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Slow Viscous Migration of a Conducting Solid Particle under the Action of
Uniform Ambient Electric and Magnetic Fields

A. Sellier1

Abstract: We examine the low-Reynolds-
number migration of a conducting and arbitrarily-
shaped solid particle freely immersed in a metal
liquid of different conductivity when subject to
uniform ambient electric and magnetic fields. The
boundary formulation established elsewhere for
an insulating particle is extended and the incurred
particle’s rigid-body motion is then obtained by
determinating a very few surface quantities on the
particle’s surface. The behavior of either oblate
or prolate conducting spheroids is analytically
investigated and the poposed procedure for the
challenging case of other non-trivial geometries
is implemented and benchmarked against those
solutions. The numerical implementation makes
it possible to obtain the rigid-body motion of
conducting tori and pear-shaped particles. If
the conducting torus does not rotate (since
orthotropic) and, depending on its shape, is seen
to translate like an oblate or a prolate spheroid
the pear-shaped particles are by contrast found
to translate and rotate therefore experiencing a
time-dependent migration. In addition, the rigid-
body motion of conducting tori and pear-shaped
particles strongly depends not nonly upon the
particle’s shape and conductivity ratio but also
upon the external electric and magnetic fields.

Keyword: MagnetoHydrodynamics, Stokes
flow, conducting particle, boundary-integral
equations.

1 Introduction

As first predicted by Kolin (1953), Leenov and
Kolin (1954) and experimentally confirmed by
Marty and Alemany (1984), a conducting or in-
sulating solid particle freely suspended in a liq-
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uid metal of different conductivity moves when
subject to uniform ambient electric and magnetic
fields E and B. Due to the resulting Lorentz body
force, the metal of uniform conductivity σ > 0
indeed experiences a viscous flow which, by vis-
cosity, makes the particle of constant conductivity
σs ≥ 0 migrate as soon as σs �= σ . Since this phe-
nomenon may receive applications in impurities
removal, it is of interest to determine the incurred
rigid-body motion of the particle, i. e. its transla-
tional and angular velocities U and ωωω . Such quan-
tities depend upon the particle shape and conduc-
tivity σs, the liquid metal uniform kinematic vis-
cosity μ and conductivity σ and the uniform am-
bient electric field E and magnetic field B. The
simple case of conducting spheres and cylinders
has been addressed by Leenov and Kolin (1954)
and Marty and Alemany (1984) but solid impuri-
ties may adopt other shapes. Thus, Moffatt and
Sellier (2002) and Sellier (2003a) recently con-
sidered non-spherical particles. In Moffatt and
Sellier (2002) a general theory is proposed for
an arbitrarily-shaped insulating particle (σs = 0)
and both U and ωωω are shown to be bilinear in E
and B. Appealing to symmetry properties, such
relationships are found to depend upon a very few
shape-sensitive coefficients for isotropic, axisym-
metric and orthotropic insulating particles. In or-
der to calculate such unknown coefficients and
to deal with a general geometry, Sellier (2003a)
proposed a boundary formulation to determine
(U,ωωω) for an arbitrarily-shaped but nonconduc-
tive particle and analytically worked out the ad-
vocated procedure for insulating ellipsoids.

The present work addresses the challenging case
of either conducting or insulating (σs ≥ 0) and
arbitrarily-shaped particles within the physical
framework introduced in Moffatt and Sellier
(2002). It is actually straightforward to extend the
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results and conclusions of this latter paper to the
case of a conducting particle and the arguments
will not be repeated here (for example, any con-
ducting and orthotropic particle does not rotate
and if isotropic translates parallel to E∧B). How-
ever, in any case the evaluation of (U,ωωω) requires
further investigations and this study both presents
and implements a suitable numerical strategy to
calculate, at a reasonable cost, the rigid-body mo-
tion of an arbitrary conducting particle.

The paper is organized as follows. In §2 we give
the key linear system that governs the unknown
cartesian velocity components of the solid body
and show how to calculate the migration from the
knowledge of a very few quantities on the surface
of the particle. The motion of a conducting ellip-
soid is then analytically obtained and thoroughly
discussed in §3. Relevant boundary-integral equa-
tions, that provide the previously alluded to key
surface quantities, are given in §4 whereas §5
both presents the numerical implementation of
the whole proposed procedure and discusses a
few carefully-selected illustrating examples: the
benchmark problem of the conducting ellipsoid,
the case of a conducting torus and finally the chal-
lenging case of a conducting pear-shaped particle.
Finally, a few concluding remarks close the paper
in §6.

2 Governing equations

This section reduces the determination of the
rigid-body motion of any conducting particle to
the evaluation of a few quantities on its surface.
For a sake of conciseness, the reader is whenever
possible directed to the material available in Mof-
fatt and Sellier (2002) or Sellier (2003a).

2.1 The governing system for the particle’s
rigid-body motion

This subsection briefly introduces our problem
and the key linar system that governs the unknown
translational and angular velocities of the parti-
cle. As sketched in figure 1, this latter is a solid
P , of uniform conductivity σs ≥ 0 and smooth
enough surface S, freely immersed in a Newto-
nian liquid metal of uniform density ρ , kinematic

viscosity μ and conductivity σ > 0 occupying
the unbounded domain Ω. Cartesian coordinates
(O,x1,x2,x3) centered at one point O attached to
the particle are adopted with x = OM,xi = x.ei

and r = |x|.

Figure 1: A conducting particle subject to uni-
form ambient electric and magnetic fields E and
B.

Far from P , steady uniform ambient electric and
magnetic fields E and B are separately and ex-
ternally applied. The particle does not modify
the magnetic field (Moffatt and Sellier (2002))
but whenever its conductivity differs from the
liquid conductivity it perturbs E to E − ∇φ ′ in
P and E − ∇φ in Ω if φ ′ and φ designate the
harmonic perturbation electrostatic potentials in-
side and outside the particle, respectively. In Ω
the resulting non-uniform current j and rotational
Lorentz body force j ∧ B induce a quasi-steady
flow of velocity u and pressure p and by viscos-
ity a rigid-body motion (U,ωωω) of P , with U the
velocity of the point O attached to P . If P has
length scale a of order 1mm or less the fluid ve-
locity scale U is of order σ |E||B|a2/μ and both
the Reynolds number Re = ρUa/μ and Hartmann
number M = |B|a(σ/μ)1/2 are small (Moffatt and
Sellier (2002)). From M � 1 one obtains

j = σ(E−∇φ +u∧B) ∼ σ(E−∇φ ) in Ω, (1)

whereas the induced current in the solid particle
becomes j′ = σs(E−∇φ ′). Exploiting (1) and re-
quiring the continuity of the normal current and
tangential perturbed electric field across the par-
ticle surface Jackson (1975), we thus arrive at
the following well-posed governing problem for
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φ and φ ′

∇2φ ′ =0 in P ,

∇2φ =0 in Ω,

∇φ →0 as r → ∞,

(2)

σs(E−∇φ ′).n = σ(E−∇φ ).n on S (3)

(E−∇φ ′)∧n = (E−∇φ )∧n on S (4)

where n denotes the unit outward normal on S.
Solving (2)-(4) provides the potentials φ ′ and φ ,

in P and Ω respectively, independently of the
fluid motion (u, p). Under the assumption Re �
1, this flow fulfills the steady Stokes equations
(Sellier (2003a))

∇.u = 0 and μ∇2u = ∇p− f in Ω, (5)

(u, p)→ (0, p∞) as r → ∞, u = ud on S (6)

for the approximated Lorentz body force f =
σ(E−∇φ )∧B, the far-field pressure p∞ = (σE∧
B).x and the prescribed rigid-body velocity ud =
U+ωωω ∧x.

The net force F′ and torque G′ (with respect to O)
exerted on the solid particle by the Lorentz body
force j′ ∧B inside P readily read

F′ = σs

[∫
P

(E−∇φ ′)dv

]
∧B, (7)

G′ = σs

∫
P

x∧[
(E−∇φ ′)∧B

]
dv. (8)

The metal flow (u, p), subject to (5)-(6), also ap-
plies on the particle a net force F and a net torque
G (with respect to O) whose determination in
terms of (U,ωωω) requires the prerequisite obten-
tion of φ . As recalled in §2.2, this potential actu-
ally admits a 1/r2−decay far from S. This ’good’
far-field behavior permits us to express F and G
as achieved in Sellier Sellier (2003a) by intro-
ducing six widely-employed (Happel and Bren-
ner (1973)) steady Stokes flows (u(i)

T , p(i)
T ) and

(u(i)
R , p(i)

R ) of the metal for i = 1,2,3. These spe-
cific flows which are free from body forces, quies-
cent far from S and associated to pure translations
or rotations of P with the boundary conditions
u(i)

T = ei and u(i)
R = ei ∧x on the particle surface,

induce the surface force densities f(i)T and f(i)R on
S. Adopting henceforth the usual tensor summa-
tion convention such that, for instance, v = viei

and T = Ti jei ⊗ e j for a vector v and a second-
rank tensor T of Cartesian components vi and Ti j,
the net force and torque F and G are found to be
(Sellier (2003a))

F = −μ{K.U+V.ωωω}−σVP [E∧B]

−σ
(∫

Ω
u(i)

T .[∇φ ∧B]dv

)
ei, (9)

G = −μ{D.U+W.ωωω}+σ [E∧B]∧
[∫

P
xdv

]

−σ
(∫

Ω
u(i)

R .[∇φ ∧B]dv

)
ei, (10)

where VP denotes the volume of P and the first
term on the right-hand side of (7) or (8) is readily
the net force or torque acting on the particle when
it moves at the velocities U and ωωω in absence of
any electromagnetic body force. In other words,
the occurring second-rank tensors K,W,V and D
are the standard (Kim and Karrila (1991)) transla-
tion, rotation tensors with Cartesian components

−μKi j =
∫

S
e j.f

(i)
T dS, −μWi j =

∫
S
[e j ∧x].f(i)R dS,

(11)

−μVi j =
∫

S
[e j ∧x].f(i)T dS, −μDi j =

∫
S

e j.f
(i)
R dS.

