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Genetic Programming Metamodel for Rotating Beams
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Abstract: This paper investigates the use of Ge-
netic Programming (GP) to create an approxi-
mate model for the non-linear relationship be-
tween flexural stiffness, length, mass per unit
length and rotation speed associated with rotat-
ing beams and their natural frequencies. GP, a
relatively new form of artificial intelligence, is
derived from the Darwinian concept of evolution
and genetics and it creates computer programs to
solve problems by manipulating their tree struc-
tures. GP predicts the size and structural com-
plexity of the empirical model by minimizing the
mean square error at the specified points of input-
output relationship dataset. This dataset is gen-
erated using a finite element model. The validity
of the GP-generated model is tested by compar-
ing the natural frequencies at training and at addi-
tional input data points. It is found that by using
a non-dimensional stiffness, it is possible to get
simple and accurate function approximation for
the natural frequency. This function approxima-
tion model is then used to study the relationships
between natural frequency and various influenc-
ing parameters for uniform and tapered beams.
The relations obtained with GP model agree well
with FEM results and can be used for preliminary
design and structural optimization studies.

Keyword: Rotating beams, Genetic Program-
ming, Empirical modeling

1 Introduction

Rotating beams are important structural members
of wind turbines, steam and gas turbines, heli-
copter rotors and propellers. The governing par-
tial differential equation for vibration of an Euler-
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Bernoulli rotating beam is given by,(
EI(x)w′′)′′+m(x) ẅ−(

T (x)w′)′ = f (x, t) (1)

where,

T (x) =
∫ R

x
m(x)Ω2 x dx (2)

is the centrifugal tensile load at a distance x from
the axis of rotation, and EI(x), m(x) are flexural
stiffness and mass per unit length at a distance x
from rotation axis and w(x, t) and f (x, t) are the
displacement and force per unit length, respec-
tively.

Figure 1: Rotating beam element geometry

A schematic of a rotating beam is shown in Fig-
ure 1. Such beams are good models for long
slender structures such as helicopter rotor blades
and wind turbine rotor blades. Due to centrifu-
gal stiffening, the analysis of rotating beams be-
comes a challenge. Prediction of the natural fre-
quency of such blades is important because of
the design requirement of keeping the frequency
away from multiples of the rotor speed. Typi-
cally, finite element analysis is required to find
the frequencies of even uniform rotating blades
and many researchers have worked in this area
[Cai, Hong, and Yang (2004)]. The finite ele-
ment method is widely used in structural analysis
as evident from recent literature [ Fedelinski and
Gorski (2006)]. While Galerkin and Ritz methods
can be used to obtain the frequencies of rotating
beams, different admissible functions are needed
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for different boundary conditions. However, the
finite element method easily accomodates differ-
ent boundary conditions but has the disadvantage
of large sized eigenvalue problem [ Wang and
Wereley (2004)]. Some studies have used semi-
analytical methods such as the Frobenius method
to find the frequencies of such beams as reported
in Wright, Smith, Thresher, and Wang (1982) and
Harris (1992). However, such methods involve re-
taining a large number of terms in a power series
expansion and are difficult to analyze.

Optimization methods are now widely used in
engineering problems [de Lacerda and da Silva
(2006), Aymerich and Serra (2006), Wang and
Wang (2006) and Lian and Liou (2005)]. De-
signers also use optimization methods to tailor the
blade mass and stiffness properties to ensure that
the natural frequencies are away from multiples
of rotor speed. In such optimization problems, as
well as for use for preliminary design, it is very
useful to have a high quality approximation or
metamodel (model of a model [ Crary, Cousseau,
Armstrong, and et. al. (2000)]) for the natural fre-
quency of rotating beams.

The development of metamodels for engineering
problems has received considerable attention in
the past decade. A schematic of a metamodel
for a rotating beam is shown in Figure 2. The
output ω(x) is scalar function of input parame-
ters x(EI,m,R,Ω). For metamodel development,
a multivariate function approximation needs to be
developed. A model is an abstract mapping be-
tween the input variables and the scalar system
parameters.

F : x(EI,m,R,Ω)→ ω (3)

We want to represent the model in Eq. 3 by a

Figure 2: Schematic of a metamodel

functional form which is more efficient to com-
pute.

