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Asymptotic Analysis for the Coupled Wavenumbers in an Infinite
Fluid-Filled Flexible Cylindrical Shell: The Axisymmetric Mode

Abhijit Sarkar1 and Venkata R. Sonti1

Abstract: The coupled wavenumbers of a fluid-
filled flexible cylindrical shell vibrating in the ax-
isymmetric mode are studied. The coupled dis-
persion equation of the system is rewritten in the
form of the uncoupled dispersion equation of the
structure and the acoustic fluid, with an added
fluid-loading term involving a parameter ε due to
the coupling. Using the smallness of Poisson’s ra-
tio (ν), a double-asymptotic expansion involving
ε and ν2 is substituted in this equation. Analytical
expressions are derived for the coupled wavenum-
bers (for large and small values of ε). Different
asymptotic expansions are used for different fre-
quency ranges with continuous transitions occur-
ring between them. The wavenumber solutions
are continuously tracked as ε varies from small
to large values. A general trend observed is that
a given wavenumber branch transits from a rigid-
walled solution to a pressure-release solution with
increasing ε . Also, it is found that at any fre-
quency where two wavenumbers intersect in the
uncoupled analysis, there is no more an intersec-
tion in the coupled case, but a gap is created at that
frequency. Only the axisymmetric mode is con-
sidered. However, the method can be extended to
the higher order modes.

1 Introduction

Of the several problems in structural acoustics,
wavenumber characteristics of a fluid-filled infi-
nite flexible cylindrical shell have drawn a great
deal of attention as evidenced by the related vol-
ume of work. The fluid-shell system forms a
coupled waveguide in which energy propagates
long distances with local exchanges occurring be-
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tween the fluid and the shell. In contrast to
planar fluid-structure problems, this fluid-shell
system poses an additional challenge by hav-
ing the motion in the three coordinate directions
coupled due to the shell curvature. One com-
mon question of interest in this system is how
the in vacuo shell wavenumbers get modified
due to the presence of the fluid and also how
the acoustical wavenumbers get modified when
the fluid is in contact with a flexible structure.
These questions have been answered through nu-
merical simulations where individual system pa-
rameters were varied [Fuller and Fahy(1982),
Pavic(1990), Cabelli(1985), Ko(1994)]. How-
ever, this numerical approach, where one chooses
the fluid/structure parameters discretely and com-
putes a single wavenumber branch, becomes labo-
rious if one wishes to see the full character of the
solution over the parameter space. Such a contin-
uous tracking of solutions can be efficiently done
using asymptotic methods.

The essence of asymptotic analysis is to arrive
at a solution for a complicated system which in
some way is near to a solvable simpler system
with known analytical solutions. Using asymp-
totics, analytical expressions can be found for the
complicated system also and these expressions are
slightly modified (or perturbed) versions of those
of the simpler system. This method is widely
prevalent in solving for weakly nonlinear systems
[Nayfeh(1985)]. Symbolic computation packages
(like Maple) provide a good platform for such
lengthy calculations.

Defining the fluid-loading effect in the form
of a perturbation parameter, asymptotic anal-
ysis has been used to analyze structures in
contact with infinite acoustic domains for
plane [Morse and Ingard(1968), Crighton(1989),
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Sorokin(2005)] and cylindrical [Scott(1988)] ge-
ometries. In contrast, for systems with finite
acoustic domains, such as a flexible acoustic
duct, studies have been mainly of experimen-
tal [Huang, Choy, So and Chong(2000), Choi
and Kim(2002), Au-yang(1983)] or of numer-
ical [Fuller and Fahy(1982), Pavic(1990), Ca-
belli(1985), Ko(1994), Lie, Yu and Zao(2001),
Pluymers, Desmet, Vandepitte and Sas(2005),
Soares and Mansur(2005), Soares, Mansur and
Lima(2007)] nature. Applications of the asymp-
totic method to finite structural-acoustic systems
have not come to our notice. Recently, we
have undertaken an analysis of a simple two di-
mensional structural acoustic waveguide system
[Sarkar and Sonti(2007)].

In this study, we consider an infinite fluid-filled
flexible circular cylindrical shell (see figure (1)).
Our interest is to find the coupled structural acous-
tic wavenumbers for this system as perturba-
tions to the uncoupled structural and acoustical
wavenumbers using asymptotics. Numerical solu-
tions to this problem have already been presented
[Fuller and Fahy(1982)]. Here, we wish to bring
more insight into the character of the wavenum-
ber solutions using asymptotics. Using a fluid-
loading related perturbation parameter we intend
to present the full spectrum of the wavenumber
solutions as this parameter is increased from zero
to infinity. Only the axisymmetric mode (n =
0) will be considered in this study. As men-
tioned earlier, the inherent nature of the asymp-
totic method provides analytical expressions for
the coupled wavenumbers in terms of the uncou-
pled expressions and the fluid-loading parameter.

In the following section, the uncoupled acoustic
waves propagating in the infinite cylindrical duct
and the structural waves in the in vacuo infinite
cylindrical shell will be presented.

