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An Unconditionally Time-Stable Level Set Method and Its Application to
Shape and Topology Optimization
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Abstract:  The level set method is a nu-
merical technique for simulating moving in-
terfaces.  In this paper, an unconditionally
BIBO (Bounded-Input-Bounded-Output) time-
stable consistent meshfree level set method is pro-
posed and applied as a more effective approach
to simultaneous shape and topology optimization.
In the present level set method, the meshfree in-
finitely smooth inverse multiquadric Radial Ba-
sis Functions (RBFs) are employed to discretize
the implicit level set function. A high level of
smoothness of the level set function and accu-
racy of the solution to the Hamilton-Jacobi par-
tial differential equation (PDE) can be achieved.
The resulting dynamic system of coupled Ordi-
nary Differential Equations (ODEs) is uncondi-
tionally positive definite, reinitialization free and
BIBO time-stable. Significant advantages can
be obtained in efficiency and accuracy over the
standard finite difference-based level set methods.
A moving superimposed finite element method
is adopted to improve the accuracy in structural
analysis and thus the physical model is consis-
tent with the geometrical model. An explicit
volume constraint approach is developed to sat-
isfy the volume constraint function effectively and
to guarantee the designs to be feasible during
the level set evolution. Reinitialization is elim-
inated and nucleation of new holes is allowed
for and the present nucleation mechanism can
be physically meaningful. The final solution be-
comes less dependent on the initial designs. The
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present method is applied to simultaneous shape
and topology optimization problems and its suc-
cess is illustrated.
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1 Introduction

The level set method first introduced by Osher and
Sethian [Osher and Sethian (1988)] has become
increasingly popular. It is a simple and versa-
tile numerical technique for computing and ana-
lyzing the motion of an interface in two or three
dimensions and following the evolution of inter-
faces. Since these interfaces may easily develop
sharp corners, break apart, merge together and
even disappear, the level set method has obtained
a wide range of applications, including problems
in fluid mechanics, combustion, solids modeling,
computer animation, material science and image
processing over the years [Sethian (1999); Os-
her and Fedkiw (2001, 2002); Osher and Para-
gios (2003); Tsai and Osher (2003)]. On the
other hand, structural shape and topology op-
timization has become an effective design tool
for obtaining more efficient structures in struc-
tural design [Wang and Wang (2004a); Wang
and Zhou (2004); Tapp, Hansel, Mittelstedt, and
Becker (2004); Wang and Wang (2006a); Zhou
and Wang (2006); Wang, Tai, and Quek (2006);
Cisilino (2007); Paris, Casteleiro, Navarrina, and
Colominas (2007)]. A structural optimal topology
can be reached by optimal modifications of holes
and connectivities of the design domain [Akin
and Arjona-Baez (2001); Bendsge and Kikuchi
(1988); Wang and Tai (2004)]. The topology
optimization has the highest importance in the
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developing process of all structural optimization
methods [Rozvany (2001a); Bendsge and Kikuchi
(1988); Xie and Steven (1993); Wang, Tai, and
Wang (2006); Wang and Wang (2006a)]. The
shape optimization changes the surface geometry
in a manner that a homogenous stress distribution
is achieved [Wang and Wang (2006c¢)]. Structural
shape and topology optimization has been identi-
fied as one of the most challenging tasks in struc-
tural design [Bendsge and Sigmund (2003)].

Recently, the level set methods have been ap-
plied to structural shape and topology optimiza-
tion problems as an emerging family of meth-
ods based on the moving free boundaries [Sethian
and Wiegmann (2000); Osher and Santosa (2001);
Wang, Wang, and Guo (2003); Allaire, Jouve,
and Toader (2004)]. Since both shape and topo-
logical changes in the structural design domain
can be readily obtained by taking the voids as a
phase and the free boundary as the dynamic inter-
face, the level set methods can be applied to struc-
tural shape and topology optimization problems
as a free boundary-based alternative to the pop-
ular element-based structural optimization meth-
ods [Rozvany (2001a)] such as the homogeneous
approach first proposed by Bendsge and Kikuchi
[Bendsge and Kikuchi (1988)] or its variant the
SIMP (Solid Isotropic Microstructure with Penal-
ization) method [Bendsge (1989); Rozvany, Zhou,
and Birker (1992)].

In shape and topology optimization using the
level set methods, Sethian and Wiegmann (2000)
[Sethian and Wiegmann (2000)] first extended the
level set method of Osher and Sethian [Osher and
Sethian (1988)] to capture the free boundary of
a structure on a fixed Eulerian mesh. The von
Mises equivalent stress, rather than the more suit-
able classical shape sensitivity analysis, was em-
ployed to improve the structural rigidity within
the context of two-dimensional (2D) linear elas-
ticity using the immersed interface method. Os-
her and Santosa [Osher and Santosa (2001)] in-
vestigated a two-phase optimization problem of a
membrane modeled by a linear scalar partial dif-
ferential equation. The free boundary was de-
fined as the interface between two constituents
occupying a given design domain. The level set
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method was combined with the classical shape
sensitivity analysis framework, but the linear or
nonlinear elasticity was not included. Wang et
al. [Wang, Wang, and Guo (2003)] implemented
a level set method for structural topology opti-
mization by establishing the velocity vector in
terms of the shape of the boundary and the vari-
ational sensitivity as a physically meaningful link
between the general structural topology optimiza-
tion process and the universal level set methods.
A smoothed Heaviside function was adopted in
the finite element model and it was suggested that
using the level set methods for structural topology
optimization has the promising potentials in flex-
ibility of handling topological changes, fidelity of
boundary representation and degree of automa-
tion. Allaire et al. [Allaire, Jouve, and Toader
(2004)] proposed an implementation of the level
set methods for structural topology optimization
where the front velocity during the optimization
process was derived from the classical shape sen-
sitivity analysis by using an adjoint problem and
the front propagation was performed by solving
the Hamilton-Jacobi equation. An artificial mate-
rial model was used for the finite element analy-
sis and it was illustrated that drastic topological
changes during the structural optimization pro-
cess were allowed for and the final design may
be quite sensitive to the initial guess. More re-
cently, many other researchers have further in-
vestigated shape and topology optimization using
the level set methods, such as nucleation of new
holes using topological derivatives [Allaire, Gour-
nay, Jouve, and Toader (2004); Burger, Hackl,
and Ring (2004); Wang, Mei, and Wang (2004);
Allaire, de Gournay, Jouve, and Toader (2005);
Hintermuller (2005); Amstutz and Andri (2006)],
or without using the Hamilton-Jacobi equation to
update the level set function [Belytschko, Xiao,
and Parimi (2003); Haber (2004); Guo, Zhao,
and Wang (2005)], multi-material design [Wang
and Wang (2004b, 2005b)], compliant mecha-
nism design [Allaire, Jouve, and Toader (2004);
Chen, Wang, Wang, and Xia (2005); Wang, Chen,
Wang, and Mei (2005)], applications to vibration
and multiple loads [Allaire and Jouve (2005)],
as well as the introduction of radial basis func-
tions for solving the Hamilton-Jacobi equation
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[Cecil, Qian, and Osher (2004); Wang and Wang
(2006b,¢); Wang, Lim, Khoo, and Wang (2007)].