ω = G(x) (4)

Several studies in the past literature have inves-
tigated methods of approximating finite element
models about a given baseline design. For exam-
ple, neural-networks can be used to develop accu-
rate approximations from input–output relation-
ships [Alam, McNaught, and Ringrose (2004)-
Hussain, Barton, and Joshi (2002)]. However,
such methods give a black–box representation. In
the neural-network approach, a multilayered neu-
ral network with i inputs and j outputs is trained
with a training set. Subsequently, the given in-
put vector is applied to the network, and a j-
dimensional output vector is obtained. In the
neural-network approach, the basic drawback is
that the optimal configuration of the network is
not known a priori. Moreover, the training times
can be quite large, and the knowledge that is rep-
resented internally in the network weights is of-
ten opaque. Other methods such as multivari-
ate polynomials tend to have too many terms (a
general fifth order polynomial in 20 variables has
over 50000 terms) and do not extrapolate well
and are difficult to interpret [Meisel and Collins
(1973)]. A new technique called Genetic pro-
gramming (GP) appears to be able to give func-
tional relationships based on input–output rela-
tions. Such analytical functions are very useful
for approximations of finite element models.

Genetic programming (GP) is gaining attention
due to its ability to discover the underlying re-
lationships and expressing them mathematically.
GP has been used as a powerful methodology for
obtaining solutions of a large number of difficult
problems like automatic design, pattern recog-
nition, control, synthesis of neural architectures,
symbolic regression, factory job scheduling, elec-
tronic circuit design, signal processing, music and
picture generation, etc. [KinnearJr. (1994)]. Re-
cent applications of GP also include fault classifi-
cation [Zhang, Jack, and Nandi (2005)], optimiza-
tion [Yeun, Kim, Yang, and et. al. (2005), Yeun,
Yang, Ruy, and et. al. (2005)] chemical process
modeling [Grosman and Lewin (2004)] and image
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processing. A recent review of GP highlighting its
strengths and limitations is given in Bhattacharya
and Nath (2001). However, very few works have
looked at using GP for structural optimization.
Yang and Soh (2005) have discussed the use of GP
for automated optimum design of trusses. Ashour,
Alvarez, and Toropov (2003) have used GP for
predicting the empirical model of shear strength
of deep reinforced-concrete (RC) beams. Both of
these works discuss the static structural problems.
In this paper, GP is used to generate the empirical
model of a finite element model for finding natu-
ral frequency of a rotating beam. To the best of
the authors’ knowledge, this is the first applica-
tion of GP to this important practical problem in
the literature.

2 Overview of Genetic Programming

Genetic programming (GP) [Koza (1992)] is an
extension of genetic algorithms (GA). Genetic al-
gorithms are now widely used to solve optimiza-
tion problems [Akula and Ganguli (2003), Pawar
and Ganguli (2003)]. GP is a systematic method
of using computers to automatically develop opti-
mal programs. Its basis is the Darwinian concept
of evolution. While GA uses a string of numbers
to represent the solution, the GP creates a large
initial population of computer programs with a
tree structure. A typical program, representing the
expression (x1x2 − x3)2 is shown in Figure 3 as
a typical tree structure. These programs are ran-
dom combinations of elements from the problem–
specific function and terminal sets. GP provides a
way to successfully conduct the search for a com-
puter program in the space of computer programs
and to assess its fitness for the problem. This fit-
ness assessment is usually accomplished by run-
ning each program on an input dataset showing
the relationship between different variables of the
problem. A fitness value is assigned to each pro-
gram that shows how well it solves the problem.

The fitness criteria of programs is used in pro-
ducing a population of the next generation of pro-
grams using the various genetic operators includ-
ing reproducton, crossover, and mutation. GP
provides a way to automatically discover and
reuse existing subprograms in the course of auto-

Figure 3: Tree structure of an example program
(x1x2 −x3)2

matically creating new computer programs. GP
does this search probabilistically without much
use of domain knowledge of the problem. The
programs are randomly selected to participate in
these genetic operations, but the selection func-
tion is biased towards highly fit programs. The
reproduction operator simply selects an individ-
ual program and copies it to next generation. The
crossover operator incorporates the variation by
selecting two parents and by generating two off-
springs from them. The offsprings are produced
by swapping randomly selected sub-trees of the
parents. The mutation operator produces one off-
spring from a single parent by replacing a ran-
domly selected sub-tree by a randomly generated
sub-tree.