2 Uncoupled analysis

In this section, we shall derive expressions for the
wavenumbers of the acoustic medium in a cylin-
drical shell and also the wavenumbers of an infi-
nite cylindrical shell vibrating in vacuum. These
shall be referred to as the uncoupled acoustic and
structural wavenumbers, respectively. Note, the
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Figure 1: Schematic of the model showing the
fluid-filled flexible cylindrical shell of infinite
length.

uncoupled structural wavenumber is simply the in
vacuo wavenumber. On the other hand, the un-
coupled acoustic wavenumber is the wavenum-
ber of the acoustic wave in the infinite cylindrical
duct. This wavenumber depends on the acoustic
boundary condition on the cylinder walls and can
have two forms. The first when the cylinder wall
is rigid (acoustic velocity is zero) and the second
when the cylinder wall has a pressure-release con-
dition (acoustic pressure is zero). The uncoupled
acoustic wavenumber is presented in these two
forms because as will be seen later, the coupled
wavenumbers will turn out to be perturbations to
these two forms under various situations.

In the following, we shall present derivations
for the above mentioned uncoupled acoustic and
structural wavenumbers at a fixed frequency ω .
These derivations are available in Morse and In-
gard(1968) and Fuller(1981). However, they
are presented here in brief for completeness.
Throughout the article a harmonic time (t) depen-
dence of the form eiωt is assumed.

2.1 The uncoupled acoustic wavenumbers (κa

and κa0)

For the acoustic fluid, the governing equation at a
frequency ω is given by

∇2 p+
ω2

c2
f

p = 0, (1)

where p is the acoustic pressure and c f is the sonic
velocity in the acoustic fluid. Also, through the
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Euler equation we have the following relation be-
tween the acoustic pressure, density of the acous-
tic medium (ρ f ) and the acoustic velocity (v)

∇p = −ρ f
∂v
∂ t

. (2)

The ∇ and ∇2 operators in cylindrical coordinates
(r, θ , x) are given by [Kreyszig(1993)]

∇ ≡ ∂
∂ r

êr +
1
r

∂
∂θ

êθ +
∂
∂x

êx and

∇2 ≡ ∂ 2

∂ r2 +
1
r

∂
∂ r

+
1
r2

∂ 2

∂θ 2 +
∂ 2

∂x2 ,

(3)

where êr, êθ and êx represent unit vectors in the
radial, circumferential and axial directions, re-
spectively.

Plane wave in a rigid-walled duct: For a rigid-
walled duct, a solution to equation (1) of the form

Pe
±i ω

c f
x

exists for all frequencies. With eiωt con-
vention, the plane wave traveling in the +x direc-

tion is given by Pe
iωt−i ω

c f
x
. The radial velocity is

zero everywhere (by equation (2)) including the
duct wall. Thus, the plane wave propagates only
in a rigid-walled duct.

Cut-on waves: Additionally, there are cut-on
waves (with two different wall conditions spec-
ified below) which propagate beyond a cut-on
frequency. In the following, we shall present a
derivation for these waves for a circumferential
mode of arbitrary order n and specialize to the ax-
isymmetric mode (n = 0) later. To find the cut-
on wave solutions, we use the method of sepa-
ration of variables [Kreyszig(1993)]. We substi-
tute p(r,θ ,x) = R(r)X(x)cos(nθ ) (this form cor-
responds to the nth circumferential mode hav-
ing n nodal diameters in the cross-section) in
equation(1) to get

1
R

(
∂ 2R
∂ r2 +

1
r

∂R
∂ r

)
− n2

r2 +
1
X

∂ 2X
∂x2 +

ω2

c2
f

= 0.

Using separability arguments, we have(
d2R
dr2 +

1
r

dR
dr

)
+
(

k2
s −

n2

r2

)
R = 0

⇒ R(r) = Jn(ksr),
(4a)

and
d2X
dx2

+k2
x X = 0 ⇒ X(x) = e−ikxx, (4b)

where

k2
x +k2

s =
ω2

c2
f

. (4c)

Equation (4a) is the familiar Bessel’s equation
[Kreyszig(1993)] for the pressure along the radial
direction, the solutions to which are the Bessel
functions (Jn(ksr)) and the Neumann functions
(Nn(ksr)) of the nth order. The Neumann functions
have a singularity at r = 0 and cannot be used for
a cylindrical cavity (like the present case) where
r = 0 is part of the domain. Thus, the wave solu-
tion (traveling in the +x direction) for the acoustic
pressure of the nth cut-on wave is given by [Morse
and Ingard(1968)]

pn(r,θ ,x, t) = PnJn(ksr)cos(nθ )e−ikxxeiωt , (5)

where the arbitrary constant Pn gives the ampli-
tude.

The value of ks in the above equation depends on
the boundary condition at the cylinder wall (r=a).
We consider two different boundary conditions at
the wall, the rigid wall (radial velocity is zero) and
the pressure release (p = 0). The corresponding
ks can be obtained by solving the following tran-
scendental equations:

J′n(ksa)=0, for a rigid-walled cylindrical duct and

Jn(ksa)=0, for a pressure release cylindrical duct.

Values for ksa for the rigid-walled and the
pressure-release condition are given in Table 1 for
n = 0. Having obtained ks, the axial wavenumber
(kx) may be obtained by using equation (4c).

It is useful to view the radial pattern for various
cases of cut-on modes. The pressure values given
by R(r) = J0(ksa r

a) (ksa is given by Table 1) are
plotted in figure (2) for the case when n = 0. The
frequencies beyond which these modes propagate
are also indicated in the figure.