Despite the significant advances, there are still
some fundamental issues to be resolved. In solv-
ing the structural shape and topology optimiza-
tion problems, the standard level set methods [Os-
her and Santosa (2001); Wang, Wang, and Guo
(2003); Allaire, Jouve, and Toader (2004); Wang
and Wang (2004b, 2006a)] based on a finite dif-
ference method is known to be computationally
expensive, slow to reach the convergence [Haber
(2004)], easy to converge to a local minimum
[Allaire, Jouve, and Toader (2004)], and even
likely to converge to an infeasible solution when
a volume constraint is imposed [Wang and Wang
(2006a)]. In the standard level set methods, reini-
tialization has been widely used as a numerical
remedy for maintaining stable evolution and en-
suring desirable results [Sethian (1999); Osher
and Fedkiw (2002)]. However, the reinitialization
process can be quite complicated, expensive, even
fraught with subtle side effects such as shift of
the interface and ambiguous about when to reini-
tialize the level set function to a signed distance
function [Li, Xu, Gu, and Fox (2005)]. To time
advance the level set function, the timestep size
must be sufficiently small to satisfy the Courant-
Friedrichs-Lewy (CFL) condition for time stabil-
ity due to the finite difference-based upwinding
vanishing viscous schemes [Osher and Santosa
(2001); Tsai and Osher (2003); Cecil, Qian, and
Osher (2004)], resulting in a loss of computa-
tional efficiency in the standard level set meth-
ods. It was reported that the timestep size may
not be strictly confined by the CFL condition
in the work of [Kansa, Powerb, Fasshauerc, and
Ling (2004); Platte and Driscoll (2005); Wang
and Wang (2006b,c); Wang, Lim, Khoo, and
Wang (2007)] due to the use of RBFs for time-
dependent problems. Nevertheless, since time sta-
bility cannot be rigorously guaranteed, the use
of large timesteps is not necessarily permitted
and the computational cost may still be expen-
sive. In addition to the computational efficiency,
the existing level set methods may suffer from
the computational accuracy. Most level set meth-
ods adopted an approximate smoothed Heaviside

step function in their physical models [Osher and
Santosa (2001); Wang, Wang, and Guo (2003);
Allaire, Jouve, and Toader (2004); Allaire and
Jouve (2005); Wang and Wang (2004b, 2006b,c);
Wang, Lim, Khoo, and Wang (2007)] and thus
the distinct geometrical model represented by the
level set function is inconsistent with the smeared
or approximate physical model. This inconsis-
tency may result in a low level of accuracy in the
global and local responses such as displacements
and strains in the finite element-based structural
elasticity analysis, as shown in [Wang and Wang
(2006a)]. In structural shape and topology op-
timization, an explicit volume constraint is usu-
ally adopted to limit the use of material [Bend-
sge and Sigmund (2003)]. However, this vol-
ume constraint has not been appropriately re-
solved in the existing level set methods. In [Al-
laire, Jouve, and Toader (2002, 2004); Allaire,
Gournay, Jouve, and Toader (2004); Allaire and
Jouve (2005); Wang and Wang (2006b); Amstutz
and Andrd (2006)], a fixed Lagrange multiplier
was used during the course of evolution and thus
only a relatively simple unconstrained optimiza-
tion problem can be directly solved. In [Osher
and Santosa (2001); Wang, Wang, and Guo (2003,
2004); Wang and Wang (2005b)], the variable La-
grange multiplier was derived from the fact that
its shape derivative vanishes if the total material
volume is conservative and keeps constant during
the level set evolution. Since an explicit bound-
ary integration of the strain energy density can be
quite inaccurate due to the inconsistency of the
geometrical and physical models, fluctuation of
the structural volume can be significant [Wang,
Wang, and Guo (2003, 2004); Wang and Wang
(2005b)] during the iterations and infeasible de-
signs may be evolved. A Newton’s method was
recommended to put the iteration back to the fea-
sible set by Osher and Santosa [Osher and San-
tosa (2001)]. Prescribed multiplier values were
used to push the total volume back to the de-
sired volume during the evolution in the work
of Wang and Wang [Wang and Wang (2006a)].
All these efforts cannot guarantee that the volume
constraint be satisfied accurately during the itera-
tions and thus the final solutions may be infeasi-
ble. In the standard level set methods, there is no
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nucleation mechanism due to the maximum prin-
ciple [Osher and Fedkiw (2002)] and therefore
the final design is largely dependent on the ini-
tial guess, as noted by many researchers [Sethian
(1999); Tsai and Osher (2003); Allaire, Gournay,
Jouve, and Toader (2004); Burger, Hackl, and
Ring (2004); Wang and Wang (2006b); Amstutz
and Andri (2006)]. Although some attempts have
been made to incorporate both the topological
derivatives and the shape derivatives into a level
set model to resolve this problem [Burger, Hackl,
and Ring (2004); Allaire, Gournay, Jouve, and
Toader (2004); Wang and Wang (2006b); Am-
stutz and Andrid (2006)], it is known to be dif-
ficult to switch between the topological deriva-
tives and the shape derivatives [Allaire, Gournay,
Jouve, and Toader (2004); Wang, Mei, and Wang
(2004)]. Hole nucleation may even be inconsis-
tent with the popular regularization methods such
as the perimeter control [Bendsge (1995)] to en-
sure existence of solutions to the well-known ill-
posed structural shape and topology optimization
problems [Bendsge and Sigmund (2003)]. Fur-
thermore, it can be ambiguous about how to ap-
ply the topological derivatives based on infinitely
small holes to the creation of new holes with sizes
comparable to the finite element resolution [Al-
laire, Gournay, Jouve, and Toader (2004)]. As a
whole, it could be concluded that the significant
drawbacks of standard level set methods in effi-
ciency and accuracy would greatly limit their fur-
ther utility for structural shape and topology opti-
mization.

The objective of this study is to propose an al-
ternative efficient and accurate level set method
for simultaneous shape and topology optimiza-
tion. The infinitely smooth inverse multiquadric
(IMQ) RBFs are used to discretize the implicit
level set function. This meshfree discretization
changes the original time dependent initial value
problem into an interpolation problem. The re-
sulting dynamic system is unconditionally pos-
itive definite, reinitialization-free and time sta-
ble. The use of relatively large timesteps is per-
mitted and a rapid convergence to the final de-
sign in terms of total number of iterations can
be achieved. A consistent physical model is de-
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veloped based on a superimposed finite element
method. The volume constraint can be satisfied
accurately during the iterations by imposing the
volume constraint in an explicit manner. Further-
more, a physically meaningful nucleation mecha-
nism is naturally established without using topo-
logical derivatives due to the present extension
velocities. The final design can thus become in-
sensitive to the initial guess. Numerical examples
are used to illustrate the distinct advantages of the
present method in accuracy, efficiency, conver-
gence speed and insensitivity to initial designs in
shape and topology optimization of 2D problems
that has been extensively studied in the literature
[Wang, Wang, and Guo (2003); Allaire, Jouve,
and Toader (2004); Allaire, Gournay, Jouve, and
Toader (2004); Wang and Wang (2006a,b)].

