Copyright (©) 2007 Tech Science Press

CMES, vol.21, no.1, pp.41-52, 2007

A Systematic Approach for the Development of Weakly—Singular BIEs

Z.D. Han and S. N. Atluri!

Abstract: Straight-forward systematic deriva-
tions of the weakly singular boundary integral
equations (BIEs) are presented, following the
simple and directly-derived approach by Okada,
Rajiyah, and Atluri (1989b) and Han and Atluri
(2002). A set of weak-forms and their algebraic
combinations have been used to avoid the hyper-
singularities, by directly applying the “intrinsic
properties” of the fundamental solutions. The
systematic decomposition of the kernel functions
of BIEs is presented for regularizing the BIEs.
The present approach is general, and is applied
to developing weakly-singular BIEs for solids and
acoustics successfully.

Keyword: boundary integration equation, regu-
larization, decomposition.

1 Introduction

The boundary integral equations have distinct ad-
vantages over domain approaches, especially for
problems where singularities or infinite domains
are involved. In the past decades, the integral
equations have been the subject of extensive in-
vestigations. The focus in these derivations is
on the “fundamental solution” in a linear elas-
tic isotropic solid, viz., the Kelvin solution for
a unit point load applied at an arbitrary location,
in an arbitrary direction, in an infinite linear elas-
tic solid. The Kelvin solution is well-understood,
and is “singular”. In the Kelvin solution, for a
3-D solid, it is well-known that the displacement-
vector is “weakly-singular”, and the stress-tensor
is “strongly-singular”. In the classical formula-
tion, the integral equation for the displacement
vector at any point is “strongly singular”. By
differentiating the displacement BIE, the integral
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equation for the traction is obtained which is
‘hyper-singular”. Much has been written in the
last 10~15 years on the “regularization” of the
tBIE [i.e., render the “hyper-singular” tBIE into
a “weakly-singular” tBIE], through what appears
to be laborious mathematical exercises and “ma-
nipulations”. This literature is too large to dis-
cuss here, but excellent summaries may be found
in [Cruse and Richardson (1996); Bonnet, Maier,
Polizzotto (1998); Li and Mear (1998)].

In the present paper, we present a systematic ap-
proach for developing the BIEs by avoiding the
hyper singularity. It is well-understood that BIEs
are formulated by writing the global-weak-form
of the momentum balance law with the use of
the fundamental solution as the test functions. It
is clear that there is no physical hyper singular-
ity existing in both displacement and stress ten-
sors. The hyper-singularity is introduced when
the stress tensor is differentiated by applying the
divergence theorem. We also observe that the di-
vergence of the stress tensor keeps the Dirac-delta
property even when each component of its gra-
dients is hyper-singular. The Dirac-delta prop-
erty can be directly applied to avoid the hyper-
singularity if the test functions and its combina-
tion are so chosen that all introduced terms of the
gradients are kept in the form of the divergence
of the stress tensor. The traditional displacement
BIE has been well formulated in which such prin-
cipal is kept to avoid the hyper-singularity. How-
ever, such principal has not been kept while for-
mulating the traditional traction BIE by differen-
tiating the displacement BIE directly. Thereafter
all hyper-singular terms are kept together prop-
erly for applying the Dirac-delta property, which
requires various laborious treatments.