In this work, we shall consider the plane wave
which propagates for all frequencies in the rigid-
walled cylinder and the first cut-on wave in a pres-
sure release cylinder. The axial wavenumber (kx)
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First rigid-walled cut-on mode, > 3.832 c /afω First pressure release cut-on mode, > 2.405 c /afω

Second rigid-walled cut on mode, > 7.016 c /afω
Second pressure-release cut-on mode, > 5.52 c /afω

Figure 2: Cut-on acoustic modes in cylindrical duct for the axisymmetric mode (n = 0).

corresponding to these two waves will be denoted
by κa and κa0, respectively. The presence of a
flexible structure modifies these two uncoupled
waves. In a later section, coupled wavenumbers
corresponding to these two waves shall be found
using asymptotics.

Table 1: ksa values for a cylindrical duct under
different boundary conditions.

Mode Rigid-walled Pressure-release
ksa 0 (plane wave) 2.405 (cut-on)

2.2 The uncoupled structural wavenumbers
(κB(ν) and κL(ν))

The governing equations for the in vacuo free vi-
brations in the nth circumferential mode, of an in-
finite cylindrical shell of radius a, thickness h, at
a circular frequency ω are of the form

[
L
]⎧⎨⎩

un

vn

wn

⎫⎬
⎭=

⎧⎨
⎩

0
0
0

⎫⎬
⎭ , (6)

where un, vn, wn are the vibrational amplitudes
in the axial, circumferential and radial directions,
respectively and L is a matrix operator. Differ-
ent shell theories have their corresponding form
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Table 2: Expressions for the non-dimensional parameters in the matrix operator L in equation (6).

Non-dimensional Parameter Description
β 2 = h2

12a2 shell thickness parameter
κ = kxa non-dimensional wavenumber (in the x direction),

kx being the corresponding dimensional quantity
Ω = ωa/cL frequency non-dimensionalized with respect to

the ring frequency

for this matrix operator [Leissa(1973)]. We shall
use the Donell-Mushtari theory for the cylindrical
shell [Donell(1976)], where, for a shell material
with density ρs, Poisson’s ratio ν and extensional
phase speed cL, vibrating in circumferential mode
n, the components of L are as follows

L11 = −Ω2 +κ2 +
1−ν

2
n2,

L22 = −Ω2 +
1−ν

2
κ2 +n2,

L33 = −Ω2 +1+β 2 (κ2 +n2)2
,

L13 = L31 = νκ ,

L12 = L21 =
1
2
(1+ν)nκ ,

L23 = L32 = n2.

(7)

The non-dimensional terms used in the equation
above are explained in Table 2.

It is apparent from the non-diagonal form of L
that the essential complication introduced due to
the shell curvature is coupling of the motions in
the three perpendicular directions. The radial and
circumferential directions are kinematically cou-
pled through curvature. The axial and radial vi-
brations are coupled due to the Poisson’s effect
[Donell(1976)].

As stated earlier, we shall consider only the ax-
isymmetric mode (viz. with n = 0). This mode
is exclusively due to the extensional vibration of
the shell wall and so the torsional vibration is
totally uncoupled from the radial and axial vi-
brations. This is also seen from the form of L
having L21=L12=L23=L32=0. One can find this
torsional mode solution to equation (6) as κ =√

2
1−ν Ω, propagating at a speed of cT = ω/k =

cL

√
(1−ν)/2. Further, for this mode, it can be

seen that (un = wn = 0, vn �= 0). This mode will

be excluded from further discussion in the current
uncoupled analysis and eventually in the coupled
analysis also.

After excluding the torsional mode, the coupled
axial and radial motions may be represented by a
reduced set of equations as follows[

L11 L13

L31 L33

]{
un

wn

}
=
{

0
0

}
, (8)

where L11, L13, L31 and L33 are given by equa-
tion (7) as before. To find the free-wave solu-
tion, the determinant of the reduced matrix needs
to be equated to zero. So far, in the litera-
ture, solutions to cylindrical shell waves have
largely been found using either numerical tech-
niques [Fuller(1981)] or analytical methods in-
volving approximations [Fahy(1989)]. Below, we
present the same wavenumber solutions using the
asymptotic method.

Asymptotic analysis for the in vacuo shell
wavenumbers: Using equation (7), the determi-
nant of the reduced matrix in equation (8) can be
expanded to obtain the dispersion relation as fol-
lows

L︷ ︸︸ ︷(
κ2 −Ω2)(κ4 − Ω2 −1

β 2

)
︸ ︷︷ ︸

B

−ν2

β 2 κ2 = 0, (9)

where, ν2 � 1, serves as the asymptotic parame-
ter.

With ν = 0, the solution of the above dispersion
relation is given by the roots of the two polyno-
mials indicated by overbraces and underbraces.
The term L has roots κ = ±Ω which implies
kx = ±ω/cL (the longitudinal wave in the x di-
rection), with the associated displacement in the
axial direction only (viz. un �= 0, wn = 0). The
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term B in the equation (9) has the following roots

κ = ± 4

√
Ω2 −1

β 2 , ±i 4

√
Ω2 −1

β 2 , (10)

where, from the matrix equation (8) it is clear that
the associated displacement occurs in the radial
direction only (viz. wn �= 0, un = 0) . Also, for
Ω�1, κ ∝

√
Ω. Thus, this root resembles the dis-

persive bending (or flexural) wave solution of the
plate. Henceforth, for demonstrating the asymp-
totic method we shall consider only the real posi-
tive roots.

