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Geometrically Nonlinear Analysis of Reissner-Mindlin Plate by Meshless
Computation

P. H. Wen'! and Y. C. Hon?

Abstract: In this paper, we perform a geo-
metrically nonlinear analysis of Reissner-Mindlin
plate by using a meshless collocation method.
The use of the smooth radial basis functions
(RBFs) gives an advantage to evaluate higher
order derivatives of the solution at no cost on
extra-interpolation. The computational cost is low
and requires neither the connectivity of mesh in
the domain/boundary nor integrations of funda-
mental/particular solutions. The coupled nonlin-
ear terms in the equilibrium equations for both
the plane stress and plate bending problems are
treated as body forces.  Two load increment
schemes are developed to solve the nonlinear dif-
ferential equations. Numerical verifications are
given to demonstrate the efficiency and accuracy
of the proposed method in comparing with exact
solutions and results from using the finite element
software (ABAQUYS).

Keyword: large deformation, Reissner-Mindlin
plate theory, meshless collocation, radial basis
functions.

1 Introduction

The theory developed for Reissner-Mindlin plate
with shear deformation plays an important role
in the engineering industries such as aircraft and
ship constructions. It is well known that if the
deflection of a plate is of the order of the thick-
ness, the effect of the fourth-order derivatives for
the deflection for plate bending and displacement
for in-plane problem has to be included into the
governing partial differential equations. The clas-
sical thin plate theory of Kirchhoff gives rise to
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certain non-physical simplification from the omis-
sion of the shear deformations and rotary inertia,
which are significant for higher thickness of the
plate. The Reissner-Mindlin plate bending theory
[Reissner (1945), Mindlin (1951)] takes care of
the effects of shear deformation and rotary inertia.
The solution for Reissner’s plate model was first
given by Vander Ween (1982) using the boundary
integral equation method. Recently, Wen and Ali-
abadi (2005) applied displacement discontinuity
method for cracked Reissner’s plates.

For the geometrically nonlinear analysis of thin
and moderately thick plates, one of the difficul-
ties is to evaluate domain integrals in the bound-
ary integral equations. A cell technique similar
to finite element was studied by Lei et al (1990).
Since the cell technique has to mesh the domain to
evaluate these domain integrals, the advantage of
the boundary element method that reduces the di-
mension of the problem is compromised from this
point of view. To transform these domain inte-
grals into the boundary integrals, dual reciprocity
method proposed by Nardini and Brebbia (1982)
was used for thick plate problems by Wang and
Tanaka (2000).