On the other hand, as far back as 1989, Okada,
Rajiyah, and Atluri (1989a,b, 1991) have pro-
posed a way to directly derive integral equations
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for gradients of displacements, by taking the gra-
dient of the displacement of the fundamental so-
lution as the test function, rather than the dis-
placement for the displacement BIE and then dif-
ferentiating it with respect to X as is most com-
mon is literature. All hyper-singular terms are
kept in form of the divergence of the stress tensor
for the direct application of the Dirac-delta prop-
erty. Thus, the directly derived BIE for the dis-
placement gradients [Okada, Rajiyah and Atluri
(1989a,b)] is only “strongly-singular”, as opposed
to being “hyper-singular”, which has been suc-
cessfully applied for solving nonlinear elastic
problems with finite deformation, as known as
the field BIE. In 2003, Han and Atluri (2003a)
have extended to formulate the traction BIEs in
the same manner, by applying the constitutive
equations to the BIEs for the displacement gra-
dients. It is essential that the stress field of the
fundamental solution is taken as the test func-
tion. The traction BIE has also been fully regular-
ized in a very straight-forward and simple man-
ner [Han and Atluri (2003a)]. In the present pa-
per, such a derivation procedure has been for-
mulated to be a general approach for develop-
ing non-hyper BIEs systematically in: i) choosing
proper test functions for the weak-forms to avoid
the hyper singularity; ii) decomposing the ker-
nel functions into two curl-free and divergence-
free parts; iii) applying the decomposed func-
tions for the regularization of the BIEs. This pro-
cedure is not limited to elasticity and has been
used to develop the non-hyper BIEs for acous-
tics [Qian, Han and Atluri (2004), Qian, Han,
Ufimtsev and Atluri (2004)], fracture mechanics
[Han and Atluri (2002, 2003b)], and their mesh-
less approaches[Atluri (2004), Atluri, Han and
Shen (2003), Atluri, Han and Rajendran (2004),
Atluri, Liu and Han (2006)].

The structure of the paper is as follows. In Sec-
tion 2, the non-hyper-singular BIEs are directly
derived, following Okada, Rajiyah and Atluri
(1989a,b) and Han and Atluri (2003a). We discuss
the general approach to avoid the hyper singulari-
ties in developing BIEs in Section 3. In Section 4,
the fundamental solution in term of the Galerkin
vector potential is revisited, and the decomposi-
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tion of the kernel functions of the fundamental
solution is also presented. The systematic method
for regularization of BIEs is presented in Section
5, and some conclusions are summarized in Sec-
tion 6.

2 Non-hyper-singular BIEs in Elasticity

The governing equations of momentum balance
in a solid undergoing small displacements are

d

()= 9E 2.1

iji+/fi=0; 0j; = 0ji

For the present, we ignore the body forces f; (but
include them later, when necessary). Thus, (2.1)
are reduced to:

Oiji = 0 inQ (22)

For a homogeneous linear elastic isotropic homo-
geneous solid, the constitutive equation is

0ij = Eijui€x = Ejjkiug, (2.3)
where

1
€l = E(uk,l g k) (2.4)
and
Eiju = A0;j6u + 1 (0 0j1 + 8 Sk ), (2.5)

with A and u being the Lame’s constants.

Let u; be the trial functions for displacements, to
satisfy Eq. (2.2), in terms of u;, when Eqgs. (2.3)-
(2.5) are used. Let u; be the test functions to sat-
isfy the momentum balance laws in terms of u;, in
a weak form. The weak form of the equilibrium
Eq. (2.2) can then be written as,

/ Gij,iﬁjdg =0or / (Eijmnum,n)iﬁjdﬂ =0
Q Q
(2.6)

Applying the divergence theorem two times in Eq.
(2.6), we obtain:

/ niEijmnum,nﬁj dS—/ nnEijmnumﬁj,i ds
2Q 2Q
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"’/ U (Eijmntlj;) ndQ=0 (2.7)
Q

Instead of the scalar weak form of Eq. (2.2), as in
Eq. (2.6), we may also write a vector weak form
of Eq. (2.2), by using the tensor test functions u; i
as:

/ Gij,iﬁj,kdg =0 k= 1,2,3 (28)
Q

By applying divergence theorem three times in
Eq. (2.8), we may write:

/ niEijmnum,nﬁj,k ds _/ nkEijmnum,nﬁj,i ds
2Q Q

+/BQ nnEijmnum,kﬁj,i dS_/Qum,k(Eijmnﬁj,i),n dQ
=0 (2.9

Consider a body of an infinite/semi-infinite extent
containing the solid of the interest, subject to a
point force at a generic location X in the direction
e”. The fundamental solution, in infinite/semi-
infinite space, of the stress field, denoted by
6*7(x,€), at any point & due to this point load
at x, is generated by the balance law:

V-7 (x,§)+6(x,6)e’ =0 or
0./ (x,6)+6,;(x,§) =0 (2.10)

It should be noted that the fundamental solution in
Eq. (2.10) is general. It is not limited to the well-
known Kelvin solution. It could be one of any
stress distributions for a number of problems of
practical importance, derived from the Kelvin so-
lution by methods of synthesis and superposition,
such as the fundamental solution in a semi-infinite
solid. The governing equation in Eq. (2.10) is the
most important property of the solutions for de-
veloping BIEs and canceling the singularities. It
is demonstrated in the following sections.