With ν �= 0 such that 0<ν2�1 (as is usually the
case in practice), we expect solutions to equation
(9) to be close to the solutions described above
(with ν = 0). The solution close to Ω, will be re-
ferred to as κL(ν) (L for longitudinal), while the
solution close to that in equation (10) will be re-
ferred to as κB(ν) (B for bending). The solutions
to (9) should be such that κL(0) = Ω and κB(0)
should equal that given in equation (10).

With ν = 0, we have seen above that the bend-
ing and longitudinal displacements remain uncou-
pled. However, with ν �= 0, we no more get the as-
sociated displacement profiles to be purely longi-
tudinal (viz. w �= 0, u = 0) or purely bending (viz.
w �= 0, u = 0). They are still perturbations to dis-
placement profiles with ν = 0, but now due to the
coupling, the displacements are dominantly lon-
gitudinal (viz. u � w �= 0) and dominantly flexu-
ral (viz. w � u �= 0), respectively. Using a regu-
lar perturbation method [Nayfeh(1985)], we find
wavenumber solutions (given by equation 12 and
13) correct upto O(ν2). Details of the derivation
are shown seperately in Box (1).

In figures (3) and (4), overlaid plots of the above
solutions (viz. equations (12) and (13), respec-
tively) along with the numerical solution of the
dispersion equation (9) are presented. The pa-
rameters chosen are ν = 0.25 and h/a = 0.05.
Note, for the axisymmetric mode, the bending
wavenumber for Ω < 1 is complex (see figure (4a)
) and hence the bending wave propagates only
for Ω > 1 [Fahy(1989)]. Also, we observe that
the wavenumber for the longitudinal wave is dis-
continuous at Ω = 1 [Fuller(1981)] (for both the
asymptotic and the numerical solution).

Substituting κ = k0 + ν2k1 in equation (9)
and performing a series expansion about ν = 0,
we get

(
k0

2 −Ω2)(k0
4 − Ω2 −1

β 2

)
+
[

4
(
k0

2−Ω2)k0
3k1

+2k0k1

(
k0

4−Ω2 −1
β 2

)
−k0

2

β 2

]
ν2+O

(
ν4)=0.

(11)

Equating the O(1) term to zero we obtain
the roots of k0. It may be observed that k0 is
identical to the roots of κ with ν = 0.

Putting k0=Ω, in the equation above, at
O(ν2) we get

k1 =
1
2

Ω
Ω4β 2−Ω2 +1

.

Thus, we have

κL(ν) = Ω+
1
2

Ων2

Ω4β 2 −Ω2 +1
+O(ν4). (12)

Using k0 = 4

√
Ω2−1

β 2 in the O(1) term of

equation(11) we get

k1 =
1

4β 2 4

√
Ω2−1

β 2

(√
Ω2−1

β 2 −Ω2
) .

Thus, we have

κB(ν) = 4

√
Ω2 −1

β 2

+
1

4β 2 4

√
Ω2−1

β 2

(√
Ω2−1

β 2 −Ω2
)ν2 +O(ν4).

(13)
Box 1: Asymptotic derivation for the in vacuo
longitudinal and flexural wavenumbers of a cylin-
drical shell.
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Figure 3: Wavenumber corresponding to the dom-
inantly longitudinal mode obtained through the
asymptotic method and the numerical solution for
ν = 0.25 and h/a = 0.05.

3 Formulation of the Coupled problem

The derivation of the coupled dispersion relation
in a fluid-filled cylindrical shell for a general cir-
cumferential mode of order n has been presented
by Fuller and Fahy(1982). In this section, we
present this derivation for the sake of complete-
ness.

For a fluid-filled cylindrical shell, the governing
equation is arrived at by including the effect of
the acoustic pressure as a forcing term in equation
(6). Thus, we have

[
L
]⎧⎨⎩

un

vn

wn

⎫⎬
⎭=

⎧⎨
⎩

0
0

p̂n(a,θ )

⎫⎬
⎭ , (14)

where L is given by equation (7) and p̂n(a,θ ) is
the acoustic pressure amplitude on the cylindri-
cal cavity wall obtained from equation (5). Note,
pn(a,θ ,x, t) = p̂n(a,θ )e−ikxxeiωt . un, vn, wn are
the vibrational amplitudes as defined in Section
2.2.

Also, at the fluid-structure interface, the acous-
tic velocity must equal the structural velocity in
the radial direction. Using Euler equation (2), we
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Figure 4: Wavenumber corresponding to the
dominantly bending mode obtained through the
asymptotic method and the numerical solution for
ν = 0.25 and h/a = 0.05. (a) Below the ring
frequency (Ω < 1) (b) Above the ring frequency
(Ω > 1).

have

ω2ρ f wn =
∂ p̂n

∂ r

∣∣∣∣∣
r=a

. (15)

Using the form of acoustic pressure obtained in
equation (5), we get the following relation be-
tween Pn and the amplitude of radial vibration wn

Pn =
ω2ρ f

kr
sJ′n(ksa)

wn. (16)

Thus, the acoustic pressure at the fluid-structure
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interface is given by

p̂n(a,θ ) = wn
ω2ρ f Jn(ksa)

ksJ′n(ksa)
cos(nθ ). (17)

Substituting the above relation in equation (14)
we find the following governing equation for free
wave propagation in a fluid-filled cylindrical shell
in the nth circumferential mode as

[
L
]⎧⎨⎩

un

vn

wn

⎫⎬
⎭=

⎧⎨
⎩

0
0
0

⎫⎬
⎭ , (18)

where all elements of the matrix L except L33 are
given by equation (7). The L33 term in the equa-
tion above is modified by a fluid loading term as
follows [Fuller and Fahy(1982)]

L33 = −Ω2 +1+β 2 (κ2 +n2)2

− Ω2

ξ

(
ρ f a
ρsh

)
Jn(ξ )
J′n(ξ )

, (19)

where ξ =

√(
cL

c f

)2

Ω2 −κ2 and κ = kxa.