Numerical solutions of partial differential equa-
tions are commonly obtained by the use of finite
difference method (FDM), finite element method
(FEM) and boundary element method (BEM).
The FDM involves a rectangular grid system
and has difficulties in representing irregular do-
main problems. Since finite difference grids and
meshed elements are needed in the numerical pro-
cedures of FDM and FEM respectively, they both
belong to the mesh-dependent category that has
been widely used in computational fluid dynam-
ics (CFD). In the last decade, the development of
meshless methods has shown to provide a promis-
ing alternative to the finite element and bound-
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ary element methods for solving differential equa-
tions. There are basically two types of mesh-
less computational methods: weak formulation
type and strong collocation type. The weak for-
mulation type meshless approximations have re-
ceived much attention since the works of Nay-
roles et al(1992) who proposed the diffuse ele-
ment method and Belyschko et al (1994) and Liu
et al (1995) who proposed element-free Galerkin
method and reproducing kernel particle methods,
respectively. A key feature of these methods is
that they do not require any structured grid and
are hence meshless in nature. Recently, Atluri
and his colleagues presented a family of Meshless
methods based on the local weak Petrov-Galerkin
formulation (MLPGs) for arbitrary partial dif-
ferential equations [Atluri and Zhu (1998a,b),
Atluri and Shen (2000), Atluri (2004)] with mov-
ing least-square (MLS) approximation technique.
The MLPG has been reported to provide a ratio-
nal basis for constructing meshless methods with
a greater degree of flexibility. Recently, the Lo-
cal Boundary Integral Equation method (LBIE)
with MLS and polynomial radial function has
been developed by Sladek et al (2004a, 2004b,
2005) for solving boundary value problems in
anisotropic non-homogeneous media. Both meth-
ods (MLPG and LBIE) are meshless as no do-
main/boundary meshes are required in these two
approaches. However, Galerkin-based meshless
methods except MLGP presented in Atluri and
Zhu (1998a) by Atluri still include some awkward
implementation features such as numerical inte-
grations in the local domain. A comprehensive re-
view of meshless methods (MLPG) can be found
in Atluri and Zhu (1998a). For the continuous
model, Chen et al (2006) used the null-field inte-
gral equation, Fourier series and the series expan-
sion in terms of degenerate kernel for fundamental
solutions to examine the solvability of BIEM for
circular thin plates.The MLPG has been reported
to provide a rational basis for constructing mesh-
less methods with a greater degree of flexibil-
ity. Recently, the Local Boundary Integral Equa-
tion method (LBIE) with MLS and polynomial ra-
dial function has been developed by Sladek et al
(2004a, 2004b, 2005) for solving boundary value
problems in anisotropic non-homogeneous media.
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Both methods (MLPG and LBIE) are meshless as
no domain/boundary meshes are required in these
two approaches. However, Galerkin-based mesh-
less methods except MLGP presented in Atluri
and Zhu (1998a) by Atluri still include some awk-
ward implementation features such as numerical
integrations in the local domain. A comprehen-
sive review of meshless methods (MLPG) can
be found in Atluri Atluri and Zhu (1998a). The
strong collocation type meshless computational
method was first introduced by Kansa (1990) and
later improved by Hon et al (1999), Hon and Wu
(2000), for solving various kinds of partial differ-
ential equations including inverse problems. For
the continuous model, Chen et al (2006) used the
null-field integral equation, Fourier series and the
series expansion in terms of degenerate kernel for
fundamental solutions to examine the solvability
of BIEM for circular thin plates

The strong collocation type meshless computa-
tional method using radial basis functions was
first introduced by Kansa (1990) and later im-
proved by Hon et alHon et al (1999), Hon and
Wu (2000), for solving various kinds of partial
differential equations. The method has recently
successfully extended to solve, for instances,
problems in laminated composite plates [Mai-
Duy (2007a), Hon et al (1005)]; transient vis-
cous flows [Mai-Cao and Tran-Cong (2005), Mai-
Duy et al (2007b)]; incompressible Navier-Stokes
and cavity fluid flows [Sarler (2005), Chantasiri-
wan (2006), Shu et al (2005)]; Maxell’s equation
[Young et al (2006)]; elastro-thermo-viscoplastic
material (Le et al (2007)) and time dependent heat
transfer [La Rocca et al (2005)].

In the present paper we further extend the mesh-
less collocation method to develop a geometri-
cally nonlinear analysis for large deformation of
plate bending problems. Since the meshless col-
location method computes the solution entirely
based on collocation points instead of elements
in the conventional FEM or BEM, the proposed
approach overcomes the difficulty in the determi-
nation of high order derivatives of the shape func-
tions by using an indirect scheme and two load
schemes. This provides the advantage to treat
the coupling nonlinear effects of in-plane stress
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and plate bending problems as body forces in the
deferential equations. Two numerical examples
are presented and comparisons with the standard
FEM software ABAQUS are made to demon-
strate the accuracy and efficiency of the proposed
method.