Without losing the generality, the corresponding
displacement field is denoted by u;”(x,€). By
taking this displacement solution as the test func-
tion %;(&), and with the consideration of its prop-
erties in Eq. (2.10), we re-write Eqgs. (2.7), (2.9),
respectively, as,

Eijmnttn(8)u3(x.8) dS
/()an ljmnumn(é)uj_?(x’é) ds

+ n zmn m, *I? X, ds
aQn J u ,k(g)u],( &)
_/ t;(& &) dS

+ [ Dan(@lewoi(x8) ds
(2.12)

where the surface tangential operator D is defined
as,

Di=n (2.13)

0
rCrst z

It clearly shows that the hyper-singularities in
Egs. (2.7), (2.9) are cancelled through the use
of the properties of the fundamental solution.
Eq. (2.11) is the well-known traditional dis-
placement BIE. However, Eq. (2.12) is the
displacement gradient BIE containing no hyper-
singularity, which is quite different from the tra-
ditional hyper-singular traction BIE. It should be
noted that the integral equations for u,(x) and
upk(X) as in Egs. (2.11) and (2.12) are derived
independently of each other. On the other hand, if
we derive the integral equation for displacement-
gradients, by directly differentiating u,,(x) in Eq.
(2.11), i.e. by differentiating,

(2.14)

with respect to x;, we obtain:

s = [ t(&u(x.8) s
- [ m@nhxE)as @1s)
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Thus, Eq. (2.14) is hypersingular, since t::lp (X, &)
is of O(r=3) for 3D problems. On the other
hand, the directly derived integral equations for
upi(x,&) as in Eq. (2.12) contain only singulari-
ties of O(r2).

Egs. (2.11) and (2.12) were originally given in
[Okada, Rajiyah, and Atluri (1989a,b)], and the
notion of using unsymmetric weak-forms of the
differential equations, to obtain integral represen-
tations for displacements, was presented in [Atluri
(1985)]. It has also been extended for tractions by
applying the constitutive equation [Han and Atluri
(2003a)], as

- Eubpkup,k(x) = Eubpk /BQ tj(& )uj-_i(x, &) ds
+ Eabp /a  Ditn(E)ensof (x.£) dS (216)

Then Eq. (2.15) can be re-written as,

0w = [ €0} xE)ds
2Q
+ [ Dyt € (8 ds 217)
where by definition,

0.7 (x,&) = Eapr)(x,8)

‘ > (2.18)
Zubpq(xv &) - Eubklenlpcnq (Xv &)

The function ©7(x,&) is identical to the stress
field if the Kelvin solution is used.

Contracting Eq. (2.16) with n,(x) on the bound-
ary, we have
10 = [ 1,(En(x)0}5(x.) ds

+ [ Dty (X iy (x.8) 45 (219)
where the traction is defined as,

t5(X) = na(x) 0., %) (2.20)

a

3 Discussion of Non-hyper-singular BIEs

Before discussing the non-hyper-singular traction
BIE in Eq. 3, we examine the displacement BIE in
Eq. (2.11) which is non-hyper-singular derived in
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a straight-forward manner. The governing equa-
tions of momentum balance in Eq. (2.1) contain
three independent equations, for 3D solid prob-
lems. We applied a vector test function u;”(x,&)
to three equations and their summation yields a
scalar weakform for the displacement in the di-
rection e”, as the displacement BIE in Eq. (2.11).
One advantage by using three weak-forms is that
the properties of the fundamental solution in Eq.
(2.10) can be applied directly to avoid the hyper-
singularity appearing in the displacement BIE in
Eq. (2.11). As shown in Eq. (2.7), the key point to
make it possible is to put all hyper-singular terms
together in the form of the governing equations,
after applying the divergence theorem to the sum-
mation of three weak-forms.