For n = 0, as in the in vacuo analysis, the torsional
mode (un = wn = 0, vn �= 0) remains uncoupled
(even after fluid loading) and after dropping this
mode a reduced 2×2 system is obtained.

4 Solution of the coupled problem

The coupled dispersion relation for the axisym-
metric mode is found by equating the determinant
of L in equation (8) to zero with n = 0. Note that
L11, L13 and L31 are given by equation (7) and L33

is given by equation (19). With J ′
0(x)=−J1(x) and

upon suitably rearranging the terms we get

L︷ ︸︸ ︷(−Ω2 +κ2)[ B︷ ︸︸ ︷(−Ω2 +1+β 2κ4) R︷ ︸︸ ︷
J1 (ξ )

A︷︸︸︷
ξ

+Ω2
(

ρ f a
ρsh

)
J0 (ξ )︸ ︷︷ ︸

F

]−ν2κ2J1 (ξ )ξ︸ ︷︷ ︸
P

= 0. (20)

The physical relevance of each term in the equa-
tion above is described as follows:

• The term L equated to zero, represents the
dispersion relation corresponding to the lon-
gitudinal wave in the axial direction for
the in vacuo cylindrical shell with ν = 0
(κL(ν),ν = 0).

• The term B equated to zero, represents the
dispersion relation corresponding to the flex-
ural wave for the in vacuo cylindrical shell
with ν = 0 (κB(ν),ν = 0).

• The term R equated to zero, represents the
acoustic cut-on waves in the rigid-walled
cylindrical duct.

• The term A equated to zero, represents
the acoustic plane wave in the rigid-walled
cylindrical duct (κa).

• The term P represents the Poisson’s effect
for the structure. We have observed earlier
(see 2.2), that this can be taken into account
by considering ν as a small asymptotic pa-
rameter and accurate solutions can be ob-
tained for 0 < ν2 � 1.

• The term F represents the effect of fluid-
loading.

In equation (20), the fluid-loading effect comes
from ρ f a

ρsh (the ratio of mass/area of the fluid to
the structure) which will be denoted by ε . It can
be seen clearly that this coupled dispersion equa-
tion is in the form of a modification (terms F and
P) to the uncoupled structural dispersion equation
(terms L and B) and the uncoupled acoustic dis-
persion equation for the rigid-walled duct (terms
R and A ).

We will consider the two cases 0<ε�1 and 1�
ε <∞ so that F becomes an asymptotic term, small
or large. Note that P being O(ν2) is already a
small asymptotic term. With this the following
two cases arise:

1. When F and P are zero (i.e. ε and ν are
zero), the roots of equation (20) are the roots
of L, B, R and A. Hence, when F is of magni-
tude O(ε) (0<ε�1), and P is an O(ν2) term
(ν2�1 in practice), the solutions should be
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perturbations of the roots of L, B, R and A
(viz. the uncoupled wavenumbers).

2. On the other hand, when P→0 (i.e. ν→0)
but F→∞ (i.e. ε→∞), the solution of equa-
tion (20) has a set of roots which approach
the roots of J0(ξ )=0. These roots repre-
sent the wavenumber for the pressure-release
acoustic duct ( the first of which is κa0). Sim-
ilarly, there is the perturbation to the roots of
L (the longitudinal wave), which we will not
discuss further in this article.

From the previous section on uncoupled dy-
namics, three wavenumbers, namely κa and κa0

and κB(ν), representing the wavenumbers of the
acoustic plane wave, the first pressure-release cut-
on and the in vacuo bending wave, respectively,
were found. In the following subsections, coupled
wavenumbers shall be found as perturbations to
these and will be denoted by κa(ε ,ν), κa0(ε ,ν)
and κB(ε ,ν), respectively. The notation uses ε
and ν as arguments because ε is the fluid-loading
parameter and ν2 falls out as a second perturba-
tion parameter as in the in vacuo case (see the no-
tation in Table 3). The continuous transition of
the solution as ε goes from large to small values
will come out from the derivations to follow.

Table 3: Notation for the uncoupled wavenumbers
and the corresponding coupled wavenumbers.