The size and shape of computer programs are de-
termined dynamically during the course of gener-
ations. After many generations of GP, the aver-
age fitness of the population as well as fitness of
each best-of-generation individual program may
tend to improve. After a predetermined number
of generations, or after achieving the predeter-
mined level of fitness, the best-so-far individual
program is designated as the resultant output of
GP operation. This output is suggested as the ap-
proximate empirical model for the given problem.
The GP methodology has advantages of being
less problem-dependent, more flexible and having
high search efficiency. A typical program consists
of several nodes (Figure 3). The terminal nodes
contain n variables x1,x2, . . .,xn. The functional
nodes contain mathematial operators {e.g. +, -,
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*, /, power, square, square root, negation, . . . }.
There are two types of functional nodes. The bi-
nary nodes take two arguments such as addition,
multiplication etc. and the unary nodes take one
argument such as square, negation etc. Finally, all
the functions and terminals should be compatible
and be able to pass information to each other. This
is called the closure property of the GP.

The advantages of using GP are that it can di-
rectly operate on the data in their original form, no
prior knowledge about data distribution is needed,
and it can detect the underlying but unknown re-
lationship that exists among data and express it
as a mathematical LISP s-expressions. The LISP
s-expressions are computer programs, which can
be directly used in the application environment.
In this paper, a computer program represents an
empirical model of a uniform and a linearly ta-
pered rotating beam. A freely available genetic
programming software, GPQUICK, is used for
finding the underlying relationships. Before using
GP for the rotating beam problem, we illustrate
it with a non-rotating beam problem for which
closed form solution is known.

3 Non-rotating cantilever beams

Consider the expression for the first natural fre-
quency of a non-rotating uniform cantilever beam
whose exact solution is known as [Thomson and
Dahleh (2005)],

ω = 3.516

√
EI

mR4 = C1

√
EI

mR4 (5)

where, EI is flexural rigidity of beam, m is mass
per unit length of beam, R is length of beam.

To obtain the GP model, baseline values of EI =
1.2 × 105 N m2, m = 6.4kg/m and R = 5m are
considered and input–output relationship data is
generated by perturbing variables in the range of
± 25%. GP is then used to generate relation be-
tween the frequency and EI, R and m. The ex-
pressions for squared frequency obtained in four
different runs of the GP are listed in Table 1. The
function with least RMS error is selected as the
empirical model for the beam frequency and is
shown in Eq. 6. For any values of EI, m and R,

the natural frequency can be calculated using this
function.

ω =

√
13E2 I2

R2(E I R+15m3 R3 +m(E I R2 −19228))
(6)

Figure 4(a) shows the comparison between fre-
quency vs beam-length given by the exact so-
lution and GP function. Similarly, Figure 4(b)
shows comparison of frequency vs mass per unit
length and Figure 4(c) shows the comparison be-
tween frequency vs flexural rigidity for exact so-
lution and GP approximation. Though these fig-
ures show that the GP prediction agrees well with
the exact solution, but the functions obtained from
GP are dimensionally not correct. In general, us-
ing dimensional variables in the GP is only ef-
fective when the number of variables are less, as
mentioned by Keijzer and Babovic (1999) . For
a large number of variables, it is useful to trans-
form the physical variables into non-dimensional
variables. This allows a reduction in the number
of variables and also leads to more compact and
physically meaningful expressions using the GP.

The Eq. 5 can be rewritten as follows:

ω = C1

√
EI

mR4 = C1 ω0 (7)

To non-dimensionalize the above relation, we
consider a reference frequency ΩR = 1 Hz, and
divide Eq. 7 to define,

η =
ω
ΩR

= C1
ω0

ΩR
= C1 η0 (8)

Here in Eq. 8, both η and η0 are non-dimensional
variables. For this non-dimensional relationship,
we get different approximate relationships using
GP in various runs (Table 2). This table shows
the functions generated for squared natural fre-
quency. The following function is selected as the
GP result on the basis of simplicity and least RMS
error. For any given values of EI, m and R, the
non-dimensional parameter η0 is calculated and
the natural frequency is obtained using following
GP result.