To develop traction BIEs, we apply the gradients
of the displacement field of the fundamental so-
lution #;7/(x,&) as a tenser test function to the
governing equations. It means that nine weak-
forms are used and their summation yields a vec-
tor weakform for the gradients of the displace-
ment in the direction e”, shown in Eq. (2.12).
Such summation results in a term in the form of
the governing equations in the weakform in Eq.
(2.9), which enables the direct use of the property
of the fundamental solution to avoid the hype-
singularity. In addition, we also apply the con-
stitutive equations to the BIEs for the gradients in
Eq. (2.12) and obtain the BIEs for the stress in
Eq. (2.16). It means that the actual test function
we apply to the governing equation is the stress
field of the fundamental solution ©7(x,&) (as its
variant form) shown in Eq. (2.17). It needs to be
pointed out that the non-hyper-singular displace-
ment and traction BIEs in the present paper are
very general because no special properties of the
fundamental solutions are used to cancel the sin-
gularities except the basic governing equations in
Eq. (2.10). Thus, the present BIEs are applica-
ble to any fundamental solutions and their var-
ious forms of Eq. (2.10). If the Kelvin solu-
tion of the infinite extent is used, these BIEs be-
come the widely-used displacement and traction
BIEs. They become the non-hyper-singular BIEs
for the semi-infinite extent, if the Mindlin solution
[Mindlin (1936)] is used.
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In contrast, the traditional traction BIE was de-
rived by differentiating the displacement BIE di-
rectly as shown in Eq. (2.14), and ignoring the
properties of the fundamental solutions. Thus,
the hyper-singularities have been introduced into
the final BIEs which can be cancelled in a sim-
ple manner. Much research has been done to
deal with the hyper-singularities, such as the use
of kernel decomposition with high-order numeri-
cal quadrature scheme, special forms of the fun-
damental solutions, and particular auxiliary solu-
tions. All these techniques are limited to one par-
ticular fundamental solution, which is hard to be
extended to other fundamental solutions.

4 Fundamental Solutions in Terms of
Galerkin Vector Potential for Displace-
ments

Consider a linear elastic, homogeneous, isotropic
body in a domain Q, with boundary dQ. The
Lame’ constants of the linear elastic isotropic
body are A and u; and the corresponding Young’s
modulus and Poisson’s ratio are £ and v, respec-
tively. We use Cartesian coordinates &;, and the
attendant base vectors e;, to describe the geom-
etry in Q. The solid is assumed to undergo in-
finitesimal deformations. The displacement vec-
tor, strain-tensor, and the stress-tensor in the elas-
tic body are denoted as u, € and o, respectively. It
is well known that the displacement vector, which
is a continuous function of &, can be derived, in
general, from the Galerkin vector potential ¢ such
that:

1
I v .

u=V-o 2(1—1))V(V o) (4.1a)
= AV @+ V9 —-V(V-0) (4.1b)
=u® +u” (4.1¢)

where, by definition,

u® =AVD = AV?p 4.2)
W =Vx¥=-VxVxp=Vo-V(V-0)
4.3)
u 1-2v

A= T T 2w 4

where @ is a scalar potential, and W is a vector
potential, such that:

d=V.0 (4.5)
¥Y=—(Vxo) (4.6)

Thus the displacement vector has been decom-
posed into two parts, u® and u¥, which posses
the properties,

Vxu® =AVxV® =0 curl-free 4.7
Vaut=V.Vx¥=0 divergence-free (4.8)

It is well-known that a divergence free tensor must
be a curl of another divergence free tensor, and
a curl-free tensor must be a gradient of a scalar
potential. As a particular case, the fundamen-
tal solution of Eq. (2.10) also possesses such
properties, which, and its derivatives in various
forms as the kernel functions, can be decomposed
into: 1) a divergence-free part, and ii) a curl-
free part. Thereafter, the singularities in the BIEs
can be reduced to be tractable, by i) applying the
Stokes’ theorem, or ii) utilizing the Cauchy Prin-
cipal value (CPV) integral.