2 Deferential equations for Reissner-Mindlin
plate bending theory

Consider an elastic plate of constant thickness &
with a domain € subjected to an in-plane trans-
verse static load go(x). The x; — xp plane is
assumed to coincide with the mean surface of
the plate. The Green’s strain tensor for two-
dimensional elasticity can be represented as [Wen
and Aliabadi (2005)]

Eap = Euy + g (1)

where the subscripts / and n (I and n vary from 1
to 2) denote the linear and nonlinear contributions
respectively. The linear term is defined as

1
el = 5 (e +utp.) @)

and for the transverse shear strains
€3 =Wg +W3 0 3)

where u, and w3 are translation of displacements
in x; and x, (two-dimensional elasticity) and x3
directions respectively and w,, are rotations in x¢
direction (see Figure 1). The nonlinear term in
equation (1) is defined as

o1
8(5![3) = §W3’O¢W3_ﬁ. (4)
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Figure 1: Sign convention for general displacements and tractions.

Based on Hooke’s law for two-dimensional plane
stress, the membrane stress resultant-strain rela-
tionships can be written as follows:

1—-v 2v
Na[)’ = —2 B Ug B —I—uﬁ’a + —1 — Vuy’yéaﬁ

2v
+w2oWw3 g+ 1 VW3’7W3’760‘I3> 5)
_ @) (n)
- Naﬁ +Na[3
1—v 2v
MO([)’ = TD Wa B +W[)’,Ot + mw%yéaﬁ
(6)

where B = Eh/(1 — v?) is tension stiffness, D =
ER®/12(1 — v?) denotes the plate stiffness, with
E as Young’s modulus, v as Poisson’s ratio, and
A% = 10/h? is the shear correction factor in the
Reissner theory. Ngpg,Qq and Mg are stress
resultants for two-dimensional plane stress elas-
ticity, shear force and bending moment stress
resultants for plate bending problems. In the
Reissner-Mindlin plate bending theory the equi-
librium equations have the form [Mai-Duy et al
(2007a)]

Naﬁ,ﬁ +b0! = 07
Ma[)’,[} —0q =0, (7
Qa,a +q3=0.

The equilibrium equations can be written in terms
of displacements as:

DY g +bo =0 ®)
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field point y

support domain of x"
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node x"

sub-domain Q,

Figure 2: Sub-domain Q, for MLS approximation of the field point y and the support area around node x".

for plane stress two-dimensional elasticity, and
Dlwi+qi =0 ©)

for plate bending, where the Roman indices o and
P vary from 1 to 3 and the differential operators
D’; p are defined, for plane stress elasticity, as

B B 02
D’ =—(1— (14 v)=——
O(ﬁ 2( V)(Saﬁv + 2( +V) axaaxﬁ ( 0)
with the equivalent body forces
bo =b%+NYj 4 (11)

where bY, denotes an applied body forces. The
differential operators Df.’ , for plate bending prob-
lems, are

D 92
Z1(1= 2_)2 1 -
> (1=v)(VZ=217)04p +( +v)8xa8x,3
1-v)D_ , d
Db :_( )L2
o3 2 0xg
Dga = _Dgﬁ
1—v)D
Dl3’3:—( v) V2
2
(12)
and the body forces

@1=q2=0, ¢3=qo+ (Napwsp), (13)

in which g¢ represents the transverse load along
the normal of the plate. The shear correction fac-
tor k2 in Mindlin‘s theory is usually taken as 5/6
in order for the two theories to coincide provided
that 12 = 12k2/h?. It is evident that the coupling
terms are consisted in the nonlinear body force
terms, i.e. by and g3 in equations (11) and (13)
and all of them should vanish for linear problem.

3 Meshless collocation method
3.1 Radial basis functions scheme

The multiquadric radial basis function (MQRBF)
was introduced by Hardy (1971) for multivari-
ate interpolation of topographical surfaces. Since
most radial basis functions are defined globally,
the resulting matrix for interpolation is dense
and can be highly ill-conditioned particularly for
a large number of interpolation points. It also
poses serious stability problems and is compu-
tationally inefficient. The conditionally positive
definitiveness of various radial basis functions in-
cluding MQRBF was investigated by Micchelli
(1986) who provided a firm theoretical basis for
large scale interpolation problems. The theoreti-
cal solvability proof on using the RBFs for solv-
ing PDEs has just been obtained by Hon and Sch-
aback (2004). Recent applications using RBFs
with local integral equation method for potential
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problems in functionally graded anisotropic ma-
terials have been demonstrated by Sladek et al
(2005).

