevens (1987)
provided an overview in identifying the forces
for the case of linear vibratory system. Starek
and Inman (1991,1992,1995) have analyzed an
inverse eigenvalue problem in estimating the co-
efficient matrices. Bateman, Carne and Gregory
(1991) presented two force reconstruction tech-
niques, i.e., the sum of weighted acceleration and
the deconvolution techniques to evaluate the im-
pact test. Michaels and Pao (1985) have shown an
iterative method of deconvolution, which deter-
mined the inverse source problem for an oblique
force on an elastic plate. Ma, Tuan, Lin and Liu
(1998) utilized the Kalman filter with a recursive
estimator to determine the impulsive loads in a
single-degree-of-freedom (SDOF) as well as for
a multiple-degree-of-freedom (MDOF) lumped-
mass systems. Huang applied the CGM in
estimating the unknown time-dependent exter-
nal force with time-dependent system parame-
ters for a single-degree-of-freedom (SDOF) prob-
lem [Huang (2001)] and for a multiple-degree-of-
freedom vibration system [Huang (2005)] and ob-
tained good estimations. The above inverse prob-
lems belong to the general vibration system.

Regarding to the study of inverse problems for the
Euler-Bernoulli beam, Chan and Ashebo (2006)
used the Singular Value Decomposition (SVD)
method in an inverse problem in identifying the
moving forces on continuous bridges. Lee (2006)
applied the CGM to solve the inverse problem
in estimating the shear force between the tapered

probe and sample during the scanning process of
scanning near-field optical microscope (SNOM).
Chang and Guo (2007) considered an inverse
problem for the Euler–Bernoulli beam equation,
with one end clamped and with torque input at the
other end, the objective is to estimate the beam
spatial varying coefficients by using the measure-
ments for the displacement and the angle velocity
at the non-clamped end of the beam.

Based on the above reviews, the discussions of the
inverse forced vibration problems in estimating
simultaneously both the time-dependent applied
force and moment at the free end, using the Con-
jugate Gradient Method (CGM), have never been
examined in the literature. For this reason, the
purpose of this study is to establish an algorithm
based on the CGM to estimate simultaneously the
unknown time-dependent applied force and mo-
ment in an inverse forced vibration problem for
an Euler-Bernoulli beam.

The technique of the CGM has been applied to
many different inverse and optimal control prob-
lems [Chao, Chen and Lin (2001), Huang and Li
(2006), Huang and Lo (2006), Huang and Wu
(2006), Huang, Jan, Li and Shih (2007), Huang
and Chen (2007)] and has been proven itself to
be a very powerful algorithm. The CGM is also
called an iterative regularization method, which
means the regularization procedure is performed
during the iterative processes. The CGM derives
basis from the perturbational principles [Alifanov
(1994)] and transforms the inverse problem into
the solution of three problems, namely, the direct
problem, the sensitivity problem and the adjoint
problem, which will be discussed in detail in the
next few sections.

Finally the inverse solutions with three different
types of applied force and moment, sensor ar-
rangements and measurement errors will be con-
sidered to show the validity of using the CGM in
the present inverse forced vibration problem.

2 The Direct Problem

To illustrate the methodology for developing ex-
pressions for use in determining simultaneously
the unknown time-dependent external force and
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moment for an Euler-Bernoulli beam in a forced
vibration problem, the following problem is con-
sidered.

The initial displacement and velocity conditions
of the system are ỹ(x̃,0) = ∂ ỹ(x̃,0)

∂ t̃ = 0, at t̃ = 0.
When t̃ > 0, the boundary condition at x̃ = 0 is
clamped and the boundary condition at x̃ = L̃ is
subjected to the unknown time-dependent force
F̃(t̃) and moment M̃(t̃), respectively.

The mathematical formulation of this forced vi-
bration problem of an Euler-Bernoulli beam is
given by:

Ẽ Ĩ
∂ 4ỹ(x̃, t̃)

∂ x̃4 + ρ̃Ã
∂ 2ỹ(x̃, t̃)

∂ t̃2 = 0 (1a)

Equation (1a) is subjected to the following bound-
ary and initial conditions

ỹ(0, t̃) =
∂ ỹ(0, t̃)

∂ x̃
= 0; at x̃ = 0, t̃ > 0 (1b,c)

∂ 2ỹ(L̃, t̃)
∂ x̃2 = M̃(t); at x̃ = L̃, t̃ > 0 (1d)

∂ 3ỹ(L̃, t̃)
∂ x̃3 = F̃(t); at x̃ = L̃, t̃ > 0 (1e)

ỹ(x̃,0) =
∂ ỹ(x̃,0)

∂ t̃
= 0; at t̃ = 0 (1f,g)

here x̃ and t̃ are the axial and time coordinates,
respectively, and L̃ is the length of the beam, ỹ
is the deflection, Ẽ is Young’s modulus, Ã is the
cross-sectional area of beam, Ĩ is the moment of
inertia of Ã, ρ̃ is the mass density of material, F̃(t)
and M̃(t) indicate the unknown applied force and
moment, respectively.