In the present paper, the Kelvin solution is taken
to demonstrate the decomposition procedure. The
similar derivation has been successfully applied
for solving problems of acoustics governed by
the Helmholtz differential equation by Qian, Han
and Atluri (2004) and Qian, Han, Ufimtsev and
Atluri (2004).

Consider the fundamental solution of Eq. (2.10),
the corresponding Galerkin vector displacement
potentials are given as,

P =(1—- D)F*(”)e” no summationon p  (4.9)

where for the Kelvin solution in an infinite extent,

F'= W’;—’U) for 3D problems (4103)
and

—rInr
F'= m for 2D problems (410b)

where r = || —x||. The derivatives of function F
can be found in Appendix A.
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One may re-write Eq. (2.10) in term of F™* as,

p(1=v)Fpy+6(x,6) =0 4.11)

The corresponding displacements are derived
from the Galerkin vector displacement potential,
using (4.1a), as:

* * 1 *
;" (%,8) = (1=0)8,iFj; — i (4.12)
which is weakly singular and requires no further
treatment.

The gradients of the displacements in Eq. (4.12)
are:

* * 1 *
;5 (%,8) = (1 =) 8piFjy; — ZFM 4.13)

which contains the singularity of O(r~2) for 3D
or O(r~!) for 2D. All kernel functions containing
these gradients need to be regularized, including
0./ (x,€), ©;7(x,6), Z},,(x,&). For the case of
the Kelvin solution, the second one is identical to

the stress field o, (x,§).

One may decompose the stress field from its defi-
nition, given by:

G;;-p(x,é) EEijkluZ{;
=U[(1 = 0)8piF i j + VO F s — F /]
+ (1 —0) 8, F iy
4.14)

which is not divergence-free due to the last term,
as

:;I)z(xvg) = ,Ll(l -

O —,Ll5pj5(X,§)

(4.15)

V)6, F,Zkii =

We define two functions ¢* and y;; 7 to decom-
pose the stress field o;/;(x é) as

;) (x.8) =0,/ (x.8) + v/ (x.§) (4.16a)
¢;7(x,&) = —u(1—0)8,;Fjy; curl-free (4.16b)
II/;; (Xvé) E,LL[(] v)éplpkk]—i_vél]Fpkk F;k)lj]

divergence-free  (4.16¢)

where, as a divergence free tensor, y*(x, &) must
be a curl of another divergence-free tensor. We
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choose to rewrite it in term of F* from Eq.
(4.16¢), as:

* *
V)erp; Fx — e iF il s

%ﬂ}p(x’ &) = uess[(1-
= emG

tj,s

4.17)

where, by definition,

G} (x,8) = (1 —v)eip;Fi —ewjF ] (4.18)

which is weakly singular.

The third kernel function, X}; jva ,(%,&), can be de-

composed from its definition in Eq. (4.14), writ-
ten in terms of F'* as:

z“:ﬁ]pq( &) El]klenlpo ( &)
=Uu [(elnp ,jqn — €inp 5qu,bbn + eintetqkejme,kmn)
+v (einqéij,bbn + ejnqéipF,bbn)]
4.19)

We also have the divergence of j;, a

Ejqul( x,8)=u DeﬂqublP—Al]pql( x,&) (4.20)

where, by definition,

A;k]pq( x,) = Ivlzvejinbbp curl-free 4.21)

Thus, one may obtain the divergence-free part by
subtracting the curl-free part from the kernel func-

tion X}, (x,§), as

K;k]pq( X,§) =X}, (x,8) — A (x,8)
= Wein [(6pF jg — 81p g F b + €rgre jpmF km)
+ V(84 SjpF b + etpme jmgFon) | n
= einHyjp, ,(x,8) divergence-free
4.22)

and its companion divergence-free tensor is given,
by definition, as

H;;pq( é) = “2[(51'19F-,jq - 51'1) 5qu.,bb +eiqkej[)mF,km)
+0(8ig8jp b+ €ipme jmg Fov )]

= .Uz[_éijp-,pq +26pF jq +26j4Fip — 6pqFij
— 25ip5qu,bb + Zvéiqéjpp,bb
+(1=0)8:j6pgFpb)]
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4.23)

which is weakly singular.