η =

√
1

19136
+

69856489η2
0

5650788
(9)



Genetic Programming Metamodel for Rotating Beams 137

3.5 4 4.5 5 5.5 6 6.5
10

15

20

25

30

35

 Beam length, m

ω
1, r

ad
/s

 
Exact
GP result

(a)

4.5 5 5.5 6 6.5 7 7.5 8
17

18

19

20

21

22

23

 Beam mass pe unit length, kg/m

ω
1, r

ad
/s

 

Exact
GP result

(b)

0.9 1 1.1 1.2 1.3 1.4 1.5

x 10
5

16

17

18

19

20

21

22

 Flexural Rigidity, kg m2

ω
1, r

ad
/s

 

Exact
GP result

(c)

Figure 4: Effect of (a)beam length, (b)beam mass
per unit length and (c)flexural rigidity on the first
natural frequency of non-rotating cantilever beam
(dimensional parameters)
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Figure 5: Effect of (a)beam length, (b)beam mass
per unit length and (c)flexural rigidity on the first
natural frequency of non-rotating cantilever beam
(non-dimensional parameters)
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Table 1: Results of multiple GP runs for dimensional variables for non-rotating cantilever beam

Generations RMS error Expression Comments

1000000 31.6201 −39R+ 128778+5EI+3310R−m3R2

7(m2+78R−254) Complex functon,
High error

500000 1.89913 13 E2I2

R2(EIR+15 m3R3+m(EIR2−19228)) Least error, Se-
lected GP result

500000 47.2609
5
(

17+R+ 2E2I2+29m−6EI(9m3 R−2449)
EI(m+25R2−136)

)
R Complex function,

High error

500000 38.8107 −47 + 2R + R2 + 1
m

(
− 104 +

EI
(− 1

30 + 65
49R2

)
+3R2

) Complex function,
High error

Table 2: Results of multiple GP runs for non-dimensional variables for non-rotating cantilever beam

Generations RMS error Expression Comments

100000 0.001802 445η2
0

36 + 13

46+
803088(η2

0−3)
(30+η2

0 )(η4
0 +3η2

0 −5)

Complex function

36469 2.95e-05 1
19136 + 69856489 η2

0
5650788 Selected GP result

30419 3.356e-05 12

(
η2

0 +
5313η2

0(92+3η2
0)

16191678+527989η2
0

)
Complex function

Figure 5(a) shows the comparison between fre-
quency vs beam-length given by the exact solu-
tion and non-dimensional GP function in Eq. 9.
Similarly, Figure 5(b) shows comparison of fre-
quency vs mass per unit length and Figure 5(c)
shows the comparison between frequency vs flex-
ural rigidity given by the exact solution and non-
dimensional GP function. These figures show that
the GP can predict the underlying input–output re-
lationship that agrees well with the exact solution,
and these relationships are physically more mean-
ingful when the input dataset is generated using
non-dimensional variables. The insight devel-
oped during this non-dimensionalization is used
in solving the rotating cantilever beam problem in
the next section.

Note that it follows from the physics that η = 0
when η0 = 0, which happens when EI = 0. There-
fore, the expression in Eq. 9 can be modified as,

η =

√
69856489η2

0

5650788
= 3.516 η0 (10)

which matches the exact solution in Eq. 5. In
general, since GP is a computational tool, it is

a good idea to slightly modify the GP-generated
functions using physical knowledge of the prob-
lem [ Ashour, Alvarez, and Toropov (2003)].

The above case shows that the GP can give a func-
tional approximation to any complicated relation-
ship, which can match with the exact relation to
a reasonable extent. It can even give the exact
closed form solution in some cases. The power of
GP becomes much more clearer when it is used
for problems with no closed form solution, such
as rotating beams.

4 Rotating cantilever beams

As discussed before, the natural frequencies of the
rotating beams cannot be obtained from a closed
form solution and needed to be obtained using
the finite element method. Here we consider two
cases of rotating beams, first the uniform and then
linearly tapered cantilever beam. h-version FEM
is used to model both types of beams. Using the
relationship data obtained form FEM, we develop
the GP approximation for first natural frequency.
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4.1 Uniform beam

For the simplest case, we consider uniform can-
tilever beams as the idealization of helicopter ro-
tor blades.

4.1.1 Parameters affecting the natural fre-
quency

In this case, the output variable, ω1(first natural
frequency) is a function of EI(flexural rigidity),
R(radius of rotor), m(mass per unit length of rotor
blade) and Ω(rotation speed), i.e.,

ω1 = f (m,EI,R,Ω) (11)

Since the above relation is a nonlinear one, we
transform the physical variables into dimension-
less parameters to reduce the complexity of re-
lation and to obtain a better fit of GP model.
Though if the number of independent variables
is small and the relation is simple algebraic, the
dimensional GP response function can be gener-
ated. This transformation has reduced the number
of independent parameters in the dataset to one,
which is defined as non-dimensional stiffness (k)
such that,

k =
E I

mR4 Ω2 (12)

and the non-dimensional natural frequency can be
defined as,

γ =
ω1

Ω
= f (k) (13)

Note that k is similar to η0 used for the non-
rotating beam in Eq. 8 where a polynomial expan-
sion of η2 in Eq. 9 gave result matching the exact
solution closely.

4.1.2 Finite Element Model

The FEM modelling of a uniform rotating can-
tilever beam is done and its natural frequencies
were obtained. In h-version FEM, it is an ac-
cepted fact that 10n elements can give only up
to n natural frequencies to an acceptable accu-
racy. So, 20 elements of equal length were se-
lected to achieve a good accuracy. The classical
4–noded uniform beam element, with displace-
ment and slope continuity (C1 continuity) using

cubic Hermite polynomials, is used. The mass
and stiffness matrices for such a beam element
can be obtained from energy expressions and are
shown in Appendix A. The results of FEM model
is validated with the earlier works by Hodges and
Rutkowsky (1981), Wang and Wereley (2004),
and Wright, Smith, Thresher, and Wang (1982).
Table 3 shows the natural frequencies obtained
for uniform cantilever beam using h-version FEM
with two non-dimensional rotating speeds, λ = 0
and λ = 12. It can be observed that the frequen-
cies compare very well with the other published
results.

4.1.3 Empirical model obtained by GP

For the numerical results in the study using GP,
we consider a hingeless helicopter rotor which
can be represented as a uniform rotating can-
tilever beam for modelling purposes. The range
of independent variables (m,EI,R,Ω) is chosen
± 25% from the typical values for a helicopter
rotor blade. The typical values for helicopter ro-
tor are EI = 1.2×105kgm2, m = 6.4kg/m, Ω =
40rad/s and R = 5m, which are similar to the val-
ues used in Pawar and Ganguli (2003). The non-
dimensional stiffness is calculated for this range
of variables and used as the input parameter. The
natural frequency calculated using FEM model is
used as the output parameter.

This data is then used to train the GP code.
The mathematical operators addition, subtraction,
multiplication, division and negation were used
for GP run. The advantage of using GP for func-
tion approximation is due to its ability to dis-
cover the underlying input–output relationship in
the given data and express it mathematically. This
relationship is expressed as a LISP s–expression,
which can be easily converted into a mathemat-
ical relation. Multiple runs were performed and
solutions were analysed on the basis of the sim-
plest generated model that confirms the training
dataset as good as possible. The best five runs are
shown in Table 4. For the first mode, the expres-
sion given by GP after 500,000 generations in fifth
run shows an RMS error of 0.0074 as compared to
FEM results. The coefficients of this expression
are adjusted in order to minimize the error. The
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Table 3: Validation of Non-dimensional natural frequencies of cantilever uniform beam

Mode hFEM Wang and Wereley (2004) Wright et. al. (1982) Hodges and Rutkowsky (1981)
λ = 0

1 3.5160 3.5160 3.5160 3.5160
2 22.0345 22.0345 22.0345 22.0345
3 61.6972 61.6972 61.6972 61.6972
4 120.902 120.902 120.902 N/A
5 199.8616 199.860 199.860 N/A

λ = 12
1 13.1702 13.1702 13.1702 13.1702
2 37.6031 37.6031 37.6031 37.6031
3 79.6145 79.6145 79.6145 79.6145
4 140.5348 140.534 140.534 N/A
5 220.5383 220.536 220.536 N/A

Table 4: Results of multiple GP runs for rotating uniform cantilever beam

Generations RMS error Expression Comments
100000 0.02981 1+ 24k

1− 3k(−133+960k2 )
2(1+k)(19+384k2 )

Complex function,
High error

100000 0.00759 19
17 +14k−k2

(
8+ 1

5k+0.5

)
Complex function,
High error

100000 0.0100481 2k + 35+352k
31+k+38k2 Complex function,

High error
100000 0.009158 3

80

(
30+361k +126k2

)
High RMS error

500000 0.007411 1
77

(
86+1078k−755k2 +624k3

)
Selected GP result

Table 5: Comparison of natural frequency calculated using FEM and GP expression

% change
EI m R FEM frequency (γ) GP frequency (γ) % error
0 0 0 1.1760 1.1758 -0.017

10 10 10 1.1392 1.1406 0.123
-10 10 10 1.1236 1.1265 0.258
10 -10 10 1.1573 1.1576 0.026
10 10 -10 1.2310 1.2311 0.008

-10 -10 10 1.1392 1.1406 0.123
10 -10 -10 1.2643 1.2652 0.071

-10 10 -10 1.2026 1.2023 -0.025
-10 -10 -10 1.2310 1.2311 0.008
20 20 20 1.1134 1.1177 0.386

-20 20 20 1.0901 1.0988 0.798
20 -20 20 1.1441 1.1452 0.096
20 20 -20 1.3183 1.3208 0.190

-20 -20 20 1.1134 1.1177 0.386
20 -20 -20 1.4237 1.4287 0.351

-20 20 -20 1.2413 1.2417 0.032
-20 -20 -20 1.3183 1.3208 0.190
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resultant GP expression becomes,

γ2 =
1
77

(
86.5+1078k−755k2 +624k3) (14)

The constant term in the above equation accounts
for centrifugal stiffening and the terms dependent
on k are due to the structural effect of EI. For any
values of EI, m, R and Ω, the non-dimensional
stiffness k is calculated from Eq. 12 and then nat-
ural frequency can be obtained using above GP
result.

Now we consider some example values for the in-
put parameters and calculate the natural frequency
using GP expression, and compare with the FEM
results. For a fixed rotation speed Ω = 40rad/sec,
the other three variables, namely, flexural stiff-
ness, mass per unit length and blade length are
varied to ±10% and ±20%, and the natural fre-
quency is calculated using GP-generated function.
These results are compared with FEM results in
Table 5. This is a typical method of validating
a new metamodel about a baseline design. Thus
for the ±10% and ±20% perturbation we have 2 j

points, where j = 3 for the three variables EI, m
and R. These points are the vertices of a cube
with the baseline point as the centre point. The
percentage error shown in the table is very less,
which proves the validity of this model for calcu-
lating natural frequency of rotating blades.

As said earlier, prediction of the natural frequency
of rotor blades is important because of the de-
sign requirement of keeping the frequency away
from multiples of the rotor speed. If the natural
frequency obtained from a chosen set of parame-
ters falls near to the integral multiples of rotating
speed, the input parameters need to be modified.
If FEM is used to calculate the frequency in every
iteration, it would be expensive in terms of com-
putational efforts and time. Whereas, analytical
expression obtained from the GP can give the fre-
quency in a straight forward manner.

Next, the fundamental frequency obtained by
FEM and the approximate function given by GP
are compared at points other than the training
points and a good resemblance is seen. Fig-
ure 6(a) shows the comparison between FEM and

GP fundamental frequency changing with mass
per unit length m, Figure 6(b) shows the varia-
tion of frequency with flexural rigidity EI, Fig-
ure 6(c) shows the variation of frequency with
blade length R, and Figure 6(d) shows the vari-
ation of frequency with rotation speed Ω. These
graphs are plotted against one variable at a time
keeping others constant at the baseline values of
the helicopter rotor blade. Figures 7 - 9 show
the comparision of FEM and GP fundamental fre-
quency by varying two variables at a time. Again
we can see that the overall trends as well as the
magnitudes of the curves are well captured by the
GP.

4.2 Tapered beams

In practical problems of rotor blades, we have
non-uniform blades which can be better idealized
by linearly tapered beams for the ease of anal-
ysis. So, the natural frequency(ω1) is a func-
tion of taper parameters(α and β ) in addition to
EI, R, m and Ω. The flexural rigidity(EI) and
mass per unit length(m) are taken to vary lin-
early [Wright, Smith, Thresher, and Wang (1982)]
along the beam length as follows:

m = m0

(
1−α x

R

)
(15)

EI = EI0

(
1−β

x
R

)
(16)

where m0 and EI0 correspond to values of the
mass per unit length and the flexural rigidity at
the root of the beam, respectively.

Figure 10: The idealization of a linearly tapered
beam using uniform elements
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Table 6: Results of multiple GP runs for rotating tapered beam with different taper parameters

Generations RMS error Expression Comments
α = 0.1, β = 0.1

370000 0.00163 99
92 +k

(
13+ 1

3
13 +7k

)
Complex function

500000 0.01059 77
68 +14k−20k3 −2k4 High error

475000 0.00731 10
9 + 46

3 k− 29
3 k2 −80k3 +3024k4 Selected GP func-

tion
α = 0.5, β = 0.5

425000 0.00583 17
15 +21k−22k2 +k4

(
64+ 13376

15+152k

)
Complex function

500000 0.00819 8
7 + 950

47 k− 89
10k2 Higher error

500000 0.00768 4
77

(
22+391k−227k2−320k3

)
Selected GP func-
tion

α = 0.8, β = 0.95
500000 0.00251 107

89 + 66856
2225 k − 18

5 k2 −
6630

5243k(3983+377910k)

Complex function

500000 0.01005 1+32k
3040

(
3467−7410k +27075k2

)
High error

180000 0.00977 98
83 + 145616245

4776387 k− 5279
1056k2 Selected GP func-

tion
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Figure 11: First natural frequency of tapered blade with taper ratios α=0.1, β = 0.1
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Figure 6: First natural frequency of uniform hingeless helicopter rotor blade

In this section, we have considered the three dif-
ferent sets of taper parameters and the finite ele-
ment model is developed for finding the natural
frequency of the tapered beam. A sketch showing
an idealization of tapered beam with uniform ele-
ments is given in Figure 10. 200 uniform elements
were used to idealize the tapered beam into a
stepped beam and this FEM model was validated
with published results for the first mode frequency
by Wang and Wereley (2004) and Wright, Smith,
Thresher, and Wang (1982). For this stepped
beam, the natural frequency is calculated for dif-
ferent values of input variables using h-version
FEM. The input-output relationship data gener-
ated from FEM is then used to obtain the GP ap-
proximations for the natural frequency of rotating

tapered beams in terms of non-dimensional stiff-
ness k. The results of multiple GP runs for three
different sets of taper parameters are shown in Ta-
ble 6. In each case, among the three results, the
one showing least RMS error and is a polynomial
function, is selected as GP approximate function.
For any given values of EI, m, R and Ω, the non-
dimensional stiffness k is calculated and then GP-
generated expression is used to calculate the nat-
ural frequency. To further reduce the error, the
coefficients of these expressions are adjusted and
the resultant expressions are obtained as follows:

γ2 =
179
160

+
46
3

k− 29
3

k2 −80k3 +3024k4 (17)

γ2 =
4
77

(
22.1+391k−227k2−320k3

)
(18)
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(a) Effect of flexural stiffness and mass per unit length (b) Effect of flexural stiffness and rotating speed

Figure 7: First natural frequency of uniform hingeless helicopter rotor blade

(a) Effect of flexural stiffness and blade length (b) Effect of mass per unit length and rotating speed

Figure 8: First natural frequency of uniform hingeless helicopter rotor blade

(a) Effect of blade length and mass per unit length (b) Effect of blade length and rotating speed

Figure 9: First natural frequency of uniform hingeless helicopter rotor blade
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(d) Effect of rotating speed

Figure 12: First natural frequency of tapered blade with taper ratios α=0.5, β = 0.5

γ2 =
98.7
83

+
145616245

4776387
k− 5279

1056
k2 (19)

Eq. 17, 18 and 19 give the approximate functions
for the natural frequency for beams with taper ra-
tios (α ,β ) of (0.1, 0.1), (0.5, 0.5) and (0.8, 0.95),
respectively. The RMS error with these functions
is of the order 10−5. These expressions are physi-
cally reasonable with a constant term for centrifu-
gal stiffening and the k-dependent terms for struc-
tural stiffening.

Figures 11, 12 and 13 show the varia-
tion of frequency with respect to the input
parameters(EI,m,R,Ω) given by GP function
and FEM model, for three sets of taper ratios.
It is clear from these figures that the GP is able
to capture the underlying relationship between
input-output variables quite accurately. Hence,

we can use the GP expressions for finding the
natural frequency of a tapered beam with a given
fixed taper ratio and for varying values of mass
and stiffness. Similar calculations using FEM
will cost much in terms of computational efforts
and time, whereas the GP expression can directly
give the output for any given set of values of input
variables. In optimization problems involving
many iterations, GP approximations will thus
significantly reduce the cost and time of the
calculations.

We need to point out that the cost of GP approxi-
mations is high and it took about 4 hours of com-
puter time on a Pentium 4 computer to get the re-
sults in this study. However, once the GP approx-
imation is developed, it is a very efficient func-
tional expression. In this regard, GP is similar to
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(d) Effect of rotating speed

Figure 13: First natural frequency of tapered blade with taper ratios α=0.8, β = 0.95

other metamodeling methods such as those based
on neural networks where the training time can
be very large but once the approximation is ob-
tained, the time required to perform the analysis
becomes much less. GP has an advantage over
most other methods because it gives analytical ex-
pressions as approximations which can be used
by analytical optimization methods based on op-
timality criteria. We should also point out that the
use of metamodels is typically recommended only
for problems where many evaluations of the com-
puter code are needed such as in optimization and
for Monte Carlo simulations.

5 Conclusions

A functional approximation model to calculate
the natural frequency of rotating cantilever beam

is obtained using genetic programming (GP). A
finite element model (FEM) of the rotating beam
is developed and frequencies are validated with
data from the published literature. FEM results
are then used to train the GP and validate the
empirical model. It is found that using non-
dimensional variables results in a considerable re-
duction in the number of design variables and in
physically meaningful expressions. In particu-
lar, a certain combination of variables resulting
in a non-dimensional stiffness k = EI/mR4Ω2 re-
sults in a reduction of the problem dimensional-
ity from four to one. While dimensional GP’s
work well with very small dimensions, they be-
come less useful as the dimensions of the problem
increases. All the results show good agreement
between the predicted GP model and FEM results,
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both for uniform and tapered rotating beams.

The approximate model developed using GP can
therefore be used in structural optimization for
blade design and any other applications, which
typically involve validity of the approximation in
a region in the neighborhood of the baseline de-
sign. As optimization involves many iterations,
using an empirical model will be advantageous
in terms of cost and time in comparision to FEM
models. Such simple expressions can be devel-
oped for a given beam structure and used as an
empirical formula for preliminary design calcu-
lations and design improvements without using a
FEM model.

Appendix

Element mass matrix

M = mi Li

⎡
⎢⎢⎢⎣

13
35

11 Li
210

9
70

−13 Li
420

11 Li
210

L2
i

105
13 Li
420

−L2
i

140
9
70

13 L
420

13
35

−11 Li
210

−13 Li
420

−L2
i

140
−11 Li

210
L2

i
105

⎤
⎥⎥⎥⎦

where mi is the mass per unit length and Li is the
length of element i.

Element stiffness matrix

K =
(EI)i

L3
i

⎡
⎢⎢⎣

12 6Li −12 6Li

6Li 4L2
i −6Li 2L2

i
−12 −6Li 12 −6Li

6Li 2L2
i −6Li 4L2

i

⎤
⎥⎥⎦

where (EI)i is the flexural rigidity of element i.

Matrices contributing to stiffness due to centrifu-
gal effect

T =Ω2

⎛
⎜⎜⎝Ai

⎡
⎢⎢⎣

3
5 Li

1
20

−3
5 Li

1
20

1
20

Li
15

−1
20

−Li
60−3

5 Li

−1
20

3
5 Li

−1
20

1
20

−Li
60

−1
20

Li
15

⎤
⎥⎥⎦

−mi Li

⎡
⎢⎢⎢⎣

6
35

Li
28

−6
35

−Li
70

Li
28

L2
i

105
−Li
28

−L2
i

140−6
35

−Li
28

6
35

Li
70

−Li
70

−L2
i

140
Li
70

3 L2
i

70

⎤
⎥⎥⎥⎦

−mi Xi

⎡
⎢⎢⎢⎣

3
5

Li
10

−3
5 0

Li
10

L2
i

30
−Li
10

−L2
i

60−3
5

−Li
10

3
5 0

0 −L2
i

60 0 L2
i

10

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠

where, for i th element Ai = Ai−1 + mi (2 i−1)L2
i

and

Xi = (N −1)Li, N = number of elements

Effective element stiffness matrix is given by

Ke f f = K +T
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