2 An BIBO Time-Stable Level Set Method
2.1 A Level Set Evolution Model

The level set method first introduced by Osher and
Sethian in 1988 [Osher and Sethian (1988)] has
become popular recently for tracking, modeling
and simulating the motion of dynamic interfaces
(moving free boundaries) [Sethian (1999); Osher
and Fedkiw (2002)]. The interface (or front) is
closed, nonintersecting and represented implicitly
through a smooth level set function @(x), and the
interface itself is the zero isosurface or zero level
set {x € R?| @ (x) =0} (d =2 or 3). Furthermore,
@ (x) has the following properties [Tsai and Os-
her (2003)]:

D (x) =0 VYx € 90QND
P(x)<0 Vx e Q\dQ (1)
d(x)>0 Vx € (D\Q)

where D C R is a fixed design domain in which
all admissible shapes 2 are included, i.e. 2 C D.
In the level set model, the local unit normal n can
be given by

Vo

" Vol @

and the volume integral of a function F(x) is de-
fined as

/D F(X)H(—®)dQ 3)
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where H(®) is the Heaviside step function.
Hence, the volume V(@) can be expressed as

V() :/DH(—(I))dQ @)

To let the level set function dynamically change
with time, a continuous velocity field v(x) should
be introduced and the level set evolution can
be obtained by solving the following Hamilton-
Jacobi equation [Sethian (1999); Osher and Fed-
kiw (2002)]:

oD
W +Vn‘vq)‘ =0, (I)(X,O) = (I)O(X) (%)
where
Vo
Vn—V'n—V'w (6)

and 7 is the pseudo-time, @y(x) embeds the initial
position of the interface. This first-order nonlin-
ear hyperbolic PDE (5) can be solved numerically
by introducing spatial and temporal discretiza-
tions appropriately [Sethian (1999); Osher and
Fedkiw (2002)]. In the standard level set meth-
ods [Sethian (1999); Osher and Fedkiw (2002);
Wang, Wang, and Guo (2003); Allaire, Jouve,
and Toader (2004); Wang and Wang (2004b)], the
finite difference method is used to perform the
spatial discretizations, but the computational cost
may become expensive [Haber (2004); Wang and
Wang (2006¢)] in terms of the total number of it-
erations due to the CFL condition for time stabil-
ity. In the present study, an alternative level set
method is presented based on the RBF meshfree
discretization. The implicit level set function is
discretized by the infinitely smooth inverse multi-
quadric RBFs. Reinitialization is eliminated and
time stability can be guaranteed during the level
set evolution. The computational efficiency can
thus be significantly improved due to the permit-
ted use of large timesteps. The accuracy can be
maintained due to the use of a consistent physical
model. The present time-stable meshfree level set
method is to be discussed in detail in the follow-
ing sections.

2.2 Radial Basis Functions

Radial basis functions (RBFs) are radially-
symmetric functions centered at knots [Morse,

Yoo, Chen, Rheingans, and Subramanian (2001)],
or particular points, which can be expressed as
follows:

px)=0(Ix—xil), x€D @)

where ||-|| denotes the Euclidean norm on R?
[Cheng, Golberg, Kansa, and Zammito (2003)],
¢; the i-th radial basis function, and x; the position
of the i-th knot. A single fixed function form ¢ :
R™ — R with ¢(0) > 0 is used as the basis to form
a family of independent RBFs. There is a large
class of possible RBFs, but only a few of them are
commonly used, such as thin-plate splines, poly-
harmonic splines, Sobolev splines, Gaussians,
multiquadric (MQ) splines and compactly sup-
ported RBFs [Cheng, Golberg, Kansa, and Za-
mmito (2003); Kansa, Powerb, Fasshauerc, and
Ling (2004); Wang and Wang (2006b)]. Among
them, the MQ splines, or multiquadrics (MQs),
have been widely used [Cheng, Golberg, Kansa,
and Zammito (2003); Kansa, Powerb, Fasshauerc,
and Ling (2004)], which can be written as

@i (x) =/ (x—x)* +2 (8)

where ¢; (¢; > 0) is a free shape parameter, which
is commonly assumed to be a constant for all
i in most applications [Cheng, Golberg, Kansa,
and Zammito (2003)]. However, the MQs are
only conditionally positive definite [Cheng, Gol-
berg, Kansa, and Zammito (2003)] and have to be
augmented by a leading constant term in the se-
ries and higher-order MQs require more terms in
the polynomial [Schaback and Wendland (2001)].
As a comparison, the inverse multiquadric (IMQ)
splines, which can be expressed as

1
¢ (X) = ———= €)
(x—x)+

are positive definite [Cheng, Golberg, Kansa, and
Zammito (2003)] and can thus be used without
augmentation. In the present study, for the pur-
pose of numerical convenience, the IMQ spline
shown in Eq. (9) is adopted to develop a time-
stable meshfree level set method. Figure 1 dis-
plays the shapes of multiquadric and inverse mul-
tiquadric splines centered at the original point.
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Figure 1: Infinitely smooth RBF splines with a free shape parameter.
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These splines are infinitely smooth since they
are continuously differentiable [Kansa, Powerb,
Fasshauerc, and Ling (2004)], as shown in Egs.
(8) and (9). It can be seen that a larger free
shape parameter will result in a flatter shape of
the inverse multiquadric spline, which is less sen-
sitive to the difference in radial distance. Accord-
ing to the observations made in [Kansa, Powerb,
Fasshauerc, and Ling (2004)], more accurate so-
lutions may be obtained when the parameter c gets
larger until it reaches the breakdown point caused
by the machine roundoff error. Hence, appropri-
ate choice of the shape parameter can be of signif-
icant importance when using the infinitely smooth
splines. In the present study, the shape parameter
is obtained by a trial and error procedure.

2.3 RBF Discretization of the Level Set Func-
tion

The time dependent level set function @ (x,¢) can
be discretized by the IMQ RBFs as shown in Eq.
(8) with N knots by using N IMQ splines centered
at these knots. The resulting RBF discretization of
the level set function can be written as follows:

®=d(x,1)= i 0i(1) i (%) (10)
i=1

where ¢;(7) is the time dependent expansion co-
efficient of the IMQ spline positioned at the i-th
knot. The RBF discretization in Eq. (10) can be
further given in compact form as

D (x,1) = ¢ (x)a(t) (11)
where

bx)=[p(x) - ov(x)] eRV (12
a(t)=[on(r) - oy()] €RVT (13)

It should be noted that in (11) only the gener-
alized RBF expansion coefficient e(7) is explic-
itly time dependent and thus all the time depen-
dence in the present RBF discretization is due to
the generalized expansion coefficients and all the
knots are fixed in space. Since the IMQ RBFs
are infinitely smooth [Kansa, Powerb, Fasshauerc,
and Ling (2004)], the discretized level set func-
tion will also be infinitely smooth and thus a

high level of smoothness of the level set func-
tion can be achieved due to the present RBF dis-
cretization. Furthermore, since a mesh or grid is
not needed in this RBF discretization, the present
level set method based on the IMQ RBFs is mesh-
free. With this meshfree discretization, the first-
order spatial derivatives of the level set function
in the Hamilton-Jacobi equation (5) can be read-
ily obtained and a discretized governing equation
of motion of the level set function can thus be de-
rived.