From Egs. (4.20) and (4.22), some properties of
the kernel functions can be found as following:

V-Z¥(x,€) = V-A*(x,€) (4.24a)
V. K(x,E)=0 (4.24b)
K*(x,€) =V xH"(x,§) (4.24¢)

For the strong singularity of the curl-free part, we
write the weak form of Eq. (2.10) over the do-
main, using a constant ¢ as a test function, as

/Q 0,/(x,6)dQ+38,; =0 (4.25a)
and apply the divergence theorem once,

/a m(E)o (xE)dS + 8, =0 (4.25b)
or

/(;Qt;-‘p(x,é)dS—l—Spj =0 xeQ (4.25¢)

Eq. (4.25c¢) is the well-known “basic identity” of
the fundamental solution 6*”(x,&€). Eq. (4.25¢)
is simply an affirmation of the force balance law
for Q: if the point load is applied at a point x € Q
when Q is entirely embedded in an infinite space,
the tractions exerted by the surrounding infinite
body on the finite-body €2 should be equilibrated
with the applied point force at x inside Q.

Once the point x approaches a smooth boundary,
i.e. x € dQ, the first term in Eq. (4.25d) can be
written in a Cauchy Principal value (CPV) inte-

gral, denoted by [ CPV, as

bl

CPV o 1
l; (x,6)dS— 55191'

(4.26a)

lim [ £7(x,E)dS = /

x—dQ.J9Q Q

and thus, one obtains:

CPV 1
/BQ (7(x,E)dS+ 58, =0 xE€0Q (4.26b)

0 n()

Figure 1: A solution domain with source point x
and target point &

20 ne)

Figure 2: A loading point x approaching the

boundary

e;(X) =n(X)

X\/ e (®) = (%)

A

e, (X) =s(x

Figure 3: Local coordinates at a boundary point X
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The second term on the right hand-side of Eq.
(4.264) results from the principal value of the sin-
gular integral involving ;”, which has a O(%)
singularity. Eq. (4.26b) may also be physically
explained as below. o,/ (and thus ;") are so-
lutions due to a point load applied in an infinite
space. In reality, the point load can be assumed
to be distributed over a small-sphere, of radius
€, in an infinite body. The tractions distributed
over this sphere, that result in a point load, are
of O(é); while the surface area of the sphere is
O(€?). As long as this sphere is inside Q, and
while Q is a part of the infinite space, the load
applied on Q is still unity. Suppose x — X at JQ
shown in Fig. 2, then the sphere of radius € is cen-
tered at the boundary. As long as the boundary is
smooth, only one-half of the sphere of radius € is
actually inside Q, when x — % at dQ. Thus while
the load applied, in infinite space, on a sphere of
radius € at X € dQ, is still unity, the actual load ap-
plied on Q is only 1. Thus we obtain Eq. (4.26b).

We can write Eq. (4.25¢) for x € dQ, with Eq.
(4.26), as:

CPV |
/BQ ((x,E)dS+ 58, =0 x€0Q
4.27)

From Eq. (4.16), we also see that

CpPV .
~ [ nE)o (xE)ds
2Q
CpPV
= [ n(&)6) (x.£)ds (428w)

0Q
or

CPV . CPV .
[ rgas= [ m(E)e)(x.8)ds
0Q 0Q
(4.28b)
for both x € Q and x € JQ.