The distribution of function u in the sub-domain
€, over a number of randomly distributed notes
{xi}, i =1,2,...,n, can be interpolated, at the
point y by

Y

u(y) =Y Ri(y,x)ar =R (y,x)a(y) (14)
k=1

where RT(Yv X):{Rl (Y7 X) ) RZ(Y7 X)a s 7Rn(y) (Y7 X)}
is the set of radial basis functions with centres
placed around the point y, {ax};_, are the un-
known coefficients to be determined. The radial
basis function selected multiquadrics [Atluri and
Zhu (1999)] as

Ri(y,x) =/ +|y x| (15)

with a free parameter c. As the numerical result is
very stable for the selection of this free parameter,
we take ¢ = 1 in all numerical examples as dis-
cussed in the paper of Zhu and Liu (1998). From
the interpolation equation (15) a linear system for
the unknowns coefficients a is obtained as

Ropa=1u (16)
where
u = {M],Mz,...,un(y)} (I7)

are the nodal values and

Ro(x) =
R, (xl) Rz(xl) Rn(y)(xl)
R](Xz) RQ(XQ) Rn(y)(xz)
R, (xn(y)) RZ(xn(y)) Rn()’) (x"(Y))
(18)

It is evident that the interpolation of field variable
is satisfied exactly at each node. If the RBFs are
positive definite, the matrix Rg can be assured to
be invertible. Therefore, we can obtain the vector
of unknowns from Eq. (16)

a=R,!(x)u(x) (19)
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so that the approximation u(y) can be represented,
at domain pointy, as

u(y) =R (y)Ry ' (x)u(x) = ®(y, Ju =Y guus
. (20)

where the nodal shape function are defined by

®(y,x) =R" (y)R; ' (x). @1

It is worth noting that the shape function depends
uniquely on the distribution of scattered nodes
within the support domain and has the Kronecker
Delta property. As the inverse matrix of coeffi-
cient R, (x) is only a function of distributed node
x in the support domain, it is much simpler to
evaluate the partial derivatives of the shape func-
tion. In order to obtain an unique solution of the
interpolation problem, a polynomial term is added
to the interpolation (14), giving

ny t
= > Ry, X)ax+ > P;i(y)b;
u(y) kg,] k(y,X)ar p (¥)b; )
=Ro(y,x)a+P(y)b

along with the constraints

t

Y Pi(xj)a; =0, 1<k<t (23)
j=1

where {P;}}_, is a basis for P,_, the set of d-
variate polynomials of degree < m — 1, and

t—<m+j_l> (24)

is the dimension of P,,_;. A set of linear equations
can be written, in the matrix form, as

Roa+P'b=uPa=0 (25)

with the matrix defined by:

P](xl) Pz(xl) P,(xl)
o &w)'f e
Pi(ag)  Pa(tn) - Biny)



182 Copyright (©) 2007 Tech Science Press

Solving these equations in Eq. (23) gives
b= (P’R;'P)  P'R;'ua
1 1p\ lprp-1 @7
—R;'[1-P(P"R;'P) 'PR;|u

where I denotes the identity matrix. Substituting
the coefficients a and b from Eq. (27) into Eq.
(22), we can obtain the approximation of the field
function in terms of the nodal values

y) = i O (y, X)up(x). (28)
k=1

It is clear that the coefficient a and b are func-
tions of nodal positions x with nodal values u. It
will be much easier to evaluate the approximated
function’s derivatives, which will be shown in the
next section. In addition, by numerical examples,
the accuracy is shown to be the same by using
MQRBF with/without these polynomials.