2.4 Governing Equation of Motion

Substituting Eq. (11) into the Hamilton-Jacobi
PDE (5) yields the following ODE:

rdo

¢ a—l—vn\(Vcl))Toc\:O (14)
where
(V) o] =
1/2
Pres 2 Prs, 2 Prs, 2
(W“) +<a—y°‘> *(a?“)
(15)
- 1T
‘(99_1’_ % ‘9(% e RV (16)
- 4T
‘(99_1’_ ‘98_‘1;1 ‘9(% c RVX1 (17)
- 1T
98_1’_ 98_21 (9% e RVX! (18)
90 _
ox
. X—X;
((x_xi)2+(y_Yi)2+(Z_Zi)2+Cz'2)3/2
(19)
Ip;
dy
. y—=Yi
((x—xi)2+(y—yi)2+(z—zi)2+ci2)3/2
(20)
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Ip;
oz

—I
(x—x)2 4+ (—y)?+(z—z)*+c})

32
(2D

It should be noted that a smooth evolution can
be guaranteed since the norm of the gradients of
the discretized level set function can also be in-
finitely smooth and continuously differentiable,
significantly different from the finite difference-
based upwind schemes [Sethian (1999); Osher
and Fedkiw (2002)]. At the initial time, all the
time dependent variables () in (14) should be
pre-specified. This initial value problem can be
considered equivalent to an interpolation problem
since the expansion coefficients o(z) at the initial
time are found as a solution of the interpolation
problem [Wang and Wang (2006b)]. Hence, the
preliminary starting point of the use of RBFs to
solve PDEs is the interpolation problem that is
equivalent to solving the initial value problem.
The original time-dependent initial value prob-
lem defined by the Hamilton-Jacobi PDE (5) is
thus discretized into a time-dependent interpola-
tion problem for the initial values of the general-
ized expansion coefficients (z), as shown in Eq.
(14), which governs the motion of the moving free
boundary @ (x,¢) = 0.

To time advance the initial values of a(z) in the
governing equation of motion (14), a collocation
formulation of the method of lines is presented
because of its inherent simplicity. The govern-
ing equation of motion (14) is extended to the
whole design domain D and the normal velocities
v, at the front are thus replaced by the extension
velocities v¢. Based on the principle of colloca-
tion method, all nodes for the spatial discretiza-
tion of the extended ODE (14) are located sequen-
tially at the spatially fixed knots of the IMQ RBFs.
Furthermore, in the present implementation, for
the purpose of simplicity, all the nodes of a fixed
mesh for structural analysis are taken as the fixed
knots, though not necessary. Using the present
collocation method for the N knots, a set of result-
ing ODEs can be compactly written as follows:

do

H—+b(a) =0 (22)
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where
o1(x1) - on(xp)
H= : - : c RVN (23)
e1(xy) - ov(Xn)
ve(x) (Vo (x1)) ]
b(o) = : e RV*1 (24)

vi (xn) [(VOT (xn)) o]

Since the inverse multiquadric collocation matrix
H is unconditionally positive definite and theo-
retically invertible [Micchelli (1986); Buhmann
(2004); Kansa, Powerb, Fasshauerc, and Ling
(2004)], the resulting ODE system (22) is solv-
able and nonsingular. Equation (22) can be re-
garded as a collocation formulation of the general
method of lines [Madsen (1975)], in which a time
dependent PDE problem is reduced to a simpler
time dependent ODE problem by discretization.

The set of coupled non-linear ODEs of Eq. (22)
can be solved by several well-established ODE
solvers such as the first-order forward Euler’s
method and higher-order Runge-Kutta, Runge-
Kutta-Fehlberg, Adams-Bashforth, or Adams-
Moulton methods [Greenberg (1998)]. In the
present study, only the first-order forward Euler’s
method is used since it is the simplest solution al-
gorithm for ODE initial condition problems and
often used for comparison with more accurate al-
gorithms, which are more complex and tedious to
implement. Using Euler’s method, an approxi-
mate solution to Eq. (22) can be given by

(") = a(") — TH ' b(ac(t")) (25)

where 7T is the timestep size. Because of the
fixed location of the RBF knots, the inverse mul-
tiquadric collocation matrix H is time indepen-
dent and storing the initial value of its inverse
matrix will save the computational cost. Hence,
the use of the inverse matrix may not cause an
overly severe problem during the level set evolu-
tion. Furthermore, the dense collocation matrix
H can be effectively handled by several existing
iterative methods [Buhmann (2004)]. Compared
with the popular finite difference-based upwind
schemes [Osher and Fedkiw (2002)], the present
method may require more computational effort at
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a single time step, however, this drawback can be
significantly eliminated and the present meshfree
method may even be computationally more effec-
tive and attractive in terms of total number of it-
erations due to its distinctive properties such as
reinitialization-free evolution and BIBO time sta-
bility, which will be next discussed in detail.

2.5 Reinitialization-free Evolution

In the standard finite difference-based level set
methods, it is well known that in many situa-
tions the level set function may develop flat and/or
steep gradients at the front, leading to problems
in numerical approximations [Peng, Merriman,
Osher, Zhao, and Kang (1999); Tsai and Osher
(2003)]. To cope with these problems, a reini-
tialization procedure is periodically performed to
resurrect the behavior of the level set function in
the neighborhood of the front, while keeping the
zero location unchanged. The reinitialization pro-
cess can be complicated to implement, expensive
in CPU time and even fraught with subtle side ef-
fects [Li, Xu, Gu, and Fox (2005); Marchandise,
Remacle, and Chevaugeon (2006)].

In the present global approximation method us-
ing RBF implicit modeling for the level set func-
tion, the occurrence of a flat level set function in
the neighborhood of the front can be virtually pre-
vented due to the global interpolation using RBFs.
The parametrization using IMQ RBFs with global
support makes the level set function and its gradi-
ents at any point dependent on each knot value
in the whole design domain D, rather than the
neighboring knot values only, different from the
finite difference-based upwind schemes [Sethian
(1999); Osher and Fedkiw (2002)]. According to
Egs. (15)-(21), during the course of evolution it
can be generally maintained that

IVo|=[(Vd)" | #0 (26)

provided that there are some non-flat knot values
existing in the whole domain D. Hence, a flat sur-
face is unlikely to be evolved due to the globally
supported RBFs and a smooth level set evolution
can thus be achieved. It should be noted that in
the literature [van den Doel and Ascher (2006)]
non-local functionals were used to obtain almost

smooth level set evolution through a regulariza-
tion method without reinitialization, but radial ba-
sis functions were not considered. Furthermore,
since the gradients can be readily obtained from
(15) to (21), steep gradients will not cause se-
rious numerical approximation problems, differ-
ent from the finite difference method. More im-
portantly, the magnitude of the gradients can be
scaled down without changing the location of the
moving free boundary @ (x,7) = 0. According to
the present RBF discretization (11) of the implicit
level set function, the generalized expansion co-
efficients o¢ can be normalized without changing
the zero location @ (x,t) = 0 as follows:

@ (x,1) =" (x)ax(r) = d" (x)(et(r) /C) = 0 (27)

where C (C > 1) is a constant used to normalize
o. Hence, according to Eq. (15), the magnitude of
the norm of the gradients can also be scaled down
by 1/C.

Therefore, in the present level set method, reini-
tialization becomes unnecessary and can be elimi-
nated in the numerical analysis procedure in solv-
ing the coupled ODEs (22). The present method
becomes reinitialization-free and the computa-
tional cost can be reduced. It should also be
noted that in the recent literature [ Ye, Bresler, and
Moulin (2002); Leito and Scherzer (2003); Haber
(2004); Li, Xu, Gu, and Fox (2005); van den
Doel and Ascher (2006)], many level set meth-
ods without reinitialization have been proposed
and the level set function is well maintained as a
signed distance function during the evolution. In
the present study, the global support radial basis
functions are used to prevent the concurrence of
flat level sets and to maintain the behavior of the
level set function at the front without reinitializa-
tion. Although the level set function is initialized
as a signed distance function, no special effort is
made to keep this property during the course of
evolution, which will lead to nucleation of new
holes in the material domain, as further discussed
later.