Wavenumber uncoupled coupled
Bending wave κB(ν) κB(ε ,ν)
Rigid-walled acous-
tic plane wave

κa κa(ε ,ν)

First acoustic pres-
sure release cut-on

κa0 κa0(ε ,ν)

4.1 Large ε: pressure release duct mode
(κa0(ε ,ν))

To model the effect of large ε , we make a trans-
formation of the form ε ′ = 1/ε in equation (20),
where 0<ε ′�1. This results in the following

equation

(−Ω2 +κ2)[ε ′ (−Ω2 +1+β 2κ4)J1(ξ )ξ
+Ω2J0(ξ )

]−ε ′ν2κ2J1 (ξ ) = 0. (21)

The regular perturbation method with one small
parameter was illustrated for the in vacuo struc-
tural solution in the earlier section. A similar ap-
proach is adopted in the present case for the two
small parameters ε ′ and ν2. A solution of κ in
terms of the asymptotic parameters is assumed as
κ = k0 +b1ν2 +a1ε ′. This is substituted in equa-
tion (21) and a double series expansion in ε ′ and
ν is obtained. Balancing terms at O(1) we arrive
at the following equation

L︷ ︸︸ ︷
(−Ω2 +k2

0)Ω2J0

⎛
⎝
√(

cLΩ
c f

)2

−k2
0

⎞
⎠

︸ ︷︷ ︸
A

= 0. (22)

Thus, the solutions for k0 are the in vacuo lon-
gitudinal wavenumber (ignoring Poisson’s effect,
κL(ν) at ν = 0) and κa0 given by J0(A) = 0. We
shall find κa0(ε ,ν), the perturbation to κa0. Us-
ing the values given in Table 1, k0 is given by the
following equation(

cLΩ
c f

)2

−k2
0 = 2.405.2 (23)

At O(ε ′), we obtain the following equation

(−Ω2 +k0
2)[(−Ω2 +1+β 2k0

4)J1 (ξ0)ξ0

+
k0a1Ω2J1 (ξ0)

ξ0

]
= 0, (24)

where, k0 is the root of equation (23) and

ξ0 =

√(
cL

c f

)2

Ω2 −k0
2.

Thus, we have

a1 = −
(−Ω2 +1+β 2k0

4)[( cLΩ
c f

)2 −k2
0

]
k0Ω2 (25)
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Similarly, balancing terms at O(ν2), we obtain an
equation for b1. b1 is found to be zero. Thus,
the asymptotic solution has no O(ν2) term. This
is expected as in equation (21) ν2 is multiplied
by ε ′. Physically, it means that the wavenum-
ber corresponding to the pressure-release mode is
mainly affected by fluid-structure coupling. The
Poisson’s ratio effect is much lesser.

The correction factor a1 remains small for all fre-
quencies except near the cut-on frequency of the
first pressure-release mode. The asymptotic solu-
tion in this range is compared with the numerical
solution in figure (5) for h/a = 0.1, cL/c f = 2,
ε = 1.25 (ε ′ = 0.8) and ν = 0.25 along with κB(ν)
and κa0. As is seen from the plot, the coupled
wavenumber is a perturbation to κa0.
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Figure 5: Coupled wavenumber solution near the
first acoustic pressure-release cut-on mode for
h/a = 0.1, cL/c f = 2, ε = 1.25 and ν = 0.25.

The arguments given above show that for large ε
the coupled wavenumber is close to the uncoupled
pressure-release wavenumber. The difference be-
tween these two branches decreases with increas-
ing ε . For the parameters chosen in figure (5), we
have observed that with ε ≈ 2, the two branches
are difficult to distinguish visually. To make the
distinction clear, we have chosen a not so large
value of ε as 1.25.

Note, the sign of the perturbation (i.e. positive or
negative) changes at the frequency where κB(ν)
intersects κa0. Below this frequency, κa0(ε ,ν)

is greater than κa0 and vice-versa. Thus, below
this frequency, due to the presence of the flexi-
ble structure the compressibility of the acoustic
fluid is increased and similarly decreased above
this frequency.

4.2 Small ε: Bending wave and acoustic plane
wave (κB(ε ,ν) and κa(ε ,ν))

Coincidence frequency is the frequency at which
the in vacuo bending wavenumber equals the
wavenumber of the acoustic plane wave. The
asymptotic derivations in this section will consist
of two separate expansions for both κB(ε ,ν) and
κa(ε ,ν), one valid away from the coincidence fre-
quency and the other valid near the coincidence
frequency.

Away from the Coincidence frequency: For the
case when 0 < ε , ν2 � 1, we adopt a double
asymptotic expansion method as above to obtain
the solutions for the coupled dispersion equation
(20). Substituting κ = k0+a1ε+b1ν2 in equation
(20) we perform a series expansion in ε and ν .
Balancing terms at O(1), we get the following
equation for k0

(−Ω2 +k0
2
)(−Ω2 +1+β 2k0

4
)

· J1

(√
cL

c f

2
Ω2 −k0

2

)√
cL

c f

2
Ω2 −k0

2 = 0.

The above equation at O(1) carries solutions to
many waves. The possible solutions for k0 are in-
dicated in Table 4 along with the physical nature
of the solutions.

At present, we shall be interested to find the
perturbations corresponding to the bending wave
(κB(ν)) and the acoustic plane wave (κa). The
procedure is similar in case of other solutions. Se-
lecting the k0 corresponding to the bending wave
(shown in Table 4), we obtain the following equa-
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Table 4: O(1) solution for coupled wavenumbers with small fluid-loading.

k0 Physical Description
Ω Longitudinal wave (ignoring Poisson’s effect, κL(ν),ν = 0)

(not discussed)
4

√
Ω2−1

β 2 Bending wave (ignoring Poisson’s effect,κB(ν),ν = 0)
cL
c f

Ω Rigid-walled acoustic plane wave κa

Root of Rigid-walled

J1(
√

(cLΩ/c f )
2 −k2) acoustic duct first cut-on (not discussed)

tion at O(ε)(
−Ω2 +

√
(Ω2 −1)β 2

β 2

)
[

Ω2J0 (Θ)+4
((

Ω2 −1
)

β 2)3/4
a1J1 (Θ)

√
c2Ω2 −

√
(Ω2 −1)β 2

β 2

1
β

]
= 0,

⇒ a1 = − Ω2β J0 (Θ)

4ΘJ1 (Θ)((Ω2 −1)β 2)3/4
, (26)

where

Θ =

√
(cL/c f )2Ω2β 2 −√(Ω2 −1)β 2

β 2 .