3.2 Direct technique for MORBF scheme

Since the MQRBFs are infinitely differentiable, it
is much simpler to evaluate the partial derivatives
of the shape function. From Eq. (20), we have

wi(y) = @iy, x)u=Y ¢ xu; (29)
=1
where

@ (y,x) = RL(y)R; ' (x)
= [Rix(¥),Rox(y), - - Rugy) 4 (¥)IRg ' (x)  (30)
and

Rily) = ——2k 31)

Ve ly x|’

For the second order derivative of shape function,
simply we have

@ 4 (y,x) =R (y)Ry ' (x)
= [Riu(y): Roxi(y),--- 7Rn()r),kl(y)]R61 (x) (32

where

Riu(y) =

1
[5k1
V2t ly—xi|’

- Oe—x) b —x)

o ly—xP

(33)

CMES, vol.21, no.3, pp.177-191, 2007

3.3 Indirect technique for RBF shape func-
tion’s derivatives

It is evident that the evaluation of the second or-
der and higher order derivatives of the shape func-
tion is costly and complicated particularly for the
meshless collocation method. To overcome this
difficulty, we can evaluate the higher orders of
derivative for the shape function in an alterna-
tive way. From Eq. (20), we have the first order
derivative in terms of the nodal values as [Wen
and Aliabadi (2007)]

wi(y) = Dy, x)ug = Y 0i(y,X)ilix (34)
i=1

and hence the second order derivative can be writ-
ten as

wa(y) = (v, %0, = 3 ¢y, X)dix. (35
=1

Considering the first derivative of the shape func-
tion, we obtain

up(y) =®,;(y,x)tx =P ;(y,x)Px(x,x)a
y . y . .
= 0(y,xX) Y, ¢jx(x,x7)i;
i=1 =1

This technique can be easily extended to higher
order derivatives u t_pq.(y)of the shape function
directly. For instance, for the third order deriva-
tive, we have

(36)

u.kql(y)
= (D,l (Y7 X)(D-,(I(Xv X,)ﬁ,k
=@,(y,x)® 4(x, )P x(x',x")

ny ny ny

_ZZ 2@1 Y, X ¢pq X', x P)jr(x", X])”J

i=1p=1j=
(37

From the above relationship it can be seen that
higher order derivatives of the shape function can
be simply written in terms of the first order deriva-
tive.

3.4 Meshless collocation method

Consider a general partial differential equation for
two-dimensional problem. We have the following
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governing equations with certain given boundary
conditions as:

D! sup(y) = ba(y)
Diwi(y) =bi(y) fory € Q(domain)
”a(Y) = U (Y)
wi(y) =w;(y) fory €T, (boundary

(displacement condition)

giwi(y) =pi(y) fory € T's (boundary
traction condition)
(38)

where hgp and g are differential operators (con-
sist the first order derivatives of the shape func-
tions) imposed as boundary conditions such as the
relationships between stress and displacement (or
moment and deflection) for the two-dimensional
elasticity (or plate bending), Zg, Wi, fo(= Nopnp)
and p;(py, = Mgpnp for a = 1,2; p3 = Qpgng)
represent the displacement and the traction values
on the boundary, where ng denotes the component
of outward unit normal to the boundary. By sub-
stituting Eq. (20) and collocating at Ng internal
and Nr(= Nr, + Nr, ) boundary points, we have

i

n“ . .
Z]Dgﬁq),,(yf,x")ﬁg =ba(y/) a=1,2
n=

ZD 0u(y X)W = qiy’)  i=1,2,3;

(39)

183

Zgwn XN =pi(y) i=1,2,3;

j=1,2,...,Nr,
(40)

for the boundary points. Thus the meshless col-
location method can be carried out by solving a
set of linear equations in (40) for static and dy-
namic elasticity problems. The total number of
nodal values 7y (y/) and Wi (y/) is 5(Nq + Nr, +
Nr,) for two-dimensional plate bending prob-
lems. The coupling of two-dimensional plane and
plate bending problems occur in the body forces
in equations (11) and (13). Solving these non-
linear equations gives the displacements u, and
deflections w; at any point including domain and
boundary.