If the following dimensionless quantities are de-
fined

x =
x̃

L̃
; y =

ỹ

L̃
; t =

√
Ẽ Ĩ

ρ̃ÃL̃4
t̃;

F(t) =
L̃2

Ẽ Ĩ
F̃(t̃); M(t) =

L̃

Ẽ Ĩ
M̃(t̃)

The dimensionless formulation of the Euler-
Bernoulli beam can be expressed as:

∂ 4y(x, t)
∂x4 +

∂ 2y(x, t)
∂ t2 = 0 (2a)

subject to the following boundary and initial con-
ditions

y(0, t) =
∂y(0, t)

∂x
= 0; at x = 0, t > 0 (2b,c)

∂ 2y(1, t)
∂x2 = M(t); at x = 1, t > 0 (2d)

∂ 3y(1, t)
∂x3 = F(t); at x = 1, t > 0 (2e)

y(x,0) =
∂y(x,0)

∂ t
= 0; at t = 0 (2f,g)

The system under consideration here is shown in
Figure 1. The direct problem considered here
is concerned with the determination of the dis-
placements of the beam, y(x, t), when the initial
and boundary conditions, and the applied time-
dependent force F(t) and moment M(t) are all
given. Here the finite difference method is used
to solve equations (2).
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Figure 1: A clamped Euler-Bernoulli beam with
unknown F(t) and M(t) applied at x = 1

3 The Inverse Problem

For the inverse vibration problem consider here,
the time-dependent applied force F(t) and mo-
ment M(t) are regarded as being unknown, but
everything else in equation (2) are known. In
addition, displacement measurement with time at
two appropriate locations x1 and x2 are considered
available.

Let the measured beam displacements with time
at x1 and x2 be denoted by Y(x1, t) and Y(x2, t),
here t = 0 to t f and t f represents the final time
of measurements. The present inverse vibration
problem can be stated as follows: by utilizing the
above mentioned measured beam displacements
Y (x1, t) and Y (x2, t), the unknown time-dependent
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applied force F(t) and moment M(t) are to be es-
timated simultaneously.

In this work no real measured displacements were
utilized, instead, the simulated values of Y (x1, t)
and Y (x2, t) are generated by using the exact ap-
plied force F(t) and moment M(t), then try to re-
trieve the time-dependent applied force F(t) and
moment M(t) by using Y (x1, t) and Y(x2, t) and
the technique of the Conjugate Gradient Method
(CGM).

The solution of this inverse vibration problem is
to be obtained in such a way that the following
functional is minimized:

J [F(t),M(t)] =

t f∫
t=0

{
[y(x1, t)−Y (x1, t)]2

+[y(x2, t)−Y(x2, t)]2
}

dt (3)

here, y(x1, t) and y(x2, t) are the estimated or com-
puted beam displacements at x1 and x2 with time t.
These quantities are determined from the solution
of the direct problem given previously by using an
estimated force and moment for the exact values.

4 Conjugate Gradient Method for Minimiza-
tion

The following iterative process based on the con-
jugate gradient method [Alifanov (1994)] is now
used for the estimation of time-dependent applied
force F(t) and moment M(t) by minimizing the
functional J[F(t),M(t)]

Fn+1(t) = Fn(t)−β n
1 Pn

1 (t); for n = 0,1,2, . . .

(4a)

Mn+1(t) = Mn(t)−β n
2 Pn

2 (t); for n = 0,1,2, . . .
(4b)

where β n
1 and β n

2 are the search step sizes in go-
ing from iteration n to iteration n + 1, and Pn

1 (t)
and Pn

2 (t) are the directions of descent (i.e. search
directions) given by

Pn
1 (t) = J′n1(t)+ γn

1 Pn−1
1 (t) (5a)

Pn
2 (t) = J′n2(t)+ γn

2 Pn−1
2 (t) (5b)

which are a conjugation of the gradient directions
J′n1(t) and J′n2(t) at iteration n and the directions
of descent Pn−1

1 (t) and Pn−1
2 (t) at iteration n−1.

The conjugate coefficients are determined from

γn
1 =

t f∫
t=0

(J′n1)2dt

t f∫
t=0

(J′n−1
1 )2dt

; with γ0
1 = 0 (6a)

γn
2 =

t f∫
t=0

(J′n2)2dt

t f∫
t=0

(J′n−1
2 )2dt

; with γ0
2 = 0 (6b)

We note that when γn
1 = γn

2 = 0 for any n, in equa-
tions (6), the directions of descent Pn

1 (t) and Pn
2 (t)

become the gradient directions, i.e. the “Steepest
descent method, SDM” is obtained. The conver-
gence of CGM in minimizing the functional J is
guaranteed in Lasdon, Mitter and Warren (1967).