Similarly, at O(ν2) we obtain the following equa-
tion

−
√

(Ω2 −1)β 2J1 (Θ)
Θ
β 2

+4

(
−Ω2 +

√
(Ω2 −1)β 2

β 2

)
((

Ω2 −1
)

β 2)3/4
b1J1 (Θ)

Θ
β

= 0

⇒ b1 =

− 1
4

β
4
√

(Ω2 −1)β 2
(

Ω2β 2 −√(Ω2 −1)β 2
) .

To find the solution κa(ε ,ν) , we put k0 = cLΩ/c f .
Performing a similar order balance we obtain

a1 =
Ω

cL
c f

[
−Ω2 +1+

(
cLΩ
c f

)4
β 2

] and b1 = 0.

Thus, the asymptotic expressions for these are
given as follows.

κB(ε ,ν)=

4

√
Ω2 −1

β 2 − Ω2β J0 (Θ)ε
4ΘJ1 (Θ) ((Ω2 −1)β 2)3/4

− β ν2

4 4
√

(Ω2 −1)β 2
(

Ω2β 2−
√

(Ω2 −1)β 2
) ,

(27)

κa(ε ,ν)= Ω+
Ω

2

[
−Ω2 +1+

(
cLΩ
c f

)4
β 2

]ε . (28)

Near the Coincidence frequency: The correction
factor a1 obtained for both κa(ε ,ν) and κB(ε ,ν)
becomes large at frequencies near the coincidence
frequency (where κB(ν) = κa). The coincidence
frequency (Ωc) is obtained by equating the com-
ponents B and A in equation (20), for small ν2. It
follows that Ωc and the corresponding wavenum-
ber (κc) are then given by

Ωc =

√√√√1
2

1+
√

1−4β 2(cL/c f )
4

β 2(cL/c f )
4 , κc =

cLΩc

c f
.

For solutions near the coincidence frequency, we
substitute Ω = Ωc + εΨ in equation (20) (where
Ψ is an O(1) quantity). Further simplifying as-
sumptions are made as follows:

1. For real Ωc (see equation above) it is re-

quired to have β 2
(

cL
c f

)4
< 1

4 . Thus, we

may assume that for cases of practical inter-

est β 2
(

cL
c f

)4 � 1.
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2. Due to the assumption (1) above we have

Ωc ≈

√√√√√√1
2

1+
(

1−2β 2 c4
L

c4
f

)
β 2 c4

L
c4

f

=

√√√√√√1
2

2−2β 2 c4
L

c4
f

β 2 c4
L

c4
f

=

√
c4

f

β 2c4
L

−1 ≈ c2
f

β c2
L

and

κc =
c f

β cL
.

3. Due to the form of Ωc and κc obtained above
and assumption (1), Ωc, κc � 1. Thus, for
frequencies around Ωc the term B in equation
(20) may simplified to −Ω2 +β 2κ4.

4. As we are looking for the perturbation so-
lution of the coupled wavenumber around
the coincidence frequency, κ should be such
that −Ω2 + β 2κ4≈0 (near the wavenumber
of the in vacuo structural bending mode) and
κ ≈ cLΩ/c f ( near the wavenumber of the
acoustic plane wave).

5. Due to the latter condition in (4) above, the
argument of the Bessel functions in equation
(20) is small. Note, for small x, J0(x)≈1 and
J1(x)≈x/2.

6. As ν2 is another asymptotic term, it has no
effect on a1 which is the correction term due
to the asymptotic term ε . Hence, the term P
in equation (20) may be neglected for evalu-
ation of the correction factor a1.

Using the above simplifications in equation (20)
the coupled dispersion equation near the coinci-
dence frequency reduces to

−Ω2 +β 2κ4

2

(
c2

LΩ2

c2
f

−κ2

)
+εΩ2 = 0,

where

Ω =
c2

f

β c2
L

+εΨ.

To find κa(ε ,ν) we substitute κ=(cL/c f )(Ωc +
εΨ)+ a1

√
ε in the equation above and perform

a series expansion about ε . Balancing terms at
O(ε) we get a1=±1

2 . Similarly, to find κB(ε ,ν)
substitute κ=

√
(Ωc +εΨ)/β+a1

√
ε and repeat

the process of order balance to get a1=±1
2 .