4 Numerical schemes for nonlinear equation
systems

Considering the boundary condition with Eq.
(43) by RBFs interpolation, a set of 2xN lin-
ear algebraic equations can be obtained for two-
dimensional in-plane elasticity and can be written
in the matrix form as

D’u=b (41)

where the matrix D? consists of derivatives of the
shape function and b is a nonlinear function of de-
flection b9 + N (n /3) B Similarly to the plate bend-
ing, a set of 3 xN algebraic equation can be writ-
ten in matrix form as

D’w = q (42)

where D? denotes the coefficient matrix and q
presents the nodal force vector and is a nonlinear
function of membrane force and deflection, i.e.
a3+ (Nopw3p).a- To solve these two nonlinear
systems, two numerical algorithms are proposed
as follows:

4.1 Incremental load algorithm (LIA)

Step 1: Let m = 1, g5' = Aqo (where Agy is con-
stant increment of transverse load) and
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nonlinear terms in body forces bSP*’" =
(n)m __ (.
q3 - 07

Step 2: Establish two linear algebraic systems
for two-dimensional elasticity and plate
bending respectively; solve these two
systems in (11) and (13); and calculate
the membrane forces N,z and derivatives
w3 o in the domain;

Step 3: Evaluate all nonlinear terms and their
derivatives, i.e. [Ngg]”;} and [Nggws3 gl
and calculate the nonlinear body forces;

Step 4: If applied transverse load ¢5' = qo, then
go to Step 5, otherwise, let m =m+1 and
q% = mAqS and go to Step 2;

Step 5: Output results for each step and termi-
nate.

4.2 Full load algorithm (FLA)

Step 1: Let m = 1, ¢5' = qo and nonlinear terms

in body forces b 3

Step 2: Establish two linear algebraic systems
for two-dimensional elasticity and plate
bending respectively; solve these two
systems in (11) and (13); and calculate
the membrane forces N,z and derivatives
w3 o in the domain;

Step3: If m > 2 and relative error

—1
wg’fmax—wg'fmax /‘wg’fmax‘ < €& or
m > M, where € is small value and M is
large number, then go to Step 6;

Step 4: Evaluate all nonlinear terms and their
derivatives, i.e. [Ngg]”;} and [Nygws g]',»
and calculate the nonlinear body forces;

Step5: Let m = m + land wupdate the
nonlinear body forces by g5 =

A+ @+ g2 and
by = " by /2. Go
to Step 2;

Step 6: Output results and terminate.
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In the first algorithm [Chen et al (2006)], load in-
crement technique is used and the nonlinear body
forces are evaluated directly by using the results
from previous step. Therefore, this technique is
simple and there are no iteration process needed.
However, the numerical solutions for the final step
depend on the history of the increment of loading.
Iteration technique is involved in the second al-
gorithm for full load process and save CPU time
significantly compared with the first algorithm.
The accuracy and convergence comparisons are
made by considering the numerical examples in
the following section. Numerical computations
indicated that it only takes 4 to 5 iterations for the
nonlinear scheme to converge to the solution.

S Numerical examples

In the following numerical demonstrations,
Young’s modulus E is selected as 107 and Pois-
son’s ratio v=0.316. The radius of local sub-
domain d,, centred at the field point is determined
by the minimum number of collocation points in
the sub-domain n, > 15. The normalized incre-
ment of transverse load Ag = 0.2¢oa*/Eh* for
incremental load algorithm (IL) ande = 0.01 for
full load algorithm (FL). In addition, 441 (21 x21)
uniformly distributed nodes are selected in the do-
main.