To perform the iterations according to equation
(4), the step sizes β n

1 and β n
2 and the gradient

functions J′n1(t) and J′n2(t) need to be calculated.
In order to develop expressions for the determi-
nation of these quantities, two “sensitivity prob-
lems” and an “adjoint problem” need to be con-
structed as described below.

4.1 Sensitivity Problems and Search Step Sizes

The present inverse problem involves two un-
known functions, F(t) and M(t), in order to derive
the sensitivity problem for each unknown func-
tion, we should perturb the unknown function one
at a time.

Firstly, it is assumed that when F(t) undergoes a
variation ΔF(t), y(x,t) are perturbed by Δy1(x, t).
Then replacing in the direct problem F(t) by
F(t) + ΔF(t), y(x, t) by y(x, t) + Δy1(x, t), sub-
tracting the resulting expressions from the direct
problem and neglecting the second-order terms,
the following sensitivity problem for the sensitiv-
ity function Δy1 is obtained.

∂ 4Δy1(x, t)
∂x4 +

∂ 2Δy1(x, t)
∂ t2 = 0 (7a)

subject to the following boundary and initial con-
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ditions

Δy1(0, t) =
∂Δy1(0, t)

∂x
= 0; at x = 0, t > 0

(7b,c)

∂ 2Δy1(1, t)
∂x2 = 0; at x = 1, t > 0

(7d)

∂ 3Δy1(1, t)
∂x3 = ΔF(t); at x = 1, t > 0

(7e)

Δy1(x,0) =
∂Δy1(x,0)

∂ t
= 0; at t = 0 (7f,g)

Similarly, by perturbing M(t) with ΔM(t) and
y(x, t) with Δy2(x, t), the second sensitivity prob-
lem can be obtained as

∂ 4Δy2(x, t)
∂x4 +

∂ 2Δy2(x, t)
∂ t2 = 0 (8a)

subject to the following boundary and initial con-
ditions

Δy2(0, t) =
∂Δy2(0, t)

∂x
= 0; at x = 0, t > 0

(8b,c)

∂ 2Δy2(1, t)
∂x2 = ΔM(t); at x = 1, t > 0

(8d)

∂ 3Δy2(1, t)
∂x3 = 0; at x = 1, t > 0

(8e)

Δy2(x,0) =
∂Δy2(x,0)

∂ t
= 0; at t = 0 (8f,g)

The technique of finite difference method is used
to solve the above two sensitivity problems.

The functional J(Fn+1,Mn+1) at iteration n+1 is
obtained by rewriting equation (3) as

J[F(t),M(t)]=
t f∫

t=0

[y(x1, t;Fn −β n
1 Pn

1 ,Mn −β n
2 Pn

2 )−Y (x1, t)]
2 dt

+

t f∫
t=0

[y(x2, t;Fn−β n
1 Pn

1 ,Mn−β n
2 Pn

2 )−Y (x2, t)]
2 dt

(9)

where we have replaced Fn+1(t) and Mn+1(t)
by the expression given by equation (4). If the
estimated displacements y(x1, t;Fn −β n

1 Pn
1 ,Mn −

β n
2 Pn

2 ) and y(x2, t;Fn −β n
1 Pn

1 ,Mn−β n
2 Pn

2 ) are lin-
earized by a Taylor expansion, equation (9) takes
the form

J[F(t),M(t)]=
t f∫

t=0

[
y(x1, t;Fn,Mn)−β n

1 Δy1(x1, t;Pn
1 )

−β n
2 Δy2(x1, t;Pn

2 )−Y (x1, t)
]2

dt

+

t f∫
t=0

[
y(x2, t;Fn,Mn)−β n

1 Δy1(x2, t;Pn
1 )

−β n
2 Δy2(x2, t;Pn

2 )−Y (x2, t)
]2

dt (10)

where y(x1, t;Fn,Mn) and y(x2, t;Fn,Mn) are the
solutions of the direct problem by using es-
timate force and moment for exact values at
x1 and x2 with time t. The sensitivity func-
tions Δy1(x1, t;Pn

1 ), Δy1(x2, t;Pn
1 ), Δy2(x1, t;Pn

2 )
and Δy2(x2, t;Pn

2 ) are taken as the solutions of
problems (7) and (8) at x1 and x2 with time t by
letting ΔF(t) = Pn

1 (t) and ΔM(t) = Pn
2 (t), respec-

tively [Alifanov (1994)].

Equation (10) is differentiated with respect to β n
1

and β n
2 , respectively, and equating them equal to

zero to obtain two independent equations. After
solving these two equations, the search step sizes
β n

1 and β n
2 can be determined as:

β n
1 = (C3C5 −C2C4)/(C3C3 −C1C2) (11a)

β n
2 = (C3C4 −C1C5)/(C3C3 −C1C2) (11b)

where

C1 =

t f∫
t=0

[
Δy1(x1, t)2 +Δy1(x2, t)2]dt (11c)

C2 =

t f∫
t=0

[
Δy2(x1, t)2 +Δy2(x2, t)2]dt (11d)
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C3 =

t f∫
t=0

[
Δy1(x1, t)×Δy2(x1, t)

+Δy1(x2, t)×Δy2(x2, t)
]
dt (11e)

C4 =

t f∫
t=0

{
[y(x1, t)−Y(x1, t)]Δy1(x1, t)

+[y(x2, t)−Y (x2, t)]Δy1(x2, t)
}

dt (11f)

C5 =

t f∫
t=0

{
[y(x1, t)−Y(x1, t)]Δy2(x1, t)

+[y(x2, t)−Y(x2, t)]Δy2(x2, t)
}

dt (11g)

4.2 Adjoint Problem and Gradient Equation

To obtain the adjoint problem, equation (2) is
multiplied by a Lagrange multiplier (or adjoint
function) λ1(x, t). The resulting expression is in-
tegrated over the correspondent space and time
domains, then the result is added to the right hand
side of equation (3) to yield the following expres-
sion for the functional J[F(t),M(t)]:

J [F(t),M(t)] =
t f∫

t=0

{
[y(x1, t)−Y (x1, t)]2 +[y(x2, t)−Y (x2, t)]2

}
dt

+

t f∫
t=0

1∫
x=0

λ1(x, t)
[

∂ 4y(x, t)
∂x4 +

∂ 2y(x, t)
∂ t2

]
dxdt

(12)

The variation ΔJ1 is obtained by perturbing F by
F + ΔF and y by y + Δy1 in equation (12), sub-
tracting the original equation (12) from the result-
ing expression and neglecting the second-order

terms. It thus finds

ΔJ1 [F(t),M(t)] =

t f∫
t=0

{
2[y(x1, t)−Y (x1, t)]Δy1

+2[y(x2, t)−Y (x2, t)]Δy1

}
dt

+

t f∫
t=0

1∫
x=0

λ1(x, t)
[

∂ 4Δy1(x, t)
∂x4 +

∂ 2Δy1(x, t)
∂ t2

]
dxdt

(13a)

which can be rearranged as

ΔJ1 [F(t),M(t)] =

t f∫
t=0

1∫
x=0

{
2[y(x, t)−Y(x, t)]Δy1

· [δ (x−x1)+δ (x−x2)]
}

dxdt

+

t f∫
t=0

1∫
x=0

λ1(x, t)
[

∂ 4Δy1(x, t)
∂x4 +

∂ 2Δy1(x, t)
∂ t2

]
dxdt

(13b)

where δ (·) is the Dirac delta function.

In equation (13b), the integrands containing ad-
joint function λ1(x, t) on the right hand side are
integrated by parts; the initial and boundary con-
ditions of the sensitivity problem are utilized. The
vanishing of the integrands leads to the following
adjoint problem for the determination of λ1(x, t):

∂ 4λ1(x, t)
∂x4 +

∂ 2λ1(x, t)
∂ t2

+2[y(x, t)−Y(x, t)][δ (x−x1)+δ (x−x2)] = 0
(14a)

subject to the following boundary and final time
conditions

λ1(0, t) =
∂λ1(0, t)

∂x
= 0; at x = 0, t > 0

(14b,c)

∂ 2λ1(1, t)
∂x2 =

∂ 3λ1(1, t)
∂x3 = 0; at x = 1, t > 0

(14d,e)

λ1(x, t f ) =
∂λ1(x, t f )

∂ t
= 0; at t = t f (14f,g)

The adjoint problem differs from the standard ini-
tial value problem in that the final time conditions
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at time t = t f are specified instead of the tradi-
tional initial conditions. However, the above ad-
joint problem can be transformed into an initial
value problem by the transformation of the time
variable as τ = t f − t. The standard technique of
finite difference method can then be used to solve
the above adjoint problem.

Finally, the following integral term is left

ΔJ =

t f∫
t=0

−λ1(1, t)ΔF(t)dt (15a)

From definition [Alifanov (1994)], the functional
increment can be presented as

ΔJ =

t f∫
t=0

J′ΔF(t)dt (15b)

A comparison of equations (15a) and (15b) leads
to the following expression for the gradient of
functional J′:

J′1[F(t)] = −λ1(1, t) (16)

Similarly, to derive the adjoint problem for the
case when perturbing M(t), equation (2) is mul-
tiplied by a second Lagrange multiplier (or ad-
joint function) λ2(x, t). By following the same
procedure as described previously, we finally find
that the solutions for adjoint equation of λ2(x, t)
are identical to that for λ1(x, t). This implies
that the adjoint equations need to be solved only
once since λ1(x, t) = λ2(x, t). Finally the gradient
equation for M(t) can be obtained as

J′2[M(t)] = −∂λ1(1, t)
∂x

(17)

4.3 Stopping Criterion

If the problem contains no measurement errors,
the traditional check condition is specified as

J
[
Fn+1(t),Mn+1(t)

]
< ε (18)

where ε is a small-specified number. However,
the measured beam displacements may contain
measurement errors. Therefore, it is not expected
that the functional equation (3) will be equal to

zero at the final iteration step. Following the ex-
periences of the author [Alifanov (1994)], the dis-
crepancy principle is adopted as the stopping cri-
terion, i.e. it is assumed that the residuals for the
displacements may be approximated by

y(x1, t)−Y(x1, t) = y(x2, t)−Y(x2, t)≈ σ (19)

where σ is the standard deviation of the displace-
ment measurements, which is assumed to be a
constant. Substituting equation (19) into equation
(3), the following expression is obtained for stop-
ping criterion ε :

ε = 2σ2t f (20)

Finally the stopping criterion is given by equation
(18) with ε determined from equation (20).

5 Computational Procedure

The computational procedure for the solution of
this inverse forced vibration problem in determin-
ing simultaneously F(t) and M(t) using CGM can
be summarized as follows:

Suppose Fn(t) and Mn(t) are available at iteration
n.

Step 1. Solve the direct problems given by equa-
tions (2) for y(x, t).

Step 2. Examine the stopping criterion given by
equation (20). Continue the iteration if it
is not satisfied.

Step 3. Solve the adjoint problem given by equa-
tions (14) for λ1(x, t).

Step 4. Compute the gradient equations of the
functional J′1(t) and J′2(t) from equa-
tions (16) and (17), respectively.

Step 5. Compute the conjugate coefficients γn
1

and γn
2 and directions of descent Pn

1 and
Pn

2 from equations (6) and (5), respec-
tively.

Step 6. Set ΔF = Pn
1 and ΔM = Pn

2 . Solve the sen-
sitivity problems given by equations (7)
and (8) for Δy1 and Δy2, respectively.
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Step 7. Compute the search step sizes β n
1 and β n

2
from equations (11).

Step 8. Compute the new estimations for Fn+1(t)
and Mn+1(t) from equations (4) and re-
turn to step 1.

6 Results and Discussion

The CGM is utilized in this study to show its va-
lidity in estimating simultaneously the applied ex-
ternal force F(t) and moment M(t) for an Euler-
Bernoulli beam with no prior information on the
functional form of the unknown quantities.

To illustrate the accuracy of the CGM in predict-
ing F(t) and M(t) in this work from the knowl-
edge of the displacement recordings, two spe-
cific examples, involving different form of exter-
nal F(t) and M(t), are considered here.

In order to compare the results for situations con-
sidering random measurement errors, the nor-
mally distributed uncorrelated errors with zero
mean and constant standard deviation are consid-
ered. The simulated inexact measured displace-
ments data Y (xi, t) can be expressed as

Y (xi, t) = Y (xi, t)exact +ωσ (21)

where Y (xi, t)exact are the solution of the direct vi-
bration problem with an exact applied force F(t)
and moment M(t); σ is the standard deviation of
the measured displacements and ω is a random
variable that is generated by subroutine DRN-
NOR of the IMSL (1987) and will be within -
2.576 to 2.576 for a 99% confidence bound.

The initial conditions for displacement and veloc-
ity are both assumed zero, i.e. y(x,0) = ∂y(x,0)

∂t =
0, at t = 0. After the dimensionless analysis,
the length of Euler-Bernoulli beam becomes unity
and total time becomes t f = 5000. Here the space
and time increments for finite difference equation
are taken as Δx = 0.01 and Δt = 50, respectively.
Therefore a total of 200 unknown discretized ap-
plied force and moment are to be determined in
the present study.

One of the advantages of using the CGM to solve
the inverse problems is that the initial guesses of

the unknown quantities can be chosen arbitrar-
ily. In all the test cases considered here the ini-
tial guesses of F(t) and M(t) are taken as F(t)0 =
M(t)0 = 0.0. The numerical experiments in deter-
mining simultaneously F(t) and M(t) by the in-
verse analysis using the CGM are now illustrated
below.

(A) Numerical test case 1

In the first numerical test case, the exact dimen-
sionless time-dependent applied force F(t) and
moment M(t) for an Euler-Bernoulli beam are
given as:

F(t) = 50000× sin

(
πt
t f

)
; 0 ≤ t ≤ t f (22a)

M(t) = −
[

sin

(
πt
t f

)
+0.5× sin

(
2πt
t f

)]
;

0 ≤ t ≤ t f (22b)

The inverse analysis is first performed by using
exact displacement measurements, i.e. σ = 0.0,
measured at x1 = 0.5 and x2 = 0.95. When the
stopping criterion is set as ε = 2.2× 10−6, after
27 iterations the inverse solutions are converged,
J is calculated as 2.14× 10−6 and CPU time at
Pentium IV-3 GHz PC is about 3 seconds. Fig-
ures 2(a) and 2(b) indicate the measured and esti-
mated displacements at x1 = 0.5 and x2 = 0.95, re-
spectively. The exact and estimated applied force
F(t) and moment M(t) are shown in Figures 3(a)
and 3(b), respectively. ERR1 and ERR2 repre-
sent the relative errors between the exact and es-
timated force and moment, respectively, and are
calculated as ERR1 = 4.66× 10−2 % and ERR2
= 7.16×10−1 %, respectively. ERR3 and ERR4
indicate the relative errors between the measured
and estimated displacements at x1 and x2, respec-
tively, and are calculated as ERR3 = 1.6× 10−2

% and ERR4 = 3.82×10−2 %, respectively. Here
ERR1, ERR2, ERR3 and ERR4 are defined as

ERR1% =
100

∑
j=1

∣∣∣∣ F̂(t j)−F(t j)
F(t j)

∣∣∣∣÷ (100)×100%

(23a)
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ERR2% =
100

∑
j=1

∣∣∣∣M̂(t j)−M(t j)
M(t j)

∣∣∣∣÷ (100)×100%

(23b)

ERR3% =
100

∑
j=1

∣∣∣∣y(x1, t j)−Y (x1, t j)
Y (x1, t j)

∣∣∣∣÷(100)×100%

(23c)

ERR4% =
100

∑
j=1

∣∣∣∣y(x2, t j)−Y (x2, t j)
Y (x2, t j)

∣∣∣∣÷(100)×100%

(23d)

here j represents the index of discreted time and
F̂(t j) and M̂(t j) indicate the estimated applied
force and moment, respectively.

From Figures 2 and 3 and errors for ERR1 to
ERR4 it is concluded that the present algorithm
has been applied successfully in the inverse vi-
bration problem in estimating simultaneously the
time-dependent applied force and moment since
the estimated results are very accurate.

Next, it is of interest to discuss what will be hap-
pened when the measured positions are changed,
i.e. measurement positions are now at x1 = 0.4
and x2 = 0.9. The same calculation conditions are
used and the number of iterations under this sit-
uation is 10 with ε = 4× 10−5 and CPU time at
Pentium IV-3 GHz PC is about 1 seconds.

The estimated F(t) and M(t) are plotted in Fig-
ures 4(a) and 4(b), respectively. It is obvious
that the estimated F(t) and M(t) are both accu-
rate enough since ERR1 to ERR4 are obtained as
ERR1 = 2.48×10−1 % , ERR2 = 1.97 %, ERR3
= 2.76×10−1 % and ERR4 = 1.02×10−1 %, re-
spectively. The above numerical experiments sug-
gested that the measured positions can be varied
while accurate estimations can still be obtained.
Moreover, based on a series of numerical exper-
iments, it is suggested that the sensors should be
placed no less than x = 0.25 for a good estimation
due to the clamped condition at x = 0.

Finally, let us discuss the influence of the mea-
surement errors on the inverse solutions. First
the measurement error for the displacements mea-
sured by sensors is taken as σ = 2.6×10−3 (about

5 % of the average measured displacements at
x1 and x2) with x1 = 0.5 and x2 = 0.95. After
3 iterations the estimations can be obtained and
are plotted in Figures 5(a) and 5(b) for the es-
timated applied force and moment, respectively.
The relative errors ERR1 to ERR4 are calculated
as ERR1 = 5.79 % , ERR2 = 6.25 %, ERR3 =
5.06 % and ERR4 = 5.44 %, respectively. Second,
the measurement error for the displacements mea-
sured by sensors is increased to σ = 5.2× 10−3

(about 10 % of the average measured displace-
ments at x1 and x2). After only 3 iterations the
applied force and moment can be obtained and
plotted in Figures 6(a) and 6(b), respectively. The
relative errors ERR1 to ERR4 are calculated as
ERR1 = 7.74 % , ERR2 = 7.74 %, ERR3 = 7.18 %
and ERR4 = 7.74%, respectively. From those re-
sults we learned that the reliable inverse solutions
can still be obtained when measurement errors are
considered.

(B). Numerical test case 2

The calculation conditions for Euler-Bernoulli
beam used in test case 2 are the same as were used
in test case 1 and the unknown applied force F(t)
and moment M(t) are given as shown in the fol-
lowing functions:

F(t) = 60000× sin

(
2πt
t f

)
; 0 ≤ t ≤ t f (24a)

M(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0; at 0 ≤ t < 10

−3; at 10 ≤ t < 40

2; at 40 ≤ t < 70

−1 at 70 ≤ t ≤ t f

(24b)

The inverse analysis is first performed by using
σ = 0.0 and measured at x1 = 0.5 and x2 = 0.95.
When the stopping criterion is set as ε = 2.7×
10−2, after 33 iterations the inverse solutions can
be obtained and J is calculated as 2.68× 10−2.
The CPU time at Pentium IV-3 GHz PC is about 3
seconds. Figures 7(a) and 7(b) show the measured
and estimated displacements at x1 = 0.5 and x2 =
0.95, respectively, while the exact and estimated
applied force F(t) and moment M(t) are given in
Figures 8(a) and 8(b), respectively. The relative
errors ERR1 to ERR4 are calculated as ERR1 =
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Figure 2: The measured and estimated displacements at (a) x1 = 0.5 and (b) x2 = 0.95 with time using σ = 0
in test case 1
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Figure 3: The exact and estimated (a) F(t) and (b) M(t) with x1 = 0.5 and x2 = 0.95 using σ = 0 in test case
1
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Figure 4: The exact and estimated (a) F(t) and (b) M(t) with x1 = 0.4 and x2 = 0.9 using σ = 0 in test case 1
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Figure 5: The exact and estimated (a) F(t) and (b) M(t) with x1 = 0.5 and x2 = 0.95 using σ = 2.6×10−3 in
test case 1
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Figure 6: The exact and estimated (a) F(t) and (b) M(t) with x1 = 0.5 and x2 = 0.95 using σ = 5.2×10−3

in test case 1
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Figure 7: The measured and estimated displacements at (a) x1 = 0.5 and (b) x2 = 0.95 with time using σ = 0
in test case 2
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Figure 8: The exact and estimated (a) F(t) and (b) M(t) with x1 = 0.5 and x2 = 0.95 using σ = 0 in test case
2
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Figure 9: The exact and estimated (a) F(t) and (b) M(t) with x1 = 0.5 and x2 = 0.95 using σ = 3.5×10−3

in test case 2
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Figure 10: The exact and estimated (a) F(t) and (b) M(t) with x1 = 0.5 and x2 = 0.95 using σ = 7.0×10−3

in test case 2

1.85 % , ERR2 = 7.47×10−1 %, ERR3 = 1.29 %
and ERR4 = 1.51 %, respectively.

It should be noted that the estimations for M(t)
should be not accurate when time approaches to
the final time t f . The reason for this is that the
gradient J′2 at final time t = t f is always equal to
zero since λ1(x, t f ) = 0. If the initial guess val-
ues of M0(t) can not be predicted correctly before
the inverse calculations, the estimated values of
M(t) will deviate from exact values near the final
time conditions. This is the case for M(t) in the
present study since M(t f ) does not equal to zero
but M0(t) = 0.

However, if we let λ1(x, t f ) = λ1(x, t f − Δt),
where Δt denotes the time increment used in the
finite difference calculation, and apply this ex-
pression to the gradient equation (17), the singu-
larity at t = t f can be avoided in the present study
and reliable inverse solutions can be obtained. It
is obvious from Figures 7 and 8 and errors for
ERR1 to ERR4 that the CGM has been applied
successfully to estimate simultaneously the time-
dependent applied force and moment.

Next, it is of interest to discuss the influence of the
measurement errors on the inverse solutions. First

the measurement error for the displacements mea-
sured by sensors is taken as σ = 3.5×10−3 (about
5 % of the average measured displacements at x1

and x2) with x1 = 0.5 and x2 = 0.95. After 16 it-
erations the estimations can be obtained and are
plotted in Figures 9(a) and 9(b) for the estimated
applied force and moment, respectively. The rela-
tive errors ERR1 to ERR4 are calculated as ERR1
= 5.54 % , ERR2 = 4.47 %, ERR3 = 5.12 % and
ERR4 = 4.87 %, respectively. Second, the mea-
surement error for the displacements measured by
sensors is increased to σ = 7.0×10−3 (about 10
% of the average measured displacements at x1

and x2). After only 6 iterations the applied force
and moment can be obtained and plotted in Fig-
ures 10(a) and 10(b), respectively. The relative
errors ERR1 to ERR4 are calculated as ERR1
= 8.02 % , ERR2 = 6.81 %, ERR3 = 5.03 %
and ERR4 = 7.03%, respectively. From those re-
sults we learned that the reliable inverse solutions
can still be obtained when measurement errors are
considered.

From the above two test cases it is learned that an
inverse forced vibration problem in estimating si-
multaneously the unknown applied force and mo-
ment is now completed. Reliable estimations can
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be obtained when using either exact or error mea-
surements.

7 Conclusions

The Conjugate Gradient Method (CGM) was suc-
cessfully applied for the solution of the inverse
forced vibration problem to determine simultane-
ously the unknown time-dependent applied force
and moment for an Euler-Bernoulli beam by uti-
lizing displacement readings obtained from two
sensors with time. Several test cases involving
different functional forms for applied force and
moment, measurement positions and measure-
ment errors were considered. The results show
that the inverse solutions obtained by the CGM
remain stable and regular as the measurement er-
rors are large. Moreover CPU time needed in the
inverse calculations is very short and the initial
guesses for external forces can be arbitrarily cho-
sen as zero.

Acknowledgement: This work was supported
in part through the National Science Council, R.
O. C., Grant number, NSC-96-2221-E-006-065.

References

Alifanov, O. M. (1994): Inverse Heat Transfer
Problems. Springer-Verlag, Berlin Heidelberg.

Andreaus, U.; Batra, R. C.; Porfiri, M. (2005):
Vibrations of cracked Euler-Bernoulli beams us-
ing Meshless Local Petrov-Galerkin (MLPG)
method. CMES: Computer Modeling in Engi-
neering & Sciences, 9: 111-131.

Bateman, V. I.; Carne, T. G.; Gregory, D. L.;
Attaway, S. W.; Yoshimura, H. R. (1991): Force
reconstruction for impact tests. Transactions of
the American Society of Mechanical Engineers,
Journal of Vibration and Acoustics, 113: 192-200.

Chan, T.H.T.; Ashebo, D. B. (2006): Theoret-
ical study of moving force identification on con-
tinuous bridges, Journal of Sound and Vibration,
295: 870-883.

Chang, J. D.; Guo, B. Z. (2007): Identification
of variable spatial coefficients for a beam equa-
tion from boundary measurements, Automatica,

43: 732-737.

Chao, R. M.; Chen, Y. J.; Lin, F. C. (2001):
Determining the unknown traction of a cracked
elastic body using the inverse technique with the
dual boundary element method, CMES: Com-
puter Modeling in Engineering & Sciences, 2: 73-
85.

Desanghere, G.; Snoeys, R. (1985): Indirect
identification of excitation force by modal coordi-
nate transformation. Proceedings of the 1985 In-
ternational Modal Analysis Conference, Orlando,
FL, 685-690.

Gladwell, G. M. L. (1986): Inverse Problem in
Vibration. The Netherlands, Kluwer Academic
Publishers.

Huang, C. H. (2001): An inverse nonlinear
force vibration problem of estimating the external
forces in a damped system with time-dependent
system parameters, J. Sound and Vibration, 242:
749-756.

Huang, C. H. (2005): A generalized inverse
force vibration problem for simultaneously esti-
mating the time-dependent external forces, Ap-
plied Mathematical Modeling, 29: 1022-1039.

Huang, C. H.; Chen, K.Y. (2007): An inverse
phonon radiative transport problem in estimat-
ing the boundary temperatures for nanoscale thin
films. Int. J. Numerical Methods in Engineering,
69: 1499-1520.

Huang, C. H.; Jan, L. C.; Li, R.; Shih, A.
J. (2007): A three-dimensional inverse problem
in estimating the applied heat flux of a titanium
drilling – Theoretical and experimental studies.
Int. J. Heat and Mass Transfer, 50: 3265-3277.

Huang, C. H.; Li, J. X. (2006): A non-linear op-
timal control problem in obtaining homogeneous
concentration for semiconductor materials. Jour-
nal of Physics D: Applied Physics, 39: 2343-
2351.

Huang, C. H.; Lo, H. C. (2006): A three-
dimensional inverse problem in estimating the in-
ternal heat flux of housing for high speed motors.
Applied Thermal Engineering, 26: 1515-1529.

Huang, C. H.; Wu, H. H. (2006): An iterative
regularization method in estimating the base tem-



254 Copyright c© 2007 Tech Science Press CMES, vol.21, no.3, pp.239-254, 2007

perature for non-Fourier fins. Int. J. Heat and
Mass Transfer, 49: 4893-4902.

IMSL Library Edition 10.0, (1987): User’s
Manual: Math Library Version 1. IMSL, Hous-
ton, TX.

Lasdon, L. S.; Mitter, S. K.; Warren, A. D.
(1967): The Conjugate Gradient Method for Opti-
mal Control Problem. IEEE Transactions on Au-
tomatic Control, AC-12: 132-138.

Lee, H. L. (2006): Inverse estimation of the ta-
pered probe-sample shear force of scanning near-
field optical microscope. Ultramicroscopy, 106:
547-552.

Ma, C. K.; Tuan, P. C.; Lin, D. C.; Liu, C.
S. (1998): A study of an inverse method for im-
pulsive loads estimation. International Journal of
System Science, 29: 663-672.

Michaels, J. E.; Pao, Y. H. (1985): The inverse
source problem for an oblique force on an elastic
plate. Journal of Acoustical Society of American,
77: 2005-2011.

Starek, L.; Inman, D. J. (1991): On the in-
verse vibration problem with rigid-body modes.
Transactions of the American Society of Mechan-
ical Engineers, Journal of Applied Mechanics, 58:
1101-1104.

Starek, L.; Inman, D. J. (1995): A symmetric in-
verse vibration problem with overdamped modes.
Journal of sound and Vibration, 181: 893-903.

Starek, L.; Inman, D. J.; Kress, A. (1992): A
symmetric inverse vibration problem. Transac-
tions of the American Society of Mechanical En-
gineers, Journal of Vibration and Acoustics, 114:
565-568.

Stevens, K. K. (1987): Force identification prob-
lems - an overview. Proceedings of the SEM
Spring Conference on Experimental Mechanics,
Houston, TX, 838-844.

Vinod, K. G.; Gopalakrishnan, S.; Ganguli, R.
(2006): Wave propagation characteristics of rotat-
ing uniform Euler-Bernoulli beams. CMES: Com-
puter Modeling in Engineering & Sciences, 16:
197-208.