2.6 BIBO Time Stability

In the standard finite difference-based level set
methods, explicit time marching schemes are usu-
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ally used and the timesteps must be sufficiently
small to achieve the time stability due to the CFL
condition in the von Neumann sense [Osher and
Fedkiw (2002)] in achieving the monotony while
solving the vanishing viscous Hamilton-Jacobi
equation. The CFL condition states that a neces-
sary condition for the convergence of an explicit
finite difference time marching scheme is that the
domain of dependence of the discrete problem in-
cludes the domain of dependence of the differ-
ential equation in the limit as the length of the
finite difference steps goes to zero. The CFL
condition is only a necessary time stability con-
dition, not sufficient. In the present study, time
stability is achieved by ensuring that the numeri-
cal solution to (22) remains bounded at any time,
rather than monotonically decaying with time. It
should be noted that the monotonically decaying
system guaranteed by the CFL condition in the
finite difference-based upwind schemes [Sethian
(1999); Osher and Fedkiw (2002)] may generate
a flat level set function and the periodic reinitial-
ization may introduce significant external errors
to destroy the time stability.

As shown in Eq. (27), the generalized expansion
coefficients & can be normalized without chang-
ing the zero location. We can choose C = |«|
such that we have || = 1 after normalization at
each step, which will make the solution & always
bounded. Generally, a system has bounded so-
lutions if for each initial condition x there is a
constant B such that for all > 0,

Ix(0) <B (28)

where x(7) is the solution with x(0) = xo. Hence,
the ODE dynamic system (22) has a bounded so-
lution for all initial conditions and can thus be
Lyapunov stable [Bhatia and Szego (1970)] pro-
vided that the input the extension velocities are
bounded. The present dynamic system can thus
be kept BIBO stable. The normalization is per-
formed at each iteration and thus the solution o
will never diverge to infinity due to the BIBO time
stability. As aforementioned, a flat level set func-
tion will not occur due to the present global inter-
polation using RBFs and thus will not be affected
by this normalization technique. This is a signifi-
cant advantage of the present meshfree level set
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method over the standard level set methods us-
ing local interpolation methods. The use of large
timesteps can be permitted and drastic reduction
in computational cost in terms of total number of
iterations over the standard level set methods can
be obtained, as illustrated in the present numerical
examples. It should be noted that the present han-
dling on time stability circumvents the numerical
difficulty in complex eigenvalue analysis usually
involved in linear time stability analysis of a time-
dependent system [Platte and Driscoll (2005)] and
can thus be computationally efficient.

2.7 Consistent Physical Model

In the standard level set methods, an Eulerian
approach in which the design domain D is uni-
formly meshed is usually adopted [Wang and
Wang (2006a)]. The topological changes are easy
to handle and remeshing is not needed while the
free boundary can still be captured. However, the
distinct Heaviside function in (3) is approximated
as a smoothed Heaviside function to perform the
volume integration [Osher and Santosa (2001);
Wang, Wang, and Guo (2003); Allaire, Jouve, and
Toader (2004); Allaire and Jouve (2005); Wang
and Wang (2004b, 2006a,b)] and thus the physical
model is inconsistent with the geometrical model.
Without remeshing, the free boundary is actually
smeared in the physical model and the computa-
tional inaccuracy problem may arise. The con-
vergence of this fictitious domain analysis can be
obtained in the limit of mesh refinement [Norato,
Haber, Tortorelli, and Bendsge (2004)], but the
computational cost would become too expensive.

In the present study, the moving superimposed fi-
nite element method (S-FEM) previously devel-
oped by the authors [Wang and Wang (2006a)]
is adopted to make the physical model consistent
with the distinct geometric model represented by
the level set method as shown in Eq. (1). The ba-
sic idea of this method is to construct the adaptive
local mesh around the captured free boundary and
to superimpose the moving local mesh onto the
fixed global mesh properly. Figure 2 shows the
S-FEM model for a design with a central hole, in
which a fixed Eulerian mesh is used as a global
mesh, and an independently constructed local FE
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mesh with triangular elements around the bound-
ary of the central hole in the local domain Q- C D
with the boundary I'" is superimposed onto the
global mesh. It is also defined that Q¢ = D\ QL
and the boundary between Q¢ and Q' is 'L =
r‘“\(0QnNrk). More details of this method can
be found in [Wang and Wang (2006a)]. Based
on this configuration of mesh superimposition, the
labor intensive efforts in mesh generation can be
greatly reduced [Wang and Wang (2006a)] and the
physical model is consistent with the geometrical
model. The computational accuracy in global and
local responses can be significantly improved, as
noted in [Wang and Wang (2006a)].

It should be noted that iterative equation solvers
were recommended by a number of researchers
[Fish and Guttal (1996); Okada, Liu, Ninomiya,
Fukui, and Kumazara (2004); Wang and Wang
(2006a)] to expediate the equation solving pro-
cess. However, due to the moving free boundary,
the global stiffness matrix may become quite near
singular and thus an iterative solver may fail to
find a solution. In the present study, only a linear
sparse direct solver LDLT is used to ensure that a
solution can always be obtained during the level
set evolution, though the computational cost may
become higher. In the present S-FEM model, the
computational cost can be reduced by eliminat-
ing all the degrees of freedom associated with the
nodes in the void domain. Since the present phys-
ical model is consistent, the free boundary can be
modeled accurately and the popular weak mate-
rial model for the void phase [Sigmund (2001);
Bendsge and Sigmund (2003); Wang, Wang, and
Guo (2003); Allaire, Jouve, and Toader (2004);
Wang and Wang (2006a,b)] is not needed.

3 Shape and Topology Optimization Using
the Level Set Method

3.1 Minimum Compliance Design

In the classical shape and topology optimization
problems, the minimum compliance design has
been widely investigated by the popular topology
optimization methods such as the homogenization
method [Bendsge and Kikuchi (1988)] and the
evolutionary structural optimization method [Xie
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and Steven (1993)].

Using a level set representation model as shown
in Eq. (1) and the volume integration formula
(3), the standard notion of a classical minimum
compliance design problem in [Sigmund (2001);
Bendsge and Sigmund (2003)] can be re-written
as follows:

min J(u, @) = / (e(w)" Ce(u)H(—®)dQ

D

st. a(w,v,®)=Lv,P), ul, =uy, WeU
V(@)/Vo=¢

(29)

where J(u, @) is the objective function, u the dis-
placement field, € the strain field, C the Hook
elasticity tensor, V(@) the material volume as de-
fined in Eq. (4), V) the design domain volume and
{ the prescribed volume fraction. The linearly
elastic equilibrium equation is written in its weak
variational form in terms of the energy bilinear
form a(u,v, @) and the load linear form L(v, @)
[Bendsge and Sigmund (2003)], with v denot-
ing a virtual displacement field in the space U of
kinematically admissible displacement fields, and
ug the prescribed displacement on the admissible
Dirichlet boundary Ip.