5.1 Clamped and simply supported and square
plate under uniform load

Consider a square plate of width a and height i
as shown in Figure 3. For the clamped boundary
condition, the displacement and traction are de-
fined as

and for simply supported boundary condition

P =0 x;==a/2

Pm0 a2y
P>=0 xp==a/2.

The ratios h/a are selected as 0.05 and 0.1 for
moderate and thick plate respectively. The indi-

rect technique to evaluate high order derivatives
of shape functions is employed in this example.
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Figure 3: Normalized maximum deflection w3 /h at the centre of plate subjected to uniform load various
with normalized applied load goa*/Eh* for (a) clamped boundary condition; (b) simply supported boundary

condition, where //a=0.05.

To study the convergence of the method, two reg-
ular node distributions with 441 and 961 nodes
are used for the RBF approximation of quantities.
We observe that the convergences for both quan-
tities are almost the same. The normalized maxi-
mum deflections of plate at centre point wiay /A
are plotted in Figures 3 and 4 against the nor-
malized transverse load goa*/Eh*. For full load
algorithm (FL), the number of iterations is less
than 10 in general. Figure 5 shows the accuracy
and convergence of the FL for each iteration step
when goa*/Eh* = 40, h/a=0.05 and €=0.001 for
clamped boundary case. For each figure, the re-
sults by using the two algorithms, i.e. IL and
FL, are given in for comparison. For larger nor-
malized transverse load goa*/Eh*, the solutions
both for IL and FL are divergent and isolation of
deflection occurs. This is due to the errors in-
duced by each step of load increment (assumption
of linearization in each step). A good agreement
between the results from the standard finite ele-

ment software (ABAQUS) and the proposed al-
gorithms has been achieved, which also verifies
the accuracy of the proposed meshless computa-
tional method. For the same accuracy, the CPU
time used by IL is much higher than that by FL.

We also made comparisons for deflections and
stresses in the field of plate with ABAQUS in Fig-
ures 6 and 7 respectively. The deflection contours
of ws and in-plane displacement u; of plate are
plotted in Figure 6 and the stresses contours of 61
on the top and bottom surfaces of plate in Figure
7, where we select h/a=0.1 and goa*/Eh* = 50.
The agreement with the results of ABAQUS is
also excellent. However, the accuracy of displace-
ment and deflection are higher than stresses.

5.2 Clamped square plate with variable thick-
ness under uniform load

Consider a clamped square plate with varying
thickness which is a function of coordinate as
shown in Figure 8. The thickness can be written
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14 0.40
————— linear solution - — - — - linear solution
0.35 /
1.2 ) . y
increment load | increment load /
o fullload 7 0.30 J o fullload J3
10 b 7 //
e ABAQUS ,/ ® ABAQUS /o
0.25 | K
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Figure 4: Normalized maximum deflection w3 /h at the centre of plate subjected to uniform load various
with normalized applied load goa*/Eh* for (a) clamped boundary condition; (b) simply supported boundary
condition, where i/a=0.1.

0.8 -
—o—full load
—————— ABAQUS
> CW_Q
<
= 04 -
=
0.2 4
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5 6 7 8 9

Figure 5: Demonstration of convergence for the full load algorithm when goa*/Eh*=40 and h/a=0.05, m is
the step of iteration.
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(2) (b)

(© (d)

Figure 6: Comparison with finite element method and meshless method (RBF) for a square clamped mod-
erate thick plate (h/a=0.1) with uniform pressure goa*/Eh*=50: (a) contour of deflection w of plate by
ABAQUS; (b) contour of deflection w by RBF; (c) contour of in-plane displacement u by ABAQUS; (d)
contour of in-plane displacement u by RBE. The unit for the deflection and displacement is meter.

ows dD [Jdw ow
® _C(xl)wl_c(xl)a—xf-Fa—x](a—x:—l—Va—xj)
h(xl,xg):ho—l—hl;hoxl 0<x1<a,0<x<a. =0
8 owy  odw
Iws

The equilibrium equations in terms of displace- — Claxr)wz = Clx) 0%

ments are obtained, for the domain collocation oD [(dw; Jwy
: follows: +(A+V)5—(5-+=5—)=0
points, as follows: dx; \ dxp  dx

D(x 0 0 0 owy  dws
D(X])V2W] + (2 )(1_|_ )axz ( 81:21 + at:f) C(XI)V2W3 +C(X]) <aX] + ax2>
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(a) (b)

(©) (d)
Figure 7: Comparison of stress G, on the top and bottom surfaces with finite element method and meshless
method (RBF) for a square clamped moderate thick plate (%/a=0.1) with uniform pressure goa*/Eh*=50:
(a) contour of stress by ABAQUS on the top surface; (b) contour of stress by RBF on the top surface; (c)
contour of stress on the bottom surface by ABAQUS; (d) contour of stress by RBF on the bottom surface.
The unit for the deflection and displacement is Pa (N/mm?).

N ((;TC (Wl _1_% ) tgs =0 46) for two-dimensional elasticity, in which
1 1 3 )
for the plate bending and D(x1) = El(x/12(1 2v ) (48)
) 5 w3 B(x;) = Eh(x1)/(1—v7)
2, 4 B 9 ([ oum, ow
B(x1)Vou; + 5 (1+v)a)62 ( 7% + a)ﬂ) and
9B (3w dw\ . . 9D _ El(x) hi—ho
Tom \on TVan ) T T o MV
C SE hy—h
) B(xl) 0 8u1 8u2 - — 1 07 (49)
B(xl)v Mz—i—T(l-l-V)a—x] a—xz_ a—xl %xl lZ(l—I—V) a
9B (du  duy 9B __E Mm~h

47) On the boundary, the operators /1, and g are the
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Figure 8: A square plate with varying thickness.

same as presented in Eq.(38). The ratios Ay /a and
hy/a are selected as 0.05 and 0.1 respectively in
this example and the normalized transverse load
qoa*/Ehg = 250. Using the full load algorithm,
we present the normalized deflections of plate
Wmax/@ on the geometry symmetric lines x; =0
or x; = 0 in Figures 9. The results by ABAQUS
are also plotted in this figure for comparison. It is
reasonably observed that the maximum deflection
point shifts to the left hand side from the center of
the plate due to the effect of the variation of thick-
ness. Comparison has shown the high accuracy
of the proposed meshless computational method
and demonstrated its flexibility and simplicity for
treating these kinds of complex problems.

6 Conclusions

This paper presented the application of the mesh-
less computational method to large deformation
of Reissner-Mindlin plate with two algorithms
(load increment algorithm and full load algo-
rithm) to solve nonlinear equations. The advan-
tage of using the meshless collocation method
is to interpolate accurately higher order deriva-
tives of shape functions at no cost on extra-
interpolation. An indirect method has also been
developed and shown to be economic and effi-
cient for approximating any order derivatives of
shape function in terms of the first derivative ma-
trix. From the results of numerical verification,
we observe that the proposed meshless computa-
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Figure 9: Deflections and comparison with fi-

nite element method for a square clamped mod-

erate various thick plate with uniform pressure

qoa* /En*=250, hy/a=0.05, hi /a=0.1.

tional method by using RBF interpolation is ef-
ficient to handle large deformation problems for
Reissner-Mindlin plate. One of the main advan-
tages is its simplicity for computational imple-
mentation. Contrary to the conventional boundary
integral equation method, it requires no integrals
and fundamental solutions to formulate the sys-
tem equations. It has been shown that the mesh-
less method provides a flexible and simple method
and suitable for certain complicated partial linear
and nonlinear differential equations such as dy-
namic orthotropic moderate thick plate, function-
ally graded materials, Winkler elastic foundation
and etc. The disadvantage of using the meshless
method is also evident such as more collocation
points needed for accurate solution and stability
for large applied load.
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