The corresponding equations for ‘P;‘]P can also be
written as,

[ &} (x.E)ds =0 429)
0Q
and
/ n(E)W (%, &) - ux)dS = 0 (4.30)
0Q
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5 Regularization of BIEs

The traction BIE in Eq. 3 may be satisfied
in a weak-form at dQ, using a Petrov-Galerkin
scheme, as:

- /a s (9n()dS,
— [ w(xas. [ _t(E)nx)08(x.E)ds;

+/ W (x dS/ D ity (E)na(X) Sy (%, E) dS
5.1

where wj(X) is a test function. With the use of
Egs. (4.16) and (4.22), the weakform can be
rewritten as,

- [ wnds. = [ wxds,
/ tq(é) (X)[\PZZ( &) %b( &)]dS§

[ wo00dS, | Dyt (EDma(x)Kis(x.8) dS

5.2)

With the fact that
0 0
o 5.3
9% 9E (5.3)

one may rewrite Eq. (5.2) with the decomposition
of the kernel functions as:

1

—5 o lb(X)Wb(X)de

:_/a W (x dS/ t,(E)DG1(x,&) dS;
_ / 1,(&) dS; / (X)9,5 (x.§)dSx

_/mwb X de/aQDpuq (E)DuH o (x,E) dS;
5.4

where G/ is defined in Eq.(4.18); ¢,/ is defined
in Eq. (4.16), and H;‘bpq is defined in Eq. (4.23).
If wp(x) is continuous, one may use Stokes’ theo-
rem, and re-write Eq. (5.4) as:

1

— = tp(x x)dS,
> oo b(X)Wp(X)
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= Dwp(x)dSy |t ,€)dS
/ / 4( g
_ / 1,(€) dS: / Y e (wp(X)07(x, £)dS,

—I—/ DW[, dS/ Duq ubpq( &)dSé

(5.5)
If the test function wp(X) is chosen to be iden-
tical to a function that is energy-conjugate to ¢,
namely, the trial function #,(x), we generate the
symmetric Galerkin BEM as:

- 1 [ w@nxds,

= D,ip(x)dSy | ¢ ,€)dS
/ / q g
_ / 1(€) dS: / Y ()i (X)97(x, £)dS,

—1—/ D,y (x dS/ Dy (E)Hypp, (%, ) dSe

(5.6)
The results in Eq. (5.5) are similar to those re-
ported in [Li and Mear (1998)] but are different
from those in Li and Mear (1998) in the kernel
functions appearing in Eq. (5.6). However, here,
we obtain these results in a very straightforward
and simple manner.

Regarding the displacement BIE in Eq. (2.11),
only the term containing the stress field of the fun-
damental solutions is strongly singular and needs
the treatment for the numerical implementation.
We also consider the possibility of satisfying the
dBIE, at dQ, in a weak form, through a general
Petrov-Galerkin scheme, and write a weak-form
for Eq. (2.11) as:

% / W, (%) (X)dS,

_/ Wy (x dS/ £(E)u? (%, E) dS:

_/ Wp dS/ lllz]( 7§)dS§
cpPv
+/BQW[)(X)de - ni(&)u;(€)9.7 (x,€) dS;
(5.7)

Applying Stokes’ theorem to Eq. (5.7), we have

3 | s,

—/ Wp dS/ l] )dSé

+/ wp(x dS/ Gl (x,&) dS¢
CPV
+/()QW1)(X)de o ni(&)uj(ﬁ)@]( x,€) dS§
(5.8)

where fo is defined in Eq.(4.18).

If w,(x) is chosen to be identical to a function
which is energy-conjugate to u,, viz., the trial
function 7,(x), we obtain the symmetric Galerkin
dBEM, as

3 | (s,

_/ fp(x dS/ 1;(& x,&) dSe

—l—/ 7 Xde/D &G (x,€)dS
aa’ 20 )G/ (%.8) dS¢

[ i, [ m@u@

After the regularization, both displacement and
traction BIEs are weakly singular. All integrals
can be performed by using the ordinary Gaus-
sian quadrature scheme, which requires no spe-
cial numerical techniques to deal with the hyper
or strong singularities. The BIEs developed here
have been successfully applied to solving fracture
problems [Han and Atluri (2003a)] and acoustic
problems [Qian, Han and Atluri (2004)].