The Lagrange multiplier method can be used
to solve the optimization problem (29) [Osher
and Santosa (2001)]. By setting the constraint
on the equilibrium state inactive, the Lagrangian
Z(u,®,¢) with a Lagrange multiplier ¢ can be
given by

Z(u,®,0) =J(u, @)+ G(D) (30)

where the constraint functional G(®) can be ex-
pressed as

G(®)=V(P)— (V=0 31)

It should be noted that the displacement field u is
also a function of @, i.e. u =u(®). According
to the Kuhn-Tucker condition of the optimization,
the necessary condition for a minimizer is

Do Z(u(®),®,0)=0 (32)

where D¢ Z (u(®),®,/) is the gradient of the
Lagrangian with respect to @.
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(a) Global FE mesh
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(b) Local FE mesh
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Figure 2: The S-FEM model.

3.2 Shape Derivatives

The gradient of the Lagrangian
D¢ % (u(P),®, /) may be obtained in a number
of different ways following the well-known
approach of Murat and Simon of shape diffeo-
morphism [Sokolowski and Zolesio (1992)]. In
the present study, the shape sensitivity analy-
sis presented by Allaire et al. [Allaire, Jouve,
and Toader (2004)] is adopted to derive the
time-dependent shape derivatives.

Usually, the boundary dD of the whole structural
shape and topology design domain D can be de-
composed [Allaire, Jouve, and Toader (2004)] as
dD =0dDpUdDyUdDy (33)
where dDp is the Dirichlet boundary, dDy the
non-homogeneous Neumann boundary, and dDgy
the homogeneous Neumann boundary (traction
free). To derive the shape derivatives from the
classical shape sensitivity analysis [Sokolowski

and Zolesio (1992)], it is assumed that the shape
boundary dQ of an admissible design £ can sat-

isfy the following conditions:
dQ =IpUly, Ip CdDp, Iy =9dDyUIy (34)

where I is the admissible Dirichlet boundary, I'y
the Neumann boundary, and Iz the homogeneous
Neumann boundary. Furthermore, it is assumed
that the surface loads are design independent and
applied only on a fixed subset of the boundary I'y
and the Dirichlet boundary Ip is with zero dis-
placements. In the present shape and topology
optimization, only part of the traction free homo-
geneous Neumann boundary Iy, € Iy is initially
chosen to be optimized as the moving free bound-
ary, which is represented by the dynamic interface
@ (x) = 0 in the present level set model.

Based on local perturbations of the moving free
boundary of an admissible design € [Allaire,
Jouve, and Toader (2004)], the resulting shape
derivative of the Lagrangian can be written as

dg/ (K—ETCe)vnds
Iy

dr
where v, is the normal velocity at the moving
free boundary I;. Furthermore, the resulting

(35)
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shape derivative of the volume constraint func-
tional G(®) (31) can be expressed as

(L—? = /r y v, ds (36)
Hence, these time-dependent shape derivatives
can be obtained from a surface integration. In a
level set method, only the normal velocity field
v, associated with the physical model is needed
during the level set evolution and thus it is unnec-
essary to perform an explicit surface integration.
In the present shape and topology optimization,
choosing the normal velocity field v, is equiva-
lent to choosing a descent direction for the objec-
tive function, which can be easily implemented by
using a steepest gradient method [Osher and San-
tosa (2001); Wang, Wang, and Guo (2003); Al-
laire, Jouve, and Toader (2004)].

According to the shape derivative in Eq. (35), a
descent direction of the normal velocity v, for the
Lagrangian can be obtained by simply identifying
the normal velocity v, as

vy, =€l Ce—/ (37)

in which the normal velocity v, at the moving free
boundary I; can be determined by the strain en-
ergy density and a Lagrange multiplier. Hence,
the normal velocity field is linked with the ob-
jective function and physics of the present min-
imum compliance design problem. The variable
Lagrange multiplier £ can be obtained by using
the proposed explicit volume constraint handling
approach as follows.

3.3 Explicit Volume Constraint Handling Ap-
proach

An explicit volume constraint handling approach
is developed since the approaches available in
the literature [Osher and Santosa (2001); Wang,
Wang, and Guo (2003); Wang and Wang (2006a)]
to handle the volume constraint in Eq. (31) to ob-
tain the Lagrange multiplier may become quite
ineffective to keep the design feasible during the
level set evolution. These approaches [Osher and
Santosa (2001); Wang, Wang, and Guo (2003);
Wang and Wang (2006a)] were actually based
on an implicit constraint on the volume function
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V(®). To keep all the designs feasible, the vol-
ume constraint in (31) must be satisfied accurately
during the level set evolution. Hence, at any time
we have V(@) = V. Since the total material vol-
ume V(@) is required to be conservative, its time
derivative vanishes, i.e.,

dv  dG
a_E—/FMV,,dS—O (38)

Based on this implicit constraint on the volume
function V (@), the Lagrange multiplier £ can be
obtained, as shown in [Osher and Santosa (2001);
Wang, Wang, and Guo (2003); Wang and Wang
(2006a)].  Substituting Eq. (37) into Eq. (38)
yields the Lagrange multiplier ¢ as

/ e’ Ceds
My

ds
Iy

(= (39)

However, this volume constraint handling ap-
proach has several drawbacks. Since the desired
volume is not used directly, this implicit handling
approach requires that the initial design satisfy
the volume constraint exactly. Furthermore, there
is no guarantee that the volume keep unchanged
during the iterations due to the errors involved.
The Lagrange multiplier may be inaccurately es-
timated due to the boundary integrations. The
inconsistent physical models [Wang, Wang, and
Guo (2003); Allaire, Jouve, and Toader (2004)]
adopted a smoothed Heaviside function to ap-
proximate the moving free boundary. The strain
energy density at the boundary is calculated with
a low level of accuracy due to the averaging ef-
fect. The total volume thus tends to drift to the in-
feasible set during the evolution. Osher and San-
tosa [Osher and Santosa (2001)] used a Newton’s
method to put the iteration back to the feasible
set when the volume drifts too far away. Wang
and Wang [Wang and Wang (2006a)] used a pre-
scribed multiplier value to push the total volume
back to the desired volume during the evolution.
All these additional efforts cannot guarantee the
volume constraint to be satisfied accurately dur-
ing the iterations and thus the final solutions may
be infeasible.
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In the present explicit volume constraint handling
approach, it is only required that the volume con-
straint be explicitly satisfied at the end of each
time step, i.e.,

G(@(t"+1))=0 (40)
Hence, according to Eq. (31), we have
V(@(r"+1)) =V (41)

According to Eq. (4), the volume V(@ (1" + 1))
can be obtained if the implicit level set function
in Eq. (11) is updated as @(¢" + 1), which can be
written as

D" +1) =" a(t"+1) (42)

where a(t" + 7) can be obtained from Eq. (25)
and it turns out to be a function of the Lagrange
multiplier £ when the normal velocity v, in Eq.
(37) and the extension velocity v;, later discussed
are adopted to calculate b in Eq. (24). Hence,
V(@ (1" + 1)) is also a function of £ and we have

V(@(t"+1))=V () =LV 43)

from which the variable Lagrange multiplier ¢ at
each time step can be obtained.