To choose the appropriate sign of a1 in the above
two cases we use a continuity argument. For
Ω < Ωc, but sufficiently far from Ωc, the correc-
tion term for κa(ε ,ν) (as given in equation (28))
is negative and similarly for Ω sufficiently greater
than Ωc, κa(ε ,ν) is positive. Thus, for continu-
ity it is required to have a1=−1/2 when Ω ≈< Ωc

while for Ω ≈> Ωc, a1=1/2. In case of κB(ε ,ν),
similarly, a1=1/2 when Ω ≈< Ωc and for Ω ≈>

Ωc we have a1 = −1/2. Thus, the coupled acous-
tic wavenumber branch below Ωc continues as the
coupled bending wavenumber beyond Ωc while
the coupled bending wavenumber below Ωc con-
tinues as the wavenumber of the coupled acoustic
plane wave. Each branch encounters a jump at Ωc.
This, phenomenon was also reported by earlier
workers [Fuller and Fahy(1982), Cabelli(1985)].

The asymptotic solution obtained is compared
with the numerical solution in figures (6), (7) and
(8) (showing separate frequency ranges). The pa-
rameter values are h/a=0.1, cL/c f =2, ε=0.2 and
ν = 0.25. As seen from the figures, a continuous
transition is seen across the frequency ranges.

The results below the coincidence are presented
from Ω = 6 onwards, for the sake of clarity.
Even though not shown, the match is good from
Ω = 1 and above. The above coincidence re-
gion is plotted till the frequency at which the
κB(ν) equals the wavenumber of the first rigid-
walled acoustic duct cut-on. At this frequency
again a coincidence-like phenomenon happens
with the first cut-on mode instead of the plane
wave [Fuller and Fahy(1982)]. In this range a1

as given in equation (??) becomes large. An alter-
native asymptotic expansion can be found for this
range.

4.3 A branch greater than κB(ν) and κa

For the easier case of plate geometry, Fahy(1989)
has proved that there exists a coupled wavenum-
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Figure 6: Coupled wavenumber solution below
the coincidence frequency (Ωc) for the fluid-filled
infinite cylindrical shell with h/a=0.1, cL/c f =2,
ε=0.2 and ν = 0.25, vibrating in the axisymmetric
mode (a) for the bending wave (b) for the acoustic
plane wave.

ber branch greater than the b̌ending wavenumber
and the wavenumber of the acoustic plane wave
for all values of the fluid-loading parameter. As
described in Section 4.2, we have been able to
find the asymptotic expressions corresponding to
this branch for small values of ε . However, for
the case of large ε we could not find the asymp-
totic expressions corresponding to this branch. It
was numerically verified that such a branch ex-
ists. The asymptotic solution is rendered difficult
because this branch does not arise as perturbations
to the roots of equation (21) with ε ′ = 0.
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Figure 7: Coupled wavenumber solution near
the coincidence frequency for the fluid-filled in-
finite cylindrical shell with h/a=0.1, cL/c f =2,
ε=0.2 and ν = 0.25, vibrating in the axisymmetric
mode.

However, an intuitive argument can be given to
establish the existence of such a branch. From
the small ε analysis, we observed that there is a
coupled wavenumber branch greater than κB(ν)
and κa. Further, as ε increases, the difference be-
tween the coupled and the uncoupled branches in-
creases. Thus, due to the continuous dependence
of the coupled wavenumber solutions on the fluid-
loading parameter, there exists a solution branch
greater than the in vacuo bending wavenumber
and the wavenumber of the acoustic plane wave
for all values of the fluid-loading parameter.

To argue physically, we know that at higher fre-
quencies the wavelength decreases. In case the
wavelength is lesser than the shell curvature, it is
expected that the shell behaviour will approach
that of a plate of identical thickness. This was
also borne out from our in vacuo analysis in Sec-
tion 2.2. Thus, we may extend Fahy’s argument
for plates to high frequency waves in cylindrical
geometry.

5 Conclusions

The relation of the coupled wavenumbers to the
in vacuo bending wavenumber and the uncoupled
acoustic wavenumbers (planewave and both types
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Figure 8: Coupled wavenumber solution above
the coincidence frequency (Ωc) for the fluid-filled
infinite cylindrical shell with h/a=0.1, cL/c f =2,
ε=0.2 and ν = 0.25, vibrating in the axisymmetric
mode (a) for the bending wave (b) for the acoustic
plane wave.

of cut-on waves) is established using asymptotics.
A schematic of the results found is presented in
figure (9). For small ε , the coupled wavenum-
bers are perturbations to the in vacuo bending
wavenumber and the wavenumbers of the rigid-
walled acoustic duct (the plane wave and the cut-
on). At the coincidence frequency, the branches
corresponding to the coupled bending wave join
with that of the coupled acoustic plane wave
and vice versa. With increasing ε , the pertur-
bations increase until for large values the cou-

Frequency
W
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en

um
be

r

In vacuo flexure
Rigid acoustic duct (plane wave and cut-on)
Pressure-release acoustic duct

=1Ω

Coupled wavenumber

Ω=Ωc

Figure 9: Schematic of the coupled wavenumber
solutions. Arrows indicate the transition of solu-
tions as ε increases.

pled wavenumbers can be better identified as per-
turbations to the pressure-release acoustic cut-on
wavenumbers. However, for all values of ε there
is a solution of the coupled wavenumber which
is greater than the in vacuo bending wavenum-
ber and also the wavenumber of the acoustic plane
wave. This branch for large ε , though indicated in
the schematic result, has not been discussed in the
article (it can be found numerically). The deriva-
tions presented can be used to continuously track
the coupled wavenumber solutions from small to
large ε values. Even a first order asymptotic
expansion matched well with the numerical re-
sults. Results for the axisymmetric mode were
presented. However, the method is applicable for
higher order modes also.
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