(12)

At this stage, one should note that both f(i)T and f(i)R
are defined up to a constant multiple of the unit
normal n (since one may add any constant to the
fluid pressure, Ladyzhenskaya (1969)). However,
adding λ n to f(i)T and f(i)R with λ constant does
not change the previous tensors Cartesian compo-
nents nor F or G. Since the particle is freely sus-
pended we have F + F′ = 0 and G + G′ = 0. By
virtue of (6) and (9)-(10), one accordingly obtains
the coupled equations

K.U+V.ωωω =
σ
μ

{
(δ −1)VPE∧B

−
(∫

Ω
u(i)

T .[∇φ ∧B]dv

)
ei−δ

[∫
P

∇φ ′dv

]
∧B

}
,

(13)
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D.U+W.ωωω =
σ
μ

{
(δ −1)

[∫
P

xdv

]
∧ [E∧B]

−
(∫

Ω
u(i)

R .[∇φ ∧B]dv

)
ei−δ

∫
P

x∧[∇φ ′∧B]dv

}
(14)

where δ = σs/σ ≥ 0 denotes the particle’s con-
ductivity ratio. By virtue of (11)-(12), the lin-
ear system (13)-(14) admits a 6 × 6 symmetric
and positive-definite matrix (Happel and Brenner
(1973)) and thus a unique solution (U,ωωω).

2.2 Needed surface quantities

Inspecting (11)-(14) suggests that the evaluation
of (U,ωωω) requires to calculate the surface forces

f(i)T and f(i)R on S but also the vectors u(i)
T ,u(i)

R ,∇φ in
Ω and ∇φ ′ in P . This subsection shows how one
may however content oneself with the knowledge
of f(i)T , f(i)R and a few quantities on the surface S
to obtain the particle rigid-body motion. The first
step in this direction has been achieved in Sell-
ier (2003a) where it is established that, under the
’good’ far-field 1/r2−decay of φ ,

∫
Ω

u(i)
L .[∇φ ∧B]dv = − σ

8πμ

×
∫

S

∫
S

{
εkmnPM

[
f(i)L .ek

]
(P)[B.en] [∇(φ,m).n](M)

+
[

f(i)L (P).
PM
PM

]
[∇φ (M)∧B] .n(M)

− f(i)L (P).[∇φ (M)∧B]
PM.n(M)

PM

}
dSPdSM,

(15)

if L ∈ {T,R} and εkmnek ⊗ em ⊗ en designates the
usual third-rank antisymmetric permutation ten-
sor. In order to treat the first and third terms occur-
ring on the right-hand sides of (11)-(12), let us in-
troduce the unknown polarization surface-charge
density q induced (Jackson (1975)) by the am-
bient electric field E on S. The potentials φ ′ and
φ , subject to (2)-(4), then adopt the single-layer
representations

φ ′ = ψ in P , φ = ψ in Ω, ψ(M) =
∫

S

q(P)dSP

4πPM
.

(16)

Note that (16) both ensures (2) and φ ′ = φ on S,
i. e. the boundary condition (4). In addition, (16)
and the condition (3) immediately yield

q = (∇φ ′ −∇φ ).n on S, (17)

(δ −1)E.n = (δ −1)∇φ ′.n+q on S. (18)

As detailed in Appendix A, the net polarization
charge on S is thus zero, i.e. the particle is elec-
trically neutral. This property ensures the an-
nounced ’good’ 1/r2−decay of φ far from the
particle. The obtention of the arising surface-
charge density q from the combination of (18) and
the representation (16) is postponed to §4. Ex-
ploiting the relation (16) in the particle, the previ-
ous continuity of the perturbation potential across
its surface S and using the divergence theorem, we
not only obtain the useful identities

VP =
∫

S

(x
3

)
.ndS,

∫
P

xdv =
3

∑
i=1

[∫
S

(
x2

i

2

)
ei.ndS

]
ei,

(19)

∫
P

∇φ ′dv =
[∫

S
φ (x)ei.ndS

]
ei (20)

but also the key relation, established in Appendix
A,

∫
P

x∧ [∇φ ′ ∧B]dv =
3

∑
i=1

[∫
S

{
q(x)h(x)B.ei

+φ (x) [(B.x)ei − (B.ei)x] .n
}

dS

]
ei, (21)

h(x) =
∫

S

MP.n(P)
4πMP

dSP for x = OM on S. (22)

In summary, the relations (11)-(15) and (20)-(22)
clearly show that the determination of the rigid-
body motion (U,ωωω) of a conducting particle only
requires to evaluate on its surface S the surface
forces f(i)T , f(i)R , the polarization charge density q
and also the perturbation potential φ together
with its gradient ∇φ = φ,mem and normal fluxes
∇(φ,m).n. Note that one should first obtain the
density q since, by virtue of (3) and (17)-(18),
the function φ obeys the well-posed exterior Neu-
mann problem

∇2φ = 0 in Ω and rφ → 0 as r → ∞ (23)
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∇φ .n = E.n− δq
δ −1

on S. (24)

Before presenting a suitable numerical strat-
egy to calculate the previous surface quantities
and thereby the rigid-body motion (U,ωωω) of an
arbitrarily-shaped conducting particle in §4, it is
worth working out analytically a benchmark prob-
lem for a simple geometry. This is achieved in §3
for ellipsoidal particles.

3 Translation of a conducting ellipsoid

As pointed out in the introduction, it is straight-
forward to extend the conclusions of Moffatt and
Sellier (2002) to the case of a conducting particle
of non-zero relative conductivity δ = σs/σ . As
a consequence, any conducting orthotropic solid
that has three orthogonal planes of symmetry in-
tersecting at its centre of volume O and normal
to vectors ei is found to experience a rigid-body
motion (U,ωωω) such that

U =
σ
μ

Si jk(δ )[E.e j][B.ek]ei, ωωω = 0 (25)

where the third-rank ’mobility’ tensor S =
Si jk(δ )ei ⊗ e j ⊗ ek, solely depends upon the or-
thotropic particle geometry and relative conduc-
tivity δ and admits Cartesian components Si jk(δ )
that vanish with εi jk. Note that U vanishes when E
and B are aligned but, in general, the orthotropic
particle not necessarily translates parallel or anti-
parallel to E∧B when E∧B �= 0 although it be-
comes the case whenever E and B are normal
to two different planes of symmetry. This sec-
tion analytically obtains the six non-zero Carte-
sian components of the mobility tensor of a con-
ducting ellipsoid and discusses in detail the pre-
dicted translation of either oblate or prolate con-
ducting spheroids.

3.1 The analytical solution

Henceforth we consider the ellipsoid of relative
conductivity δ ≥ 0 such that

x2
1/a2

1 +x2
2/a2

2 +x2
3/a2

3 = 1 for x = xiei on S. (26)

In this case (Jeffery (1922)) the surface forces f(i)T

and f(i)R adopt, up to a constant multiple of the unit

normal n, the following forms (without summa-
tion over suffixes i in (27))

f(i)T = − 4μs(x)
[χ +a2

i αi]
,

f(i)R = −4μs(x)(ei∧x)
[χ −a2

i αi]
,

(27)

s(x) =
{

x2
1

a4
1

+
x2

2

a4
2

+
x2

3

a4
3

}−1/2

(28)

where the functions χ and αi are defined as

χ
a1a2a3

=
∫ ∞

0

dt
γ(t)

,

αi

a1a2a3
=

∫ ∞

0

γ(t)−1dt

(a2
i + t)

,

(29)

γ(t) =
√

(a2
1 + t)(a2

2 + t)(a2
3 + t). (30)

These results, of interest for numerical bench-
marks in §4, clearly show that our coupling ten-
sors V and W, defined by (11)-(12), vanish. Ac-
cordingly, the vector K.U is given by the right-
hand side of (13). By superposition let us choose
B = Be1 and E = Ee2. For this electric field the
material available in Lamb (1932) (see §111−
114) yields, as detailed in Appendix B,

∇φ ′ =
α2d2(δ )E

α2−2
e2 in P ,

q =
2d2(δ )E
α2 −2

e2.n,

(31)

∇φ .n = d2(δ )Ee2.n on S (32)

where the unit normal n on S and the occurring
coefficient d2(δ ) read

n(x) =
3

∑
i=1

s(x)xi

a2
i

ei, d2(δ ) =
(δ −1)(α2−2)
2+(δ −1)α2

.

(33)

At this stage, one may easily prove that 0 < α2 <

2 and this legitimates the introduction of d2(δ )
in the entire range δ ≥ 0. If one denotes by φ0

the perturbation potential outside the same in-
sulating ellipsoid for the ambient electric field
E = e2, it follows from (29) and d2(0) = 1 that
φ = d2(δ )Eφ0 in the whole fluid domain Ω. Since
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∇φ ′ is uniform in the solid P the equation (13)
then becomes, after a few elementary algebra,

K.U =
σ
μ

EBd2(δ )

{
VPe1 ∧e2

−
(∫

Ω
u(i)

T .[∇φ0∧e1]dv

)
ei

}
. (34)

Comparing (34) with (25) under the identity
d2(0) = 1 yields the simple relation Si21(δ ) =
d2(δ )Si21(0) which permits us to deduce the re-
quired coefficient Si21(δ ) for the conducting ellip-
soid from the coefficient Si21(0) obtained in Sell-
ier (2003a) for the same insulating ellipsoid. Ap-
pealing to cyclic interchanges of suffixes and Sel-
lier (2003a), we thus arrive at the desired analyt-
ical solution (without summation over suffixes i
and j in (35))

Si jk(δ ) =
εi jk(δ −1)(αia2

i +α ja2
j)

6[2+(δ −1)α j]
. (35)

By virtue of (35) and because 2 +(δ −1)α j > 0,
two identical ellipsoids of different relative con-
ductivities δ1 and δ2 clearly adopt for any set-
ting (E,B) a parallel or anti-parallel translation
when (δ1 −1)(δ2 −1) is positive or negative, re-
spectively. For a sphere of radius a one obtains
αi = 2/3 and (25), in conjunction with (35), takes
the simple form

U = c(δ )
σa2

μ
[E∧B] with c(δ ) =

δ −1
3(δ +2)

; (36)

a result in perfect agreement with Leenov and
Kolin (1954) or Marty and Alemany (1984)
(1984). The coefficient c(δ ), plotted in Fig. 2(a)
versus the sphere conductivity ratio δ , is negative
or positive for σs < σ or σs > σ respectively and
asymptotes to 1/3 as the sphere becomes much
more conducting than the surrounding fluid. Note
that c′ = −6c compares the velocity of the con-
ducting sphere to the velocity of the same insu-
lating sphere. Since c(4) = −c(0) = 1/6, a con-
ducting sphere moves faster or slower than if in-
sulating when δ > 4 or 0 < δ < 4 respectively.
For a non-spherical ellipsoid the velocity U is not

in general aligned with E ∧B. If we further de-
note by U(δ ′,Λ) the velocity of a similar ellip-
soid, of semi-axis a′i = Λai with Λ > 0 and rel-
ative conductivity δ ′ = σ ′

s/σ ≥ 0, observe that,
since α ′

i = αi, for any ambient magnetic field B

U(δ ,Λ) = Λ2U(δ ,1) for any electric field E,

(37)

(δ −1)U(δ ′,Λ)
[2+(δ −1)αi]

=
Λ2(δ ′ −1)U(δ ,1)
[2+(δ ′ −1)αi]

if E∧ ei = 0. (38)

For instance, from (37) the velocity of a conduct-
ing ellipsoid is quarter of the velocity of the two
times bigger and similar ellipsoid of identical con-
ductivity for any setting (E,B). For δ �= 1 one
may also select δ ′ �= δ and Λ to obtain ’equiva-
lent’ ellipsoids, i.e. such that U(δ ′,Λ) = U(δ ,1).
By virtue of (38), for E aligned with ei an infinite
number of solutions (δ ′,Λ) are found with

δ ′ =
(δ −1)(2−αi)+Λ2[2+(δ −1)αi]

Λ2[2+(δ −1)αi]+(1−δ )αi
, Λ > Λc

(39)

and two different circumstances arise for the oc-
curring critical value Λc(δ ) :

Λc(δ ) =
{

(δ −1)(αi −2)
2+(δ −1)αi

}1/2

≤ 1,

δ ′ < 1 if δ < 1, (40)

Λc(δ ) =
[

(δ −1)αi

2+(δ −1)αi

]1/2

< 1,

δ ′ > 1 if δ > 1. (41)

In addition to the trivial solution (δ ′,Λ) = (δ ,1)
one thus always obtains a great deal of ’equiva-
lent’ ellipsoids. Note that δ ′ asymptotes to the
unity when Λ becomes large but to be fully consis-
tent with our low-Reynolds-number assumption
one should have Re(Λ) = ΛρUa/μ � 1 and this
condition puts an upper bound to the above val-
ues of Λ. Furthermore, δ ′ → ∞ as Λ → Λc(δ ) for
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δ > 1 and (use (31)-(33)) the total electric field
E − ∇φ ′ vanishes inside the similar ellipsoid of
relative conductivity δ ′.
Note that results (39)-(41) hold for E aligned with
ei and two ellipsoids ’equivalent’ for E∧ ei = 0
are, in general, not ’equivalent’ any more when
E∧e j = 0 and j �= i. Notable exceptions are spher-
ical and spheroidal particles which exhibit addi-
tional symmetries. For example (see (36) or set
αi = 2/3 in (39)-(41)), the sphere of radius Λa and
relative conductivity δ ′ experiences the same non-
zero translation as the sphere of radius a and given
relative conductivity δ �= 1, whatever the ambient
electric and magnetic fields E and B, only if it is
large enough, i. e. for Λ > Λc(δ ), and it admits
the relative conductivity δ ′ such that

δ ′ =
2(δ −1)+Λ2(δ +2)
Λ2(δ +2)+(1−δ )

, (42)

Λc(δ ) =
[

3|δ −1|+1−δ
2(δ +2)

]1/2

with δ �= 1.

(43)

The above function δ ′ is plotted versus the size
parameter Λ for a few values of the relative con-
ductivity δ of the sphere of radius a in Fig. 2(b).
Clearly, the relative conductivity δ ′ of ’equiva-
lent’ spheres of radius roughly smaller than 3a is
seen to deeply depend upon the conductivity ratio
δ of the sphere of radius a. By contrast, δ ′ ∼ 1
for ’equivalent’ bigger spheres (Λ∼>3) whatever
the value of δ .

The analysis also shows that two similar spheroids
of axis of revolution parallel to e3 are ’equivalent’,
i. e. translate at the same velocity, for any setting
(E,B) such that E.e3 = 0 as soon as δ ′ and Λ sat-
isfy (39)-(41) for i = 1 (or i = 2). As discussed
in the next subsection, non-similar spheroids of
axis of revolution parallel to e3 may also become
’equivalent’ if E.e3 = 0 for other values of δ ′.

3.2 Application to spheroidal particles

Let us denote by S (a,λ ) the spheroid of axis of
revolution aligned with e3 such that a1 = a2 = a
and a3 = λ a. This spheroid is oblate or prolate
for λ < 1 or λ > 1 respectively and one easily ob-
tains α1 = α2 = α(λ ) and α3 = β (λ ) with (Sellier

(2003a)) the relations

α(λ ) =
λ 2

λ 2−1

[
1− g(λ )

2λ 2
√

λ 2 −1

]
, (44)

β (λ ) =
1

λ 2−1

[
λ g(λ )√
λ 2−1

−2

]
, (45)

g(λ ) = log
[
2λ 2 +2λ

√
λ 2 −1−1

]
if λ > 1,

(46)

g(λ ) = 2arctan

[√
1−λ 2

λ

]
if λ < 1. (47)

In addition, (35) immediately yields S123 =
−S213 = a2c1(δ ,λ ),S231 = −S132 = a2c2(δ ,λ )
and S312 = −S321 = a2c3(δ ,λ ) where the occur-
ring coefficients are defined as

c1 =
(δ −1)α

3[2+(δ −1)α ]
,

c2 =
(δ −1)(α +λ 2β )

6[2+(δ −1)β ]
,

(48)

c3 =
(δ −1)(α +λ 2β )

6[2+(δ −1)α ]
. (49)

Note that as δ becomes large then c1 ∼ 1/3 for
any shape parameter λ , i. e. any spheroid
S (a,λ ) of large conductivity behaves like a
sphere of radius a in Case 1. By contrast, c2 and
c3 tend to finite limit that are shape-dependent as
δ increases. As already pointed out for insulat-
ing spheroidal particles (δ = 0) in Sellier (2003a)
and readily still valid for any conducting spheroid,
the velocity U is aligned with E∧B and depends
solely upon one of the previous coefficients ck for
the following special settings

Case 1: B||e3 or E.e3 = (E∧B).e3 = 0, (50)

Case 2: E||e3 or B.e3 = (E∧B).e3 = 0, (51)

Case 3: e3||E∧B, (52)

which are sketched in Fig. 3(a)-3(c).

In such circumstances, the translational velocity
U indeed reads

U = ck(δ ,λ )
σa2

μ
[E∧B] in Case k = 1,2,3.