Equation (43) can be solved by several well-
established nonlinear equation solvers. In the
present study, the bi-sectioning algorithm is em-
ployed due to its robustness. The bi-sectioning
algorithm is initialized by setting a lower bound
£; and an upper bound ¢, for the Lagrange mul-
tiplier £. In the present numerical study, it is ini-
tially chosen that £; = 0, which will cause a max-
imum volume increase since the normal velocity
v, in (37) will be maximized and thus the whole
free boundary moves outwardly, and ¢, = 10°,
which may generate a significant volume decrease
since almost all of the normal velocities become
negative due to the relatively small strain energy
density and thus almost the whole free boundary
moves inwardly. The interval which bounds the
Lagrange multiplier is halved and the Lagrange
multiplier is given by ¢ = (¢1 4 ¢5) /2, from which
the normal velocities v,, in (37) as well as the
extension velocities vy, which will be discussed
later, can be determined and thus the generalized
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expansion coefficients & in (25) can be updated.
The implicit level set function in Eq. (11) is also
updated and the volume V' (¢) can be finally ob-
tained from Eq. (4). Based on the sign of the error
in solving Eq. (43) using this volume, either the
lower bound ¢; or the upper bound ¢, can be up-
dated. The interval which bounds the Lagrange
multiplier can be repeatedly halved until its size
is less than the convergence criteria.

By using the present explicit volume constraint
handling approach, convergence of the volume
constraint function can be guaranteed during the
iterations and there is no need for the initial de-
signs to satisfy the volume constraint exactly. The
complicated boundary integrations are avoided
and the additional efforts to put the iteration back
to the feasible set is unnecessary. Hence, the
present explicit volume constraint handling ap-
proach would outperform those implicit volume
constraint handling approaches in the literature
[Osher and Santosa (2001); Wang, Wang, and
Guo (2003); Wang and Wang (2006a)].

3.4 Simultaneous Shape and Topology Opti-
mization

According to the present level set method, for
the optimal design, we have v,|;, = 0 at the free
boundary. It can thus be obtained that

e'Cel, =4 (44)

which implies that the strain energy density
is constant everywhere along the optimal free
boundary I, since the Lagrange multiplier ¢ is
spatial-independent. The is also the objective of
the classical shape optimization methods based
on a shape sensitivity analysis [Rozvany (1998);
Sokolowski and Zolesio (1992)]. Hence, the
present level set method can perform the free
boundary-based topology optimization and shape
optimization simultaneously. In most shape op-
timization applications, a Lagrangian formulation
of boundary propagation was used to achieve the
optimality condition and obtain an optimal shape
of the structure [Rozvany (1998); Sokolowski and
Zolesio (1992)]. The moving boundary is usu-
ally discretized with a set of design variables di-
rectly controlling the exterior and interior bound-
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aries. Only an explicit boundary representation
method was used and the boundary changes can
be accomplished only if the connectivity of the
boundaries does not change since there is a sever
limitation that only a structure of a fixed topology
can be optimized. In the present level set method,
both shape and topology can be optimized simul-
taneously. The whole design domain is implicitly
represented by a level set function @(x) and the
moving free boundary is represented by the zero
level sets. Significant topological changes can be
easily handled and captured such as developing
sharp corners, breaking apart, merging together
or even disappearing. Hence, the present level set
method can be more powerful than the classical
shape optimization methods.

3.5 Extension Velocities

In the present study, a physically meaningful ex-
tension velocity method without the additional
PDE solving procedure [Mallad, Sethian, and Ve-
muri (1996)] is presented. According to Eq. (37),
a natural extension of the normal velocity v, at the
free boundary can be obtained if the strain field
€(u) is extended to the entire design domain D by
assuming €(u) = 0,u € (D\Q). Nevertheless, this
extension will introduce an apparent discontinuity
in the extension velocity field at the free boundary
since the strain field is not continuous across the
free boundary. To guarantee a smooth progress
of the free boundary, this discontinuity should be
eliminated. Hence, a linear smoothing filter is in-
troduced in the narrowband region around the free
boundary, which is defined as

=={xeRr!||d(x)| <A} 45)

where A is the half bandwidth and d(x) the dis-
tance to the interface @(x) = 0. The extension
velocity v¢ in the narrowband is smoothed as v¢
by using a simple linear filter to achieve an ex-
cellent smoothing effect [Wang and Wang (2005a,
2006a)], which can be written as

vix) =k"'(x) 3, w(llp—x])vi(x) (46)

PEN(X)

where

w(l[p =x1) = rmin — [p —x]| 47)
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kx)= 2 wlp—x) (48)
PEN(x)

in which N(x) is the neighborhood of x € Z in the

filter window and ry,;, the window size. Hence,

the overall extension velocity can be given as

efCe—/ xR |d(x) < —A
v ={ E) xe=
—/ xR | d(x) > A

(49)

Using this extension velocity field v¢(x), smooth
time advance of the moving free boundary can
be obtained due to the smoothing effect of the
velocity filtering operation. Furthermore, the
present velocity filtering is also able to regular-
ize the well-known ill-posed shape and topol-
ogy optimization problem [Bendsge and Sigmund
(2003); Wang and Wang (2005a)] into a well-
posed one, similar to the popular sensitivity filter-
ing approach in the SIMP method [Bendsge and
Sigmund (2003)].

3.6 Nucleation of New Holes

From the Hamilton-Jacobi PDE (5), the level set
function can be approximately updated as

O = d(r") — 1|V D| (50)

Hence, inside the material domain, @ (") <0, ina
region with negative extension velocities, vf, < 0,
a new hole will be created at the position where
the following condition can be satisfied:

| VO| < (7). (51)

In the present level set method, the timestep size
T can be relatively large since the use of large
timesteps is permitted, but it cannot be too large
due to the accuracy requirement. According to
Eq. (37), the negative velocity V¢ is also with a
limitation as —¢ < v, < 0 and the minimum value
is obtained when the material is least effectively
used such that e’ Ce = 0. Hence, the magnitude
of the norm of the spatial gradient |V®| can play
a most significant role in nucleation of new holes.
In the present level set method, due to the elimina-
tion of reinitialization, a relatively steep level set
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function may be developed even if the level set
function is initialized as a signed distance func-
tion |[V®| = 1. According to Eq. (50), the spa-
tial gradient of the updated @ is closely related
with the spatial gradient of the extension veloc-
ity v;,, which is determined by the spatial gradi-
ent of the strain energy density, according to Eq.
(49). Hence, inside a region with negative veloc-
ities, creation of a new hole at a site may happen
when the strain energy density is quite small but
its spatial gradient is large enough. More gener-
ally, the site to create a new hole should satisfy
the following condition:

min (e"'Ce—0)|V(e"Ce) |

st. @<0 (52)

Hence, this nucleation mechanism is physically
meaningful.

The present idea of nucleation of new holes can
be similar to that of the popular element removal
techniques such as the evolutionary structural
optimization (ESO) approach [Xie and Steven
(1993)] for topology optimization, in which the
material in a design domain which is not struc-
turally active is considered as inefficiently used
and can thus be slowly removed. However, the
ESO approach is only an intuitive method without
a proof of optimality [Rozvany (2001b,a); Zhou
and Rozvany (2001); Wang and Wang (2005a)]
and the spatial gradient of the strain energy den-
sity is not considered in its deletion criteria.
Hence, the present condition as shown in Eq. (52)
can be more complete for nucleation of new holes.
Furthermore, prescribed deletion criteria are not
needed and new holes are created in an automatic
manner during the level set evolution. In the final
optimum, further nucleation of new holes is im-
possible and thus in the material domain we have
Ve >0,0re’Ce > /.

The present level set method may create new
holes during the level set evolution, similar to
the ESO approach [Xie and Steven (1993)],
the bubble method [Eschenauer, Kobelev, and
Schumacher (1994)], or the topological gradient
method [Burger, Hackl, and Ring (2004)]. Since
the final design may have more holes than the ini-
tial design, the present method is less sensitive to
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the initialization and the probability of converging
to a local minimum can be greatly reduced. This
can be a significant improvement over the stan-
dard level set methods, which only allow limited
topological changes [Burger (2004)].

4 Examples and Discussion

Numerical examples in two dimensions are pro-
vided to illustrate the accuracy and efficiency of
the present BIBO time-stable meshfree level set
method for structural shape and topology opti-
mization. Unless stated otherwise, all the units
are consistent and the following parameters are
assumed as: the Young’s elasticity modulus £ = 1
for solid materials, and Poisson’s ratio v = 0.3.
Furthermore, A = 1 grid size for the half band-
width size, ryi, = 2.4 grid size for the filter win-
dow size. For all examples, a fixed rectilinear
mesh is specified over the entire design domain
D as a global mesh. The present algorithm is ter-
minated when the relative difference between two
successive objective function values is less than
1073 or when the given maximum number of iter-
ations has been reached. The topologies are given
in black-and-white form based on the scalar value
of the implicit function @(x), as defined in Eq.

(1).
4.1 A Michell Type Structure

The present meshfree level set method is applied
to the classical Michell type structure problem,
as shown in Fig. 3(a), in which a theoretical
Michell’s solution is available [Michell (1904)],
as shown in Fig. 3(b). The whole design domain
D is arectangle of size L x H, the two bottom cor-
ners have the pinned supports, and a unit vertical
point force P is applied at the middle point of the
bottom side. As shown in Fig. 3(b), the theoret-
ical optimum topology consists of two 45° arms
extending from the supports towards an approxi-
mately 90° central fan section which extends up-
wards from the point of application of the force
[Wang and Tai (2005)]. In the present study, it is
assumed that L=2, H =1.2, P =1, and a pre-
specified material volume fraction { = 0.3. The
domain D is discretized with a fixed rectangu-
lar mesh of 100 x 60 as the global mesh for the
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present S-FEM model. Due to the symmetry, only
a half structure is used in the physical analysis.

The design with holes shown in Fig. 4(a) is taken
as the initial design and a timestep size of 7= 1.0
together with a free shape parameter of ¢ = 0.01
is adopted to perform the simultaneous shape and
topology optimization using the present level set
method. Figure 4 displays the evolution history
of the final design. It can be seen that drastic
topological changes in a single time step have
been obtained due to the use of a relatively large
timestep size such that the geometric deforma-
tion at the moving free boundary can be relatively
large. This is a big difference between the present
BIBO time-stable level set method, which permits
the use of large timesteps, and the standard CFL-
constrained level set methods [Sethian (1999);
Osher and Fedkiw (2002); Wang, Wang, and Guo
(2003); Allaire, Jouve, and Toader (2004)], in
which the motion of the free boundary is limited
by the grid size in a single timestep to satisfy the
CFL condition. The final topology consisting of
two arms and a central fan section is quite similar
to the theoretical optimum topology for a truss-
like structure as shown in Fig. 3(b) and thus the
accuracy of the present meshfree level set method
can be verified. The convergence of the objective
and volume functions is shown in Fig. 5. It can be
seen that rapid convergence in both the objective
and volume functions has been obtained due to
the use of a large timestep and the present volume
constraint handling approach. The increase of the
objective function at the first timestep is due to
the significant decrease of the structural volume to
satisfy the volume constraint. The subsequent sta-
ble decrease of the objective function can justify
the significant topological changes, as shown in
Fig. 4. Although the volume constraint is not sat-
isfied exactly at the initial time, the volume func-
tion converges in a single timestep for this prob-
lem and it can be guaranteed that the subsequent
designs be feasible during the level set evolution.
This is a significant advantage over the implicit
volume constraint handling approaches [Wang,
Wang, and Guo (2003); Wang and Wang (2006a)],
in which apparent fluctuation of the structural vol-
ume exists in the whole evolution procedure and
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the final design may thus be infeasible. The con-
vergence of the final design shown in Fig. 4(h)
can be further indicated by the good agreement
between material volume in the S-FEM physical
model and the non-negative scalar extension ve-
locity field, as shown in Fig. 6. Theoretically,
the zero scalar velocity curve should correspond
to the free boundary of the optimal design ex-
actly such that further movement and geometric
deformation along the decent direction of the free
boundary are actually prevented.

Furthermore, this problem is investigated again
by using an initial design without a hole. The
design without any holes shown in Fig. 7(a) is
taken as another initial guess and a timestep size
of 7 =0.001 together with a free shape param-
eter of ¢ = 0.0001 is adopted. Figure 7 dis-
plays the evolution history of the final design us-
ing the present meshfree level set method. It can
be seen that drastic topological changes mainly
due to the creation of new holes have been ob-
tained. The nucleation capacity of the present
method without using the classical topological
derivatives [Sokolowski and Zochowski (2001)]
is thus demonstrated. In the literature [Burger,
Hackl, and Ring (2004); Allaire, de Gournay,
Jouve, and Toader (2005); Amstutz and Andri
(2006)], topological derivatives are usually in-
corporated into the shape derivatives-based level
set methods to achieve the nucleation capacity,
but the Hamilton-Jacobi equation may be modi-
fied and the level set evolution may become more
complicated. As aforementioned, the present nu-
cleation mechanism is physically meaningful and
there is no need to modify the Hamilton-Jacobi
equation. Comparing Fig. 7 with Fig. 4, it can
be obtained that the final design can be less sen-
sitive to the initial guesses due to the capacity of
the present method for nucleation of new holes.
In the standard level set methods, nucleation of
new holes is not allowed for and therefore the final
design is largely dependent of the initial designs
[Allaire, Jouve, and Toader (2004)]. The final
topology shown in Fig. 7(h) is similar to the the-
oretical optimum topology as shown in Fig. 3(b)
and thus the accuracy of the present method can
again be verified. The convergence of the objec-
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Figure 3: Optimal design problem for a Michell type structure with fixed supports.

tive and volume functions is shown in Fig. 8. It
can be seen that rapid and stable convergence in
both the objective and volume functions has been
achieved due to the present BIBO time stability.
The stable decrease in the objective function can
justify the present significant topological changes,
such as creation of new holes and splitting of con-
nected components, as shown in Fig. 7. For this
case, the volume constraint can be satisfied accu-
rately after a single timestep to keep the designs
feasible during the level set evolution due to the
use of the present explicit volume constraint han-
dling approach. Again, the convergence of the fi-
nal design can be further indicated by the good
agreement between the free boundary in the S-
FEM physical model and the zero extension ve-
locity curve, as shown in Fig. 9, as theoretically
predicted.

4.2 A Short Cantilever Beam

The minimum compliance design problem of a
short cantilever beam is shown in Fig. 10. The
whole design domain D is a rectangle of size
2 x 1 with a fixed boundary dD (zero displace-
ment boundary condition) on the left side and a
unit vertical point load P = 1 applied at a fixed
non-homogeneous Neumann boundary dDy, the
middle point of the right side. The prespecified
volume fