
Copyright c© 2007 Tech Science Press CMES, vol.21, no.3, pp.209-217, 2007

Analytical Investigation of Depth Non-homogeneity Effect on the Dynamic
Stiffness of Shallow Foundations

Sarang Seyrafian1, Behrouz Gatmiri2 and Asadollah Noorzad3

Abstract: The vertical response of a rigid cir-
cular foundations resting on a continuously non-
homogenous half space is studied analytically.
The half space is considered as a liner-elastic
media with a shear modulus increasing continu-
ously with depth. The system of governing dif-
ferential equations, based on the mentioned as-
sumption, consist of two partial differential equa-
tions, is converted to ordinary equations’ system
by employing Hankel Integral transform. Using
the method of extended power series (Frobenius
Method) led to the general solution for the latter
system. The mixed boundary problem is solved
by introduction of functional expansion for the
stress distribution under the foundation using ap-
propriate base functions. Selected numerical re-
sults are presented to demonstrate the effect of
depth non-homogeneity on the vertical dynamic
stiffness (Impedance) of the foundation.

Keyword: Depth Non-homogeneity, Impedance
Function, Circular Footing, Stress Distribution

1 Introduction

Considering a constant depth profile for the shear
modulus of soil in different soil-structure inter-
action problems is a rather poor approximation
to the real sub-soil conditions since soil stiffness
usually varies with depth.

In this paper, as shown in Fig. 1, a rigid circular
foundation, laid on the surface of a compressible
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linear –elastic media is considered. The mass den-
sity and Poisson’s ratio of the media are constant
but the shear modulus varies solely with depth.
The variation of shear modulus is described by
an exponential function as follows [Selvadurai
(1986)].

G(z) = G∞− (G∞ −G0)e−αz (1)

Where G0 and G∞ are the shear modulus at the
nsurface and infinite depth respectively and α is
a constant with the dimension of inverse length,
called coefficient of depth non-homogeneity or
non-homogeneity parameter. By varying the pa-
rameters α , G0 and G∞, a wide range of real soil
strata can be approximately described by Eq. 1.

Figure 1: Circular foundation laid on a continu-
ously non-homogenous half space

The importance of considering soil non-
homogeneity into geotechnical analysis has been
recognized in the past by Gibson (1974).

The fundamental study of Gibson on the response
of a linearly non-homogeneous incompressible
soil with zero surface modulus to a vertical sur-
face load has cased to start a number of subse-
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quent studies to remove the restrictions such as in-
compressibility or vanishing surface modulus and
also considering the various cases of vertical sur-
face or interior loading of a half-space have been
considered [Gibson and Sills (1971)], [Brown and
Gibson (1972)], [Rajabkase (1990)].

The other class of non-homogeneous soil mod-
els refers to semi analytical and numerical meth-
ods using finite element or the other techniques
for multilayered soils whereby the continuous
modulus variation is approximated by a staircase
profile [Gibson et. al. (1971)], [Oner(1990)],
[Tadeu et al.(2004)] or implies a very strong non-
homogeneity which is not appropriate for the soils
[Gazetas(1980)].

A realistic analytical soil model, using the men-
tioned exponential function for the variation of
shear modulus, was adopted by Vrettos to solve
the dynamic and static Boussinesq problem [Vret-
tos (1991),(1988)]. The similar method have
been used by the authors to present Green Func-
tions for a continuously non-homogeneous satu-
rated media and investigate the effect of depth
non-homogeneity on these Functions [Seyrafian
et al. (2006)] and more recently the Green Func-
tions for the Unsaturated soils have been also
presented [Jabbari et al. (2007)]. Also Vret-
tos has used the mentioned fundamental solu-
tion for study the settlement of rectangular foot-
ing on non-homogeneous soil by subdividing the
contact area into a finite number of uniformly
loaded quadratic elements and imposing the rigid
body translation condition for the determining the
stress magnitude at each element[Vrettos (1998)].
For the same model, Selvadurai treated the con-
tact problem of the half-space identation by a rigid
circular foundation by numerically solving the as-
sociated integral equations [Selvaduri(1986)].

In this paper, firstly the system of governing
differential equations, for the mentioned media,
obeying linear-elastic constitutive law is derived.
The system of equations, formed by two coupled
partial differential equations, is converted to or-
dinary differential equations’ system by means of
Hankel integral transforms. Then this system of
equations is solved by use of generalized power
series (Frobenius method) and the general solu-

tion is derived. Considering a functional expan-
sion, using appropriate base functions [Noorzad
(1994)], led to solve the mixed boundary value
problem without any subdivision of the contact
area. The coefficients of the functional expansion
are determined by imposing a unit body transla-
tion and the final solution or expressions for the
displacement field in the any interior point of the
media are derived by satisfying the boundary con-
ditions of the problem including the radiation con-
dition. Finally the dynamic stiffness of the rigid
circular foundation resting on the continuously
depth non-homogeneous half space is presented
and the effect of non-homogeneity parameter is
investigated analytically.

2 Governing Differential Equations

Let (r,θ , z) be a cylindrical coordinate system,
owing to the axisymmetric nature of the problem,
the motions generated by the load configuration
are independent of the angular coordinate θ and
only displacements in the r-and z-directions oc-
cur. So the equations of motion are:

∂σrr

∂ r
+

∂σzr

∂ z
+

σrr −σθθ

r
= ρ ür (2)

∂σrr

∂ r
+

∂σzz

∂ z
+

σrz

r
= ρ üz (3)

Where σi j (i, j = r,θ , z) are the components of
the stress-tensor, ρ denotes mass density of me-
dia and over dotes indicates derivatives respect to
time. According to the linear elastic constitutive
law, the stress-displacement relations can be writ-
ten as:
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(4)

Where λ ∗ and G∗ are complex Lame coeffi-
cients, for simplicity, the hysteretic type dissipa-
tion (frequency-independent) in the media is as-
sumed. It is further assumed that this dissipation
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is the same in bulk (volumetric) and shear strain-
ing. So λ ∗ and G∗ are defined as:

λ ∗ = λ (1+2δ i)
G∗ = G(1+2δ i)

(5)

Where δ is the hysteretic damping coefficient.
The motion is time harmonic. So

ur(r, z, t)= ur(r, z)eiωt

uz(r, z, t) = uz(r, z)eiωt (6)

Using the above relation and the stress-
displacement relations i.e. Eq. 4, the equations
of motions, Eq. 2 and Eq. 3, after some math-
ematical operation are converted as following
governing differential equations :
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Where

ν =
2(1−v)
1−2v

=
λ ∗ +2G∗

G∗ (9)

The boundary conditions of problem are:

@z = 0 σzz(r, z) = dzz(r) =

⎧⎪⎨
⎪⎩

4
∑
j=1

α j f j(r) r ≤ R

0 r > R

(10)

@z = 0 σrz(r, z) = 0 (11)

Where R is the radius of circular foundation and
dzz is the stress distribution under the foundation,
as mentioned before is a functional expansion of
f j ( j = 1,2,3 and 4). These functions are defined

as follows and are depicted in figure 2 [Nourzad
(1994)]:

f j(r) =

{
p+1
πR2

[
1−( r

R

)2
]p

, p = j−2
2 r ≤ R

0 r > R

(12)

Figure 2: The base functions for the considered
stress distribution

In addition, the solution must be such that the
stresses and displacements are bounded at a re-
mote distance and only outward waves propagat-
ing from the source appear (radiation condition).

The two coupled second-order partial differential
equations i.e. Eqs. (8) and (9) subjected to above
boundary conditions defines the boundary value
problem for the vertical response of a rigid cir-
cular foundations resting on a continuously non-
homogenous half space.

3 General Solution

The general solution of the system of governing
differential equations can be obtained by employ-
ing a Hankel transforms for the radial coordinate
r. So we have:

H1(ur(r, z)) = ur(k, z) =
∫ +∞

◦
rur(r, z)J1(kr)dr

H◦(uz(r, z)) = uz(k, z) =
∫ +∞

◦
ruz(r, z)J◦(kr)dr

(13)
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Where k is the Hankel transforms parameter and
Jn is the Bessel function of the first kind of order
n. Substituting of above equations in Eqs. (8) and
(9) and making use of the expressions for Hankel
transform of the derivatives of a function yields:

G∗∂ 2ur

∂ z2 +
∂G∗

∂ z
∂ur

∂ z
+
(
ρω2−k2vG∗)ur

−k (G∗(v−1))
∂uz
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−k
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∂ z
uz = 0 (14)
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∂ur
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∂ z
kur +vG∗∂ 2uz
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+v
∂G∗
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∂uz
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(
ρω2 −k2G∗)uz = 0 (15)

As it is mentioned before, employing the Hankel
transforms made the system of governing partial
differential equations to the above ordinary equa-
tions. To solve the latter system a subsidiary depth
variable is introduced as follows

ξ = E0e−αz (16)

Where

E0 = 1− G∗
0

G∗
∞

(17)

Which transforms the interval 0 ≤ z ≤ H onto
E ≥ ξ ≥ 0, then shear modulus variation, Eq. 1,
reduces to:

G∗ = G∗
∞(1−ξ ) (18)

E0 can be regarded as a measure of the non-
homogeneity of the half space medium. E0 →
0 corresponds to the homogeneous half space
(G0 → G∞). Inserting the above transformations
into the differential equations i.e. Eqs. (14) and
(15) results in:
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Analytical solutions for the system of differ-
ential equations (33)-(36) can be found by us-
ing the Frobenius method (extended power se-
ries method). According to the method, the gen-
eral solutions are given by a linear combination
of power series as follows [Boyce and Diprima
(1992)]:
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4
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∑
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4
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∞
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Where Ai(k) are arbitrary functions to be deter-
mined from appropriate boundary conditions. If
the above power series are used to Eqs. (19) and
(20), we have:

∞
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∞
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So mi are the complex roots of the following equa-
tions:
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det
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and can be described as:

m1 = +R+ Ii m3 = −R− Ii

m2 = R′+ I′ i m4 = −R′ − I′ i R, I > 0
(25)

The coefficients of the power series are deter-
mined for:
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4 Solution of Boundary Value Problem

To satisfy the radiation condition at infinity we
set:

A3 = A4 = 0 (29)

The other boundary conditions should be pre-
sented in the transformed domain, applying the
integral transforms and also the subsidiary depth
variable to relation (4), we have:

σ zz(k,ξ )

=
2G∗v
1−2v

kur +
2(1−v)
1−2v

G∗(−αξ )
duz

dξ

σ rz(k,ξ ) = G∗(−αξ )
(

dur
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)
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Also by applying the Hankel transform to the base
functions, we have:

H0( f j(r)) =
(p+1)2pΓ(p+1)

π(kR)p+1 Jp+1(kR) (31)

So the boundary conditions (10) and (11) in the
transformed domain can be written as:
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(
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)
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Inserting the general solution, based relations (21)
and (22) to the above boundary conditions we
have:
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Solving the above system of simultaneous equa-
tions, leads to determination of A1(k), A2(k). Sub-
stituting these coefficients to Eqs. (21) and (22)
and performing the inverse Hankel transforms, re-
sults in the following explicit solution for the dis-
placement field at any point within domain of the
non-homogeneous elastic half-space:

ur(r,ξ ) =
∫ +∞

0
k
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2
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As the definition of Impedance function, the nor-
mal displacement under the foundation should be
considered as unit. So the normal displacement
is assumed to unit at 4 optional points under the
foundation. So we have:

uz(r j,ξ ) = 1.0 0 < r j < R j = 1,2,3 and 4

(38)

If the above system of 4 linear equations is solved,
the coefficients of α j ( j = 1,4) will be deter-
mined. The introduced base functions for the
stress distribution under the foundations have an
interesting characteristic as follows:∫ R

0
(2πr) f j(r)dr = 1 (39)

So the force under the foundation is derived as:

F =
∫ R

0
σzz × (2πr)dr

=
∫ R

0

4

∑
j=1

α j f j(r)× (2πr)dr =
4

∑
j=1

α j

(40)

on the other hand as the definition of Impedance
function, we have:

K(ω) =
F
uz

=
F
1

=
4

∑
j=1

α j (41)

5 Results

The presented analytical solution in the previous
sections has been applied to investigate the depth
non-homogeneity effect on dynamic response of
the circular foundation or in the other words the
Impedance function of the foundation utilizing
the dimensionless variables as follows:

Re(Uz) =
Re(Uz)

R

Im(Uz) =
Im(Uz)

R

Re(K) =
Re(K)
G0R

Im(K) =
Im(K)
G0R

ω =
ωR
vs

r =
r
R

(42)

Where Re(Uz) and Im(Uz) are the real and imagi-
nary parts of dimensionless displacement and also
Re(K) and Im(K) are the real and imaginary parts
of dynamic stiffness or impedance function and ω
and r are the dimensionless frequency and polar
radius or distance from the center of the circular
foundation.

In order to study the effect of depth non-
homogeneity on the dynamic response of the
media , the variation of dimensionless real and
imaginary parts of vertical displacements ver-
sus dimensionless distance are illustrated in fig-
ures 3 and 4 for different values of depth non-
homogeneity parameter in each figure and for the
different frequencies. As it is clearly visible the
displacement under the foundation (0 < r < 1.0)
equals to unit. The model’s properties are given in
Tab. 1. Also in Fig. 5 and Fig. 6, The diagrams of
real and imaginary parts of impedance function
versus frequency are drawn to show clearly how
the dynamic behavior of foundation is dependent
to non-homogeneity parameters i.e. G0

G∞
and α .

Table 1: Selected models’ properties

No Model’s Parameter Value Unit
1 Shear modulus at surface (G0) 18 Mpa
2 Mass density of soil (ρ) 1855 kg/m3

3 Poisson ratio (v) 0.3 —-
4 Hysteretic damping (δ ) 0.04 —-

To validate the formula derived above, the pre-
sented solution is computed for the state when
G0/G∞ → 1 and compared with the classic solu-
tions available in literature for the homogeneous
state. The agreement of the results is found to be
excellent [Noorzad (1994)].

6 Conclusion

The effect of depth non-homogeneity on the stiff-
ness of a circular shallow foundation is studied
analytically. The mixed boundary problem has
been solved by using a functional expansion for
the stress distribution under the foundation. By
choosing exponential function for the shear mod-
ulus depth-variation, the boundary value problem
is solved by applying Hankel integral transform
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ω = 1 ω = 3

Figure 3: Variation of real part of vertical displacements versus displacement for different depth non-
homogeneity parameters ( G0

G∞
= 0.5)

ω = 1 ω = 3

Figure 4: Variation of imaginary part of vertical displacements versus displacement for different depth non-
homogeneity parameters ( G0

G∞
= 0.5)

and using the extended power series method. Se-
lected numerical results including the variation of
real and imaginary parts of dynamic stiffness of
the foundation versus frequency for different val-
ues of depth non-homogeneity parameter show
the Impedance function of the media is depen-
dant to shear modulus distribution and depth non-
homogeneity.
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