¢z] ( 7&) dS§
5.9

6 Closure

A systematic approach for developing boundary
integral equations has been presented to avoid the
hyper singularities completely. We have also pre-
sented a systematic way to decompose the cor-
responding kernel functions into divergence-free
and companion curl-free parts, with the use of the
properties of the fundamental solutions, for reg-
ularizing the BIEs. The fully regularized BIEs
contain weakly singular integrals which are nu-
merical tractable. The present approach has been
demonstrated by developing the weakly-singular
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displacement and traction BIEs in a linear elastic
solid undergoing small displacements, in a simple
and straight-forward manner.

The present approach follows the methodologies
presented in Okada, Rajiyah, and Atluri (1989b)
and extended in Han and Atluri (2003a). It is gen-
eral and could be extended for developing BIEs
for other PDEs for acoustics, electro- magnetics,
finite elasticity, and the MLPG approach.
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Appendix A: Derivatives of the Kelvin solu-
tion

In a 3-dimensional linear elastic homogeneous
body we can easily derive the derivatives of F*,
as:

,
F*=————for3D 1 A-1
S7(1—v) or 3D problems (A-1)
Firi= (A-2a)
P 8ru(l—v)
. 1
F,pi_ Sﬂu(l—v)r(épl_r’pr’l) (A‘Zb)
. 1
Fye = Il = o)r (A-2c)
1

*

P (1 —v)r2
. (5pir,j + 5[)]'}"’1' + 5ijr,p — 3r,pr,ir,j) (A—Zd)

1

Fy A2

okki 4ru(l—v)r2 (A-2e)

N 1
Frij = “an(i=u)R _D)r3(5ij—3r,ir,j) (A-2f)
and for a 2-dimensional body,

2
—rl
N r“Inr (A-3)

- 8mru(l—v)

. 1
F,= —m(r—l—Zrlnr)r,p (A-4a)
. 1
Epi——87_6“(1_D)[Spl(l—l—Zlnr)—l—Zr,pr,l]
(A-4b)
1
Fia=——"7—=(1+1 A4
Jkk 27'5“(1—1))( + nr) ( C)
1

* f—

F..=--——
P dru(l—v)r
. (5pir,j + 5pjr,l- + 5ijr,p — 2r,pr,ir,j) (A—4d)

N 1
Fiaa 2mu(1 —v)rr’i (A-de)
_— 1
F,kkij__Zn'u(l_v)rz(éz]_zr,zr,]) (A-41)

The singularity in each of the derivatives can be
seen, for 3D problems, as:

Frij < 0(:_3) (A-5a)
Fiyy=0(3) (A-5b)
Fiu=0() (A-50)

20 0) (A-5d)

and for 2D problems as:

N 1
Fgij o< O(r_2) (A-6a)
N 1
F ki o= 0(;) (A-6b)
F, o O(Inr) (A-6c)
Fy o O(Inr) (A-6d)

The kernel functions for 3D problems are given
as:

! (x,€) 1 )r[(3_4u)5i,,+r,ir,,,]

- 167(1—v
(A7)

* 1
Gl.]?’(x,é) = m[(l - 21))6’1'[,]' —I-eikjr,kr,p]
(A-8)



52 Copyright (© 2007 Tech Science Press

0;; (x,€) = m

(1 =20)(8ijrp — 8ipr j — 8jpr ) —3rr i1 ]

(A-9)
Hi*qu(xvg)
u
= m[41}5iq5jp — 51'[,5]',1 — 21)51']'5[,,1
+ 5ijr,pr,q + 5pqr,ir,j — 25ipr,jr,q — (qur,ir’p]
(A-10)
and for 2D plane strain problems as:
WP (%,E) = ——[—(3—40)InrS)+rir )]
P 8m(1—v) P
(A-11)
G’-‘P(X é) — ;
AT 4n(1—v)

=1 —=2v)Inrep;+epjriry (A-12)

0;; (x,€) = m

(1 =20)(8ijrp — ipr j — 8jpr i) — 211 j7 ]
(A-13)

. 1
H,(x,6) = a(—v)
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