(53)
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Figure 2: (a) Coefficient c(δ ), as defined in equation (36), for spheres of relative conductivity δ . (b) Location
in the Λ−δ ′ plane of the ’equivalent’ spheres of radius Λa and relative conductivity δ ′ that experience the
same translation as the sphere of radius a and conductivity ratio δ ′ �= 1, for δ = 0 (◦),δ = 0.5 (�),δ =
2 (�),δ = 5 (•) and δ = 10 (�).
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Figure 3: Illustration of Cases 1,2,3 and 4 for which U is aligned with E∧B. (a) Possible settings B||e3 or
(E′,B′) in Case 1. (b) Possible settings E||e3 or (E′,B′) in Case 2. (c) Possible setting (E,B) in Case 3. (d)
Employed notations and ambient electric and magnetic fields E and B in Case 4.

For convenience, let us denote by Sve(δ ) the
sphere of relative conductivity δ that has the same
volume as the spheroid S (a,λ ), i. e. of ra-
dius λ 1/3a. Instead of plotting the coefficients ck

we rather show in Fig. 4(a)-4(b) each function
c′k =−6ckλ−2/3 which compares the spheroid ve-
locity in Case k to the velocity of the volume
equivalent and insulating sphere Sve(0).
The spheroid translates parallel or anti-parallel
to Sve(0) for δ < 1 or δ > 1 respectively and
faster above and below horizontal long-dashed
lines. For comparisons the case of the volume
equivalent sphere of the same relative conductiv-
ity Sve(δ ), in other words the previously alluded
to function c′ = −6c, is plotted as a solid curve in
Fig. 4(a)-(b). Clearly, the behavior of both oblate
and prolate spheroids deeply depends upon the se-
lected Case k and the sign of δ −1. As depicted
in Fig. 4(a), oblate spheroids translate faster, and
more faster as λ ≥ 1/5 decreases, than the volume
equivalent conducting sphere Sve(δ ) in Case 2 for
δ < 1 and in Case 1 for δ > 1. In Case 3 opposite
or similar trends are found when δ is of medium
value 1 ≤ δ∼<5 or not, respectively. As evidenced
in Fig. 4(b), prolate spheroids exhibit another sen-
sitivity to Cases k. This time, the prolate spheroid
moves slower than its volume equivalent sphere
Sve(δ ) except in Case 2 for δ > 1 and in Case 3

for δ < 1. In any case, the difference in velocity
with Sve(δ ) increases with the slenderness ratio λ .

Finally, one should note that for δ < 1 curves c1

and c2 cross for λ = 1/5,1/2,2. The ratio c1/c2,

which compares the spheroid velocity in Cases 1
and 2 (for the same magnitude of different set-
tings E∧B), is incidentally the slope at origin of
the curves shown in Fig. 6(b) for δ = 0,2 and
the same values of the shape parameter λ . These
slopes illustrate the strong sensitivity of the in-
curred translation to the selected Cases 1 and 2
for λ = 1/5,1/2,2.

Finally, the sensitivity of the coefficients c′k to the
shape parameter λ is shown in Fig. 5(a)-5(b) for
δ = 0 and δ = 2. These figures clearly illustrate
the significant dependence of the spheroid veloc-
ity to the selected Case k and its nature (oblate
or prolate). Contrary to the case of an insulating
spheroid (which has been discussed in detail in
Sellier (2003a)) the spheroid of relative conduc-
tivity δ = 2 is seen to move slower than its equiv-
alent insulating sphere Sve in any circumstance.
In addition, a given spheroid (λ prescribed and
δ = 2) experiences its greatest and smallest veloc-
ity in Cases 1 and 2 respectively if oblate (λ < 1)
and Cases 2 and 1 respectively if prolate (λ > 1).
In previous Cases k the velocity U is aligned with
E ∧ B �= 0 and only vanishes for δ = 1. By a
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Figure 4: Normalized functions c′k for spheroids with the case of a conducting sphere recalled by the solid
curve. (a) Oblate spheroids in Case 1 (◦ for λ = 1/2 and • for λ = 1/5), Case 2 (� for λ = 1/2 and � for
λ = 1/5) and Case 3 (♦ for λ = 1/2 and � for λ = 1/5). (b) Prolate spheroids in Case 1 (◦ for λ = 1/2 and
• for λ = 1/5), Case 2 (� for λ = 1/2 and � for λ = 1/5) and Case 3 (♦ for λ = 1/2 and � for λ = 1/5).
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straightforward extension of the available results
for insulating spheroids, i. e. by replacing in Sel-
lier (2003a) each encountered term −Ck with the
previous coefficient ck, it is found that U is also
aligned with the non-zero product E∧B only in
the following additional Case 4:

E∧B �= 0, (E∧B).e3 = 0, (E.e3)(B.e3) �= 0.

(54)

In such circumstances E,B and e3 lie in the same
plane and the translation U is normal to e3 but
does not depend solely upon one coefficient ck.

Furthermore, it is possible to select (E,B) so that
U vanish although E∧B and δ −1 are non-zero.
For example, if we take 0 < θ = (E,e3) < π/2
and 0 < ϕ = (B,e3) ≤ π/2, as illustrated in Fig.
3(d), the translation U vanishes when δ �= 1 for
(exploit Sellier (2003a))

tanϕ =
c1(δ ,λ )
c2(δ ,λ )

tanθ =
2α [2+(δ −1)β ] tanθ

(α +λ 2β )[2+(δ −1)α ]
.

(55)

Of course, solutions of interest ϕ �= θ and sen-
sitive to the spheroid relative conductivity δ and
the shape parameter λ . As shown in Fig. 6(a), the
critical angle ϕ associated to the case θ = π/4
strongly depends upon these parameters. The so-
lution (ϕ,θ ), dictated by (55), is plotted in Fig.
6(b) for δ = 0,2 and λ = 1/5,1/2,2,5.Since (55)
readily becomes ϕ = c1θ/c2 as θ vanishes, the
slope of each curve at the origin indeed provides,
as previously announced, the ratio c1/c2 = c′1/c′2
for the selected pair (δ ,λ ). Note that ϕ − θ is
weak for nearly insulating spheroids (δ small) ex-
cept for thin oblate spheroids (λ � 1). For δ = 2
(and above this value) the critical angle ϕ deeply
depends upon the spheroid shape parameter λ and
becomes significantly greater or smaller than θ
for oblate or prolate spheroids, respectively.

Let us now look at similar spheroids S (Λa,λ )
of relative conductivity δ ′ that are ’equivalent’ to
the spheroid S (a,λ ) of conductivity ratio δ for
a specified setting (E,B). For symmetry reasons,
our results (39)-(41) for i = 1 or i = 3 provide
the answer for E.e3 = 0 or E ∧ e3 = 0 respec-
tively, whatever the ambient magnetic field B. The

curves, associated to a prescribed value of δ , are
located in the Λ− δ ′ plane in Fig. 7(a)-7(b) for
λ = 1/5 and λ = 5. Clearly, the solution (Λ,δ ′)
is nearly the one obtained for a sphere for prolate
spheroids of vanishing relative conductivity δ if
E.e3 = 0 and spheroidal particles of conductivity
ratio δ = O(1) with Λ∼>1 for any ambient elec-
tric field E. By contrast, (Λ,δ ′) is found to deeply
depend upon the shape parameter λ for oblate
spheroids of vanishing conductivity if E∧ e3 = 0
and both oblate or prolate spheroids of large rela-
tive conductivity (δ∼>10) for any electric field E.

Finally, one should note that two non-similar
spheroids S (a,λ1) and S (a,λ2) of relative con-
ductivities δ1 �= δ2 may experience the same trans-
lation for a given setting (E,B). For example, in
Fig. 4(a) oblate spheroids of shape parameters
λ2 = 1/5 and λ1 = 1/2 are ’equivalent’ in Case
2 (to the same insulating sphere S (a,1)) for crit-
ical values δ2 ∼ 0.17 and δ1 ∼ 0.10 and ’equiva-
lent’ in Case 1 (with this time the opposite veloc-
ity of the insulating sphere S (a,1)) for the criti-
cal values δ2 ∼ 2.65 and δ1 ∼ 2.94.

Before closing this subsection it is worth pointing
out that for any orthotropic and axisymmetric par-
ticle, of axis of symmetry parallel to e3 and typi-
cal length scale a, we again have S123 = −S213 =
a2c1,S231 = −S132 = a2c2 and S312 = −S321 =
a2c3 with coefficients c1,c2 and c3 determined
solely by the particle geometry and relative con-
ductivity δ . Of course, the property (53) in Cases
1-3 and the key relation tanϕ = c1 tanθ/c2 for the
critical orientations (θ ,ϕ) in Case 4 still hold. For
instance, these remarks hold for any conducting
torus of axis of symmetry parallel to e3; a geom-
etry which is numerically addressed in the next
section.

4 Relevant boundary-integral equations and
numerical method

This section presents boundary-integral equations
that make it possible to compute, in practice for an
arbitrarily-shaped conducting particle of smooth
enough boundary, the required surface forces
f(i)T , f(i)R , the polarization surface-charge density q
and not only the perturbation potential φ but also
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Figure 6: (a) Function 4ϕ/π with ϕ the critical angle (defined by (3.24)) if θ = π/4 for λ = 1/5 (•), λ =
1/2(◦), λ = 2 (�) and λ = 5 (	). (b) Critical settings (θ ,ϕ) for spheroidal particles of relative conduc-
tivity δ = 0 (clear symbols) or δ = 2 (filled symbols) and shape parameter λ = 1/5 (diamonds), λ = 1/2
(circles), λ = 2 (triangles) and λ = 5 (squares). On the long-dashed line B is aligned with E, i. e. ϕ = θ .
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Figure 7: Location in the Λ− δ ′ plane of spheroidal particles S (Λa,λ ) of relative conductivity δ ′ that
adopt, for any magnetic electric field B, the translation of the spheroid S (a,λ ) of conductivity ratio δ if
E.e3 = 0 (clear symbols) or E∧ e3 = 0 (filled symbols). The case of spherical particles, depicted in Fig.
2(b), is recalled by solid curves. (a) Case of oblate spheroids of shape parameter λ = 1/5 for δ = 0 (clear
or filled diamonds), δ = 2 (clear or filled circles) and δ = 10 (clear or filled squares). (b) Case of prolate
spheroids of shape parameter λ = 5 for δ = 0 (clear or filled diamonds), δ = 2 (clear or filled circles) and
δ = 10 (clear or filled squares).
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the gradient ∇φ = φ,mem and the normal fluxes
∇(φ,m).n on the particle surface S. As emphasized
in §2, the rigid-body motion (U,ωωω) is then imme-
diately deduced from these quantities by exploit-
ing (11)-(15) and (19)-(22).

4.1 Advocated boundary-integral equations

Let us start with the determination of vectors f(i)T

and f(i)R . For L ∈ {T,R}, recall that f(i)L is the sur-
face force induced on the particle boundary by the
steady Stokes flow u(i)

L , free from body forces,

quiescent at infinity and such that u(i)
T = ei or

u(i)
R = ei ∧x on S. Due to the very specific nature

of those rigid-body boundary conditions, such a
Stokes flow admits in the whole fluid domain Ω
a single-layer representation (Pozrikidis (1992))
that reads on the surface S

∫
S

[
f(i)L .ek

]
(P)

[
δ jk

PM
+

(PM.e j)(PM.ek)
PM3

]
dSP

= −8πμ
[
u(i)

L .e j

]
(M) for M on S (56)

where δ jk denotes the usual Kronecker Delta.
The above key Fredholm boundary-integral equa-
tion of the first kind is known (Ladyzhenskaya
(1969)) to admit a solution f(i)L unique up to
an arbitrary multiple of the unit normal n. As
previously pointed out, each second-rank tensor
K,V,W or D and the right-hand sides of equa-
tions (13)-(14) are however uniquely determined.

Using the single-layer representation (16), both
for φ ′ and φ , it is also straightforward to cast the
identity (18) into the following form

[δ +1]
q(M)

2
+[1−δ ]

∫
S

PM.n(M)
4πPM3 q(P)dSP

= [δ −1][E.n](M) for M on S. (57)

Because δ ≥ 0, the Fredholm boundary-integral
equation of the second kind (57) is well-posed
(see Zabreyko (1975), p.215). Upon using for
M on the surface S the following identity and def-
inition

∫
S

MP.n(P)
4πPM3 dSP =

1
2

(58)

Jδ (M) = δ +(1−δ )
∫

S

PM.[n(M)−n(P)]
4πPM3 dSP

(59)

it is useful for its numerical treatment to rewrite
(57) as

[1−δ ]
∫

S

[q(P)−q(M)]PM.n(M)
4πPM3 dSP

+[Jδ q](M) = [δ −1][E.n](M). (60)

The above equivalent formulation, which only in-
volves weakly-singular integrals, is indeed quite
suitable for our numerical implementation.

Finally, we need to evaluate, on the particle sur-
face S only, the perturbation potential φ subject to
the well-posed exterior Neumann problem (23)-
(24) together with its gradient ∇φ = φ,mem and the
normal fluxes ∇(φ,m).n. Appealing to the decay-
ing far-field behavior of φ and the usual second
Green’s identity, we easily arrive (Bonnet (1999))
at the boundary relation

−4πφ (M)+
∫

S
[φ (P)−φ (M)]

PM.n(P)
PM3 dSP

=
∫

S

[E.n](P)
PM

dSP for M on S. (61)

From the knowledge of the normal flux ∇.n =
E.n − δq/(δ − 1) we thus obtain the required
value of φ on the whole surface S by solving the
Fredholm boundary-integral equation of the sec-
ond kind (61). At this stage, one may approxi-
mate the gradient ∇φ on the surface S by com-
puting tangential derivatives of φ and using the
prescribed normal derivative ∇φ .n. However, an-
other treatment is needed in accurately evaluating
the required quantities ∇(φ,m).n. on S. The advo-
cated strategy, both established and numerically
tested in Sellier (2003b), makes use of one addi-
tional boundary-integral equation that relates on
S the cartesian derivatives of any function ψ , har-
monic in Ω and such that rψ → 0 as r → ∞. More
precisely, if we introduce on the boundary S the
usual mean curvature C, the tangential derivatives
Di jψ (Duduchava (2001)) such that

C(M) = [∇.n](M), (62)

[Di jψ ](M) = [n.ei](M)ψ, j(M)− [n.e j](M)ψ,i(M)
(63)
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and the weakly-singular surface integrals Ii(M) as

Ii(M) = 2π [n.ei](M)

+
∫

S

{
MP.[n(P)−n(M)]

PM2 −C(P)
}

n(P).ei

PM
dSP,

(64)

the following key boundary-integral equation
holds (Sellier (2003b))

2πψ,i(M)− [Di jψ ](M)I j(M)

+
∫

S

{
[Di jψ ](P)− [Di jψ ](M)

PM3

}
PM.e jdSP

=
∫

S
[
[∇ψ .n](P)− [∇ψ .n](M)

PM3 ]PM.eidSP

− [∇ψ .n](M)Ii(M) for M on S. (65)

Clearly, from the normal flux ∇ψ .n and the
mean curvature C one thus obtains the first-order
cartesian derivatives ψ,i by solving the Fredholm
boundary-integral equation of the second kind
(65). In summary, the advocated strategy to com-
pute φ ,φ,m = ∇φ .em and ∇(φ,m).n on S then con-
sists of three steps:

1) Calculate φ on S by solving (61).

2) Obtain the first-order cartesian derivatives φ,m

on S by exploiting (65) for ψ = φ .

3) Evaluate, successively for m = 1,2,3 and by
noting that φ,m is harmonic in Ω and ex-
hibits a good far-field behavior, the normal
flux ∇(φ,m).n by solving (61) for φ,m.

As demonstrated in Sellier (2003b), such a proce-
dure yields accurate approximations of φ ,φ,m and
∇(φ,m).n on the surface.

4.2 Numerical method

In the past decades the challenging numerical
treatment of either weakly-singular and regular
boundary-integral eauqtions has received a con-
siderable attention and played a key role in quite
different fields. In that direction one should men-
tion, for instance, the recent works by Hsiao and

Ingber (2004), Gardano and Dabnichki (2006),
Duddeck (2006) and Sanz et al (2007). In the
present work we resort to a collocation method
similar to the one employed in Sellier and Pa-
sol (2006). More precisely, each encountered
boundary-integral equation (56), (60), (61) or (65)
is discretized and numerically inverted by us-
ing isoparametric boundary elements. Since this
method has become standard, we briefly describe
the employed steps and direct for additional de-
tails the reader to the available textbooks (see,
among others, Beskos (1987), Pozrikidis (1992),
Brebbia et al (1984) and Bonnet (1999)).

We employ on S a N−node mesh of Ne six-node
curvilinear (quadratic) and isoparametric bound-
ary elements Δe which are mapped onto the stan-
dard triangle Δ of inequations 0 ≤ ξ1 ≤ 1,0 ≤
ξ2 ≤ 1 and ξ1 + ξ2 ≤ 1 in plane cartesian and in-
trinsic coordinates ξ = (ξ1,ξ2) by the quadratic
shape functions

λ1(ξ ) = (1−2ξ1 −2ξ2)(1−ξ1 −ξ2),
λ4(ξ )

4
= ξ1ξ2,

(66)

λ2(ξ ) = 4ξ1(1−ξ1 −ξ2),
λ3(ξ ) = (2ξ1−1)ξ1,

(67)

λ5(ξ ) = (2ξ2−1)ξ2,

λ6(ξ ) = 4ξ2(1−ξ1 −ξ2).
(68)

On each isoparametric element Δe, of nodal points
y(e,m) with m ∈ {1, ...,6}, any function v is then
interpolated as follows

v(P) =
6

∑
m=1

λm(ξ )v(e,m), v(e,m) = v
(

y(e,m)
)

(69)

OP = OP(ξ ) =
6

∑
m=1

λm(ξ )y(e,m)
l . (70)

The evaluation of each boundary-integral equa-
tion at the nodal point x = OM then appeals to
the general integrals

I(M) =
∫

S
v(P)K[M,P]dSP =

Ne

∑
e=1

6

∑
m=1

v(e,m)I(e,m)
M ,

(71)

I(e,m)
M =

∫
Δe

λm(ξ )K[x,y(ξ )]J(ξ )dξ , (72)
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where K is a kernel of 1/PM type weak singu-
larity and J denotes the jacobian of the mapping
y = y(ξ ). Each integral I(e,m)

M is approximated by
using standard Gaussian quadratures (Lyness and
Jespersen (1975)). The quadrature order (accu-
racy), which depends upon the location of M, is
selected as in Rezayat et al (1986) and the weak
singularity is removed by appealing to polar co-
ordinates centered at M whenever this point lies
on the boundary element Δe. Accordingly, any
discretized boundary-integral equation of interest
becomes a N′−equation linear system AX = Y
(with N′ = N for (57) or (61) and N′ = 3N for
(56) or(65)) of dense and non-symmetric influ-
ence matrix A. Note that, on theoretical ground,
(56) is ill-posed but in practice (?, Pozrikidis
(1992)) the associated matrix A is nonsingular un-
less very fine meshes are used. Any encountered
system AX = Y is thus numerically solved by a
standard LU factoriztion algorithm (subroutines
DGETRF and DGETRS of the Lapack Library).

5 Numerical results and discussion

This section first tests the numerical treatment ad-
vocated in §4 against the analytical solution ob-
tained in §3.2 for conducting spheroids and then
both presents and discusses numericals results for
a few conducting tori and pear-shaped particles.

5.1 Case of conducting spheroids

As introduced in §3.2, we consider a conducting
spheroid of shape parameter λ > 0 such that a1 =
a2 and a3 = λ a. Recalling the definition (28) of
s(x), the unit normal n(x) and the mean curvature
C(M) = C(x) then read

n(x) =
s(x)
a2

[
x1e1 +x2e2 +

x3

λ 2 e3

]
, (73)

C(x) =
s(x)
a2

[
2+λ−2 − s2(x)

a4

(
x2

1 +x2
2 +

x2
3

λ 6

)]
.

(74)

Any point M on the spheroid surface is located by
its usual angles θ ∈ [0,2π ] and ϕ ∈ [0,π ] such that
x1 = asinϕ cosθ ,x2 = asinϕ sinθ ,x3 = λ acosϕ
and for two positive integers Nϕ ≥ 3 and E ≥ 0 we
introduce the two-parameter mesh on S consisting

of the nodal points M = (θ ,ϕ) = (nθ ,nϕ) such
that

θ = 2π(nθ −1)/Nθ ,

ϕ = πnϕ/[2Nϕ ],

Nθ = 12×2E

(75)

for positive integers nθ and nϕ subject to the fol-
lowing conditions

1 ≤ nθ ≤ Nθ if 2 ≤ nϕ ≤ 2[Nϕ −1], (76)

nθ = 2k, k = 0, . . .,
Nθ

2
−1 if 1 ≤ nϕ ≤ 2Nϕ −1.

(77)

One thus ends up with a N−node mesh of N =
2[Nθ + 1][Nϕ −1] collocation points and for con-
ciseness we shall note N = [Nϕ ,E]. As previ-
ously pointed out, the accuracy of the advo-
cated strategy (consisting of equations (61)-(65))
to compute φ ,φ,m and ∇(φ,m).n on the surface
has been carefully checked in Sellier (2003b).
In the present work the numerical treatment of
the boundary-integral equations (56) and (60) has
been also nicely tested against the analytical so-
lutions (27)-(28) and (31)-(33) respectively by re-
sorting to the above-mentioned N−node mesh.

As shown in Tab. 1, the computed coefficient
c(δ ) (recall (36)) for a conducting sphere (λ = 1)
clearly converges towards its theoretical value as
the number N of collocation points increases. A
4-digit accuracy is obtained and the magnitude of
the computed angular velocity is of order 10−4 for
the refined 1058−node mesh whatever the value
of the sphere relative conductivity δ .

For non-spherical spheroids it is sufficient to com-
pare each computed coefficient ck to its theoreti-
cal value (see (48)-(49)). Tab. 2 provides such
comparisons both for oblate and prolate insulat-
ing or conducting spheroids. Again, an excellent
agreement is found between the numerics and the
theory. The magnitude of the computed angular
velocity is of order 10−4 and a 4-digit accuracy is
obtained for enough collocation points (N = 1058
or N = 2210 for the oblate and prolate spheroids,
respectively).

Finally, we numerically check that a non-
spherical spheroid may become motionless in
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Table 1: Effect of mesh refinement for the computed coefficient c(δ ), introduced by (36), for a conducting
sphere. Computations have been performed for (E,B) = (Ee3,Be1) and three numbers N of collocation
points: N = 72 = [4,0],N = 242 = [6,1] and N = 1058 = [12,2].

N δ = 0 δ = 0.5 δ = 2 δ = 5
74 -0.17447 -0.07025 0.08968 0.21399
242 -0.16756 -0.06704 0.08383 0.19169

1058 -0.16677 -0.06669 0.08335 0.19048
exact -0.16667 -0.06667 0.08333 0.19048

Table 2: Computed coefficients ck for a conducting oblate (λ = 0.5) or prolate (λ = 2) spheroid of relative
conductivity δ and shape parameter λ . Refined meshes of N = [12,2] = 1058 or N = [24,2] = 2210 colloca-
tion points have been used for λ = 0.5 or λ = 2 respectively and the selected ambient electric and magnetic
fields are (E,B) = (Ee2,Be3) if k = 1, (E,B) = (Ee3,Be1) if k = 2 and (E,B) = (Ee1,Be2) if k = 3.

δ λ k ck : computed ck : exact
0 0.5 1 -0.10330 -0.10320
0 0.5 2 -0.13018 -0.12979
0 0.5 3 -0.08046 -0.08036
2 0.5 1 0.06381 0.06373
2 0.5 2 0.04030 0.04018
2 0.5 3 0.04971 0.04963
0 2 1 -0.23484 -0.23474
0 2 2 -0.22333 -0.22334
0 2 3 -0.31466 -0.31456
2 2 1 0.09751 0.09747
2 2 2 0.15727 0.15728
2 2 3 0.13065 0.13061

Table 3: Computed normalized velocities u2 and ω2 of prolate and oblate conducting spheroids for the
critical setting E = E(e1 + e3)/

√
2,B = B(sinϕe1 + cosϕe3) with tanϕ = c1/c2 and EB �= 0. A coarse

N1−node mesh and a refined N2−node mesh are employed with N1 = [4,0] = 72,N2 = [12,2] = 1058 for
λ = 0.5 and N1 = [8,0] = 170,N2 = [24,2] = 2210 for λ = 2. Other computed quantities u1,u3,ω1 and ω3

are smaller in magnitude than 10−7 for the refined N2−node mesh and thus not given here.

δ λ u2(N1) u2(N2) ω2(N1) ω2(N2)
0 0.5 0.003063 -0.000115 -0.000074 0.000007

0.5 0.5 0.001069 -0.000043 -0.000026 0.000003
2 0.5 -0.001019 0.000058 0.000023 -0.000004
5 0.5 -0.001817 0.000035 0.000028 -0.000008
0 2 0.005157 0.000052 -0.000267 0.000003

0.5 2 0.002163 0.000021 -0.000109 -0.000001
2 2 -0.003023 -0.000027 0.000123 0.000001
5 2 -0.008313 -0.000061 0.000194 0.000001
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Case 4 for adequately selected electric and mag-
netic fields such that E ∧ B �= 0, as predicted
in §3.2. Here we take E = E(e1 + e3)/

√
2 and,

by virtue of (55), select the magnetic field as
B = B(sinϕe1 + cosϕe3) with tanϕ = c1/c2 and
EB �= 0. Under these choices, the following nor-
malized velocity components

ui =
μU.ei

σa2EB
, ωi =

μωωω .ei

σaEB
(78)

vanish. Our numerical results, given in Tab. 3 for
λ = 0.5,2 and δ = 0,0.5,2,5 perfectly agree with
this prediction.

5.2 Case of conducting tori

Let us consider, as illustrated in Fig. 8, a conduct-
ing torus of uniform conductivity σs ≥ 0 whose
surface S admits the equation [(x2

1 +x2
2)

1/2−R]2 +
x2

3 = a2 with R > a > 0. For this geometry n(x)
and C(x) read

n(x) =

⎡
⎣1− R√

x2
1 +x2

2

⎤
⎦[x1

a
e1 +

x2

a
e2

]
+

x3

a
e3,

(79)

C(x) =
1
a

⎡
⎣2− R√

x2
1 +x2

2

⎤
⎦ . (80)

Since orthotropic, the torus does not rotate and
because (O,e3) is axis of symmetry the only
non-zero coefficients Si jk that govern its transla-
tional velocity U (recall (25)) are S123 = −S213 =
a2c1,S231 = −S132 = a2c2 and S312 = −S321 =
a2c3 with, for k = 1,2,3,

ck = ck(δ ,η), δ =
σs

σ
≥ 0, η =

R
a

> 1. (81)

As sketched in Fig. 8, a nodal point M on S is
located by its angles ϕ and θ lying in [0,2π ] and
the N−node mesh is obtained by dividing the lat-
ter segment into Nϕ or Nθ equal subdomains for
ϕ and θ , respectively. All numerical computa-
tions are performed with Nϕ = 20 and Nθ = ηNϕ ,
a choice that is found to ascertain a sufficient
3−digit accuracy for any computed coefficient ck.
Four geometries are addressed: η = 1.5,2,3,5

Figure 8: Employed notations for a conducting
torus of shape parameter η = 2. (a) torus cross-
section. (b) torus top view.

and we thus spread 600 and 2000 collocation
points on the surface of the small (η = 1.5) and
big (η = 5) torus, respectively. For clarity, the co-
efficients ck are plotted versus the relative conduc-
tivity δ in Fig. 9(a) for these two tori only and the
reader may immediately obtain the behaviour for
the other shape parameters η = 2,3 by inspecting
Fig. 9(c)-9(d).

As illustrated in Fig. 9(a) for η = 1.5 and η = 5,
the translational velocity U of any conducting
torus has been found to increase in magnitude
with |δ − 1| and to admit its smallest or biggest
value in Cases 1 or 2 respectively for any given
relative conductivity δ ≥ 0. Note that |ck| also
increases with η but so does the torus volume
VP = 2π2ηa3. Accordingly, we also introduce
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Figure 9: (a) Coefficients ck(δ ,η) for the small (η = 1.5) and the big (η = 5) tori in Case 1 (◦ for η = 1.5
and • for η = 5), Case 2 (� for η = 1.5 and 	 for η = 5) and Case 3 (� for λ = 1.5 and � for η = 5).
(b)-(d) Normalized function c′k for η = 1.5(◦),η = 2(�),η = 3(•) and η = 5(♦) in Cases 1 (b), 2 (c) and 3
(d). Below and above the horizontal long-dashed lines the torus translates faster than its volume equivalent
insulating sphere. The case of the volume equivalent sphere of relative conductivity Sve(δ ) is indicated by
the solid curve.

the normalized coefficient c′k which compares in
Case k the torus velocity to the velocity of its
volume equivalent insulating sphere Sve(0), i. e.
such that

c′k(δ ,η) = −6ck(δ ,η)[3πη/2]−2/3. (82)

The functions c′k are plotted in Fig. 9(b)-9(d)
which are the counter-parts of Fig. 4(a)-4(b).
In each Case k, the torus migrates slower or
faster than its volume equivalent insulating sphere
Sve(0) below or above the long-dashed horizon-
tal line and the behavior of the volume equivalent

sphere of the same conductivity ratio Sve(δ ) is
recalled by the solid curve. The coefficient c′1 is
seen to weakly depend upon the shape-parameter
η for δ ≤ 1. Each coefficient c′k is seen to de-
crease in magnitude as η increases for any relative
conductivity δ ≥ 0 whereas, depending upon both
the selected Case k and the parameters (δ ,η), the
torus moves either slower or faster than its vol-
ume equivalent sphere Sve(δ ). More precisely,
the torus behaves like oblate spheroids (recall Fig.
4a) in Case 2 for δ ≥ 1 and Cases 1 or 3 for
δ ≤ 1, i.e. it moves slower that Sve(δ ). In other
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instances, the torus adopts a prolate-like or oblate-
like behavior depending on its shape parameter η
only. For example, if it essentially moves faster
or slower that Sve(δ ) in Cases 1 and 3 respec-
tively for δ ≥ 1 (as oblate spheroids do) it how-
ever migrates for δ ≤ 1 and Case 2 faster than
Sve(δ ) if η ≤ 2 (oblate-like behavior) but slower
than Sve(δ ) if η ≥ 3 (prolate-like behavior).

5.3 Case of conducting pear-shaped particles

As predicted in Moffatt and Sellier (2002) for
δ = 0 but also easily obtained by the same ar-
guments for δ > 0, any non-orthotropic and ax-
isymmetric particle may both translate and rotate.
Henceforth, we consider a particle that has length
scale a and an axis of symmetry (O,e) aligned
with the unit vector e. Adopting a frame of refer-
ence (O,e1,e2,e3) such that e3 = e, it is straight-
forward to establish that the particle rigid-body
motion (U,ωωω) depends solely upon seven coef-
ficients c1,c2,c3 and r1, r2, r3, r4 as follows

U1 =
σa2

μ
{

c1(E.e2)(B.e3)−c2(E.e3)(B.e2)
}
,

(83)

U2 =
σa2

μ
{−c1(E.e1)(B.e3)+c2(E.e3)(B.e1)

}
,

(84)

U3 =
σa2

μ
c3(E∧B).e3, (85)

Ω1 =
σa
μ

{
r1(E.e3)(B.e1)+ r2(E.e1)(B.e3)

}
,

(86)

Ω2 =
σa
μ

{
r1(E.e3)(B.e2)+ r2(E.e2)(B.e3)

}
,

(87)

Ω3 =
σa
μ

{
r3(E.e3)(B.e3)

+ r4[(E.e1)(B.e1)+(E.e2)(B.e2)]
}
. (88)

Each above coefficient ck or rl is determined by
the particle geometry and relative conductivity
δ ≥ 0 (of course ck depends upon the point O at-
tached to the particle and all coefficients rl vanish
when the body is orthotropic). From (83)-(85) it
appears that relation (53) actually takes place as
soon as the particle is only axisymmetric (and not

necessarily orthotropic). Accordingly, one may
successively obtain the coefficients c1,c2 and c3

by addressing Cases 1, 2 and 3 (recall definitions
(50)-(52)). By virtue of (86)-(88), the particle
in general also rotates and therefore experiences
a time-dependent rigid-body motion because its
orientation (i. e. the orientation of the unit vec-
tor e) relative to the steady ambient electric and
magnetic fields E and B then evolves with time.
Four different settings (E,B) actually permit us
to separately extract the coefficients r1, ..., r4. For
instance, (86)-(88) immediately yield

U = 0, ωωω =
σar3

μ
[E.B]e if E||e and B||e, (89)

U =
σa2c3E

μ
∧B, ωωω =

σar4E.B
μ

e

if E.e = B.e = 0. (90)

In the above circumstances, the rigid-body mo-
tion is steady: the vector e does not evolve with
time and the particle rotates at a constant angu-
lar velocity about its axis of symmetry (O,e) (it
may also experience a translation parallel to e). In
addition, we see that if E.e = E.B = 0 then

U =
σa2c1

μ

{
E∧B+(

c3

c1
−1)[(E∧B).e]e

}
,

(91)

ωωω =
σar2

μ
(B.e)E, (92)

whilst for E||e and B.E = 0 one obtains

U =
σa2c2

μ
[E∧B], ωωω =

σar1

μ
[E.e]B. (93)

If initial conditions (given by the initial value
e(t0) and the steady setting (E,B)) now fall into
one of the above circumstances, the induced par-
ticle rigid-body motion clearly becomes time-
dependent. More precisely, if E.B = E.e(t0) = 0
the particle translates and keeps rotating about the
axis (O,E) with (U,ωωω) given by (91)-(92) where
e = e(t). Of course, it will then stop rotating as
soon as its axis of symmetry (O,e) becomes nor-
mal to the magnetic field B. If E.B = 0 and E is
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Figure 10: Selected conducting pear-shaped particles for s = 0.1 and s = 0.3. The frame of reference
(O,e1,e2,e3) is such that e = e3 and the rigid-body motion (U, ) is given by (93).

Table 4: Computed coefficients c1 and r2 for two insulating or conducting pear-sphaped particles of shape-
parameters s = 0.1 and s = 0.3 Three increasing numbers N of collocation points are employed: N1 =
[10,0] = 218,N2 = [20,1] = 914 and N3 = [40,1] = 1874.

s δ c1(N1) c2(N2) c1(N3) r2(N1) r2(N2) r2(N3)
0.1 0. -0.04627 -0.04727 -0.04724 0.01031 0.01036 0.01036
0.3 0. -0.05108 -0.05235 -0.05234 0.00720 0.00727 0.00726
0.1 5. 0.04310 0.04343 0.04333 -0.01505 -0.01360 -0.01367
0.3 5. 0.04586 0.04660 0.04652 -0.01213 -0.01050 -0.01053
0.1 10. 0.05560 0.05552 0.05524 -0.02131 -0.01787 -0.01804
0.3 10. 0.05865 0.05930 0.05909 -0.01789 -0.01393 -0.01399

aligned with e(t0) the particle this time starts ro-
tating about the axis (O,B) and the orientation
of e(t) relative to E therefore changes. How-
ever, if one denotes by B and e′ the magnitude of
B and the unit vector e′ = B∧ e/B, observe that
E = (E.e)e+(E.e′)e′ at any time t with e′.B = 0.

By virtue of (90) and (92), the unsteady rigid-
body motion (U,ωωω) then reads

U =
σa2

μ
{

c2(E.e)e∧B+c3 [E.(B∧e)]e
}
, (94)

ωωω =
σar1

μ
[E.e]B (95)

with of course e = e(t). Accordingly, the particles
rotates about the axis (O,B) at any time and stop
rotating as soon as e(t) becomes this time normal
to the electric field E.

Circumstances (93) are illustrated in Fig. 10 for
a conducting pear-shaped particle. The surface
S admits, for Cartesian coordinates (O,x1,x2,x3)

such that e3 = e, the equation {x2
1 + x2

2}1/2 =
ahs(x3/a) where |x3/a| ≤ 1 and the positive pro-
file function hs is defined versus the shape pa-
rameter 0 < s < 1 in Appendix C. Henceforth,
numerical results are given for the two sketched
geometries (s = 0.1 and s = 0.3); two particles
which are clearly far from being orthotropic. Any
nodal point M on S is located by its angles θ ∈
[0,2π ] and ϕ ∈ [0,π ] such that x3 = acosϕ,x1 =
ahs(cosϕ)cosθ and x2 = ahs(cosϕ) sinθ with
the same discretization procedure in (θ ,ϕ) as for
spheroids (see (75)-77)).

All numerical computations employ N = [20,1] =
914 collocation points on the ’pear’ surface; a
choice that yields (see Tab. 4) a 4−digit accuracy
for coefficients ck and rl in the range 0 ≤ δ ≤ 10.

As shown in Fig. 11(a), the translation U in-
creases in magnitude with |δ − 1| and admits its
smallest value in Case 1 and its biggest value in
Case 2 if δ > 1 (with c2 > c3 > c1 > 0) and in
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Case 3 if δ < 1 (with c3 < c2 < c1 < 0).
Again, we introduce the coefficient c′k, which
compares in Case k the particle velocity to the ve-
locity of the volume equivalent insulating sphere
Sve(0), as

c′k = −6ck
[
3VP/(4πa3)

]−2/3
(96)

with VP the particle volume. As revealed by Fig.
11(b), each pear-shaped particle not surprisingly
behaves like prolate spheroids (see once more Fig.
4b): it moves faster than its volume equivalent
sphere Sve(δ ) of the same relative conductivity
δ in Case 2 for δ > 1 and Case 3 for δ < 1 and
slower than Sve(δ ) otherwise.

Finally, the coefficients rl are plotted in Fig. 12.
Clearly, r2 and r4 have sign of 1−δ , increase in
magnitude with |δ −1| and depend on the shape
parameter s. By contrast, r1 and r3 depend upon
s and exhibit a more subtle behavior for δ > 1 or
δ < 1 (see the magnified Fig. 12b): these coef-
ficients not only vanish with δ = 1 but also for
δ ∼ 2.2 and δ = 0, respectively.

6 Concluding remarks

A whole boundary-integral formulation and its
numerical implementation have been proposed to
accurately compute at a reasonable cpu cost the
rigid-body motion of a conducting and arbitrarily-
shaped particle subject to uniform ambient fields
E and B. The translation of a conducting ellip-
soid is analytically obtained and the accuracy of
the advocated procedure is then demonstrated by
the nice agreement, for spheroids, between the nu-
merics and the theory. It is shown that two similar
ellipsoids (admitting the same planes of symme-
try but different in size) may become ’equivalent’
for adequately selected conductivities, i. e. expe-
rience the same translation whatever the magnetic
field B for a prescribed electric field E normal to
a plane of symmetry. In addition to spheroids, the
behavior of conducting tori and pear-shaped parti-
cles is numerically investigated. The translational
velocity U of these axisymmetric bodies is found
to deeply depend upon (E,B), the particle shape
and its relative conductivity δ . For instance, con-
trary to the case of spheres and as already pointed

out for insulating spheroids in Sellier (2003a), U
is in general not aligned with E∧B and one can
select (E,B) so that U vanishes for δ �= 1 (recall
Case 4, depicted in Fig. 3(d), and choose angles
θ and ϕ such that tanϕ = c1 tanθ/c2). Among
the considered geometries, only pear-shaped par-
ticles are non-orthotropic and rotate. The induced
rigid-body motion thus becomes time-dependent
and the angular velocity ωωω is also greatly sensitive
to δ , the particle shape and the uniform ambient
fields E and B.

So far, particle-particle interactions have been ne-
glected. However, the rigid-body motions of two
close enough conducting particles might strongly
differ from the values predicted by the present
study. In future it would thus be nice to extend
the proposed procedure to the case of a N-particle
cluster with N ≥ 2. Such a challenging issue is
under current investigation.
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Appendix A:

This Appendix shows that the particle of relative
conductivity δ = σs/σ ≥ 0 is electrically neutral
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and establishes the results (21)-(22) for the vector

A =
∫

P
a(x)dv, a(x) = x∧ [∇φ ′ ∧B] = ai(x)ei.

(97)

From (18) it is clear that q = 0 if δ = 1. If δ �=
1, the integration of (18) over the surface S for
E uniform and ∇2φ ′ = 0 inside the particle also
yields∫

S
q(x)dS = (δ −1)

∫
S

E.ndS = 0. (98)

Appealing to the usual relation b ∧ (c ∧ d) =
(b.d)c−(b.c)d and a few elementary algebra, the
reader may easily check that for B uniform

ai(x) = (B.x)(∇φ ′.ei)− (B.ei)(∇φ ′.x)
= ∇.

{
φ ′[(B.x)ei − (B.ei)x]

}
+2φ ′(x)B.ei.

(99)

Accordingly, we immediately arrive at

A.ei =
∫

S
φ ′(x) [(B.x)ei− (B.ei)x] .ndS

+ 2(B.ei)
∫
P

φ ′(x)dv. (100)

The volume integral on the right-hand side of
(100) is treated by appealing to the single-layer
representation (16) of φ ′ in the domain P . Noting
that for OP = y = yiei the simple relation 2/MP =
∂ [MP.ei/MP]/∂yi = ∇y.(MP/MP) holds, the re-
sult reads

4π
∫

P
φ ′(y)dv =

∫
S

q(M)
[∫

P

dv
PM

]
dSM

=
1
2

∫
S

q(M)
[∫

S

MP.n(P)
MP

dSP

]
dSM. (101)

Since φ ′ = φ on S we thus deduce (21)-(22) from
(100)-(101).

Appendix B:

This Appendix establishes the results (31)-(33)
when E = Ee2. Following Lamb (1932) (see
§111−114) we select the perturbation potentials
φ ′ and φ as

φ ′(x) = −AEα2x2

a1a2a3
in P , (102)

φ (x) = −AE

[∫ ∞

λ(x)

dt

γ(t)(a2
2 + t)

]
in Ω (103)

with α2 and the function γ defined as in (29)-
(30), λ (x) the greatest positive root of the equa-
tion x2

1/(a2
1 +λ )+x2

2/(a2
2 +λ )+x2

3/(a2
3 +λ ) = 1

considered as cubic in λ and A a coefficient to be
determined. Under these choices, φ ′ and φ are
harmonic in P and Ω respectively and ∇φ → 0
as r → 0, i. e. (2) indeed holds. Noting that λ
vanishes on the ellipsoid surface of equation (26),
the definition (29) of α2 also ensures that φ ′ = φ
on S. Thus, A is obtained from the boundary con-
dition (3), i.e. δ (Ee2−∇φ ′).n = (Ee2−∇φ ).n on
S. Exploiting Lamb (1932) the relations (without
summation over suffixes i in (104))(

∂λ
∂xi

)
=

2s2(x)xi

a2
i

, n.ei =
s(x)xi

a2
i

(104)

we immediately obtain, from (102)-(103),

δ (Ee2 −∇φ ′).n = δE

[
1+

Aα2

a1a2a3

]
e2.n, (105)

(Ee2 −∇φ ).n = E

[
1+

A(α2 −2)
a1a2a3

]
e2.n. (106)

Accordingly, the required coefficient A is found to
be

A =
a1a2a3(1−δ )
2+(δ −1)α2

(107)

and using (17) to compute the associated polar-
ization surface-charge density q we easily arrive
at the announced results (31)-(33).

Appendix C:

In this Appendix we define the profile function hs

for the addressed pear-shaped particles (see §5.3)
and also provide the associated normal vector
n(x) and the mean curvature C(x). For 0 < s < 1
the selected function vs = h2

s obeys

vs(u) = −u(u+1) if −1 ≤ u ≤−1
2
, (108)

vs(u) = (1−u)(u−1+2s) if 1− s ≤ u ≤ 1,

(109)

vs(u) = s2 +
1−4s2

8

{
1−
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sin

[
2π

3−2s

(
u+

2s−1
4

)]}
if −0.5 ≤ u ≤ 1− s.

(110)

By introducing the first-order and second-order
derivatives v(1)

s = dvs/du and v(2)
s = dv(1)

s /du we
thus arrive, after elementary algebra, at

n(x) = x1e1 +x2e2 −av(1)
s (u)/2e3, (111)

d = x2
1 +x2

2 +
[
av(1)

s (u)/2
]2

, u = x3/a, (112)

C(x) = d−1/2

{
2− v(2)

s (u)
2

−

1
d

[
x2

1 +x2
2 −a2v(1)

s (u)v(1)
s (u)v(2)

s (u)/8
]}

.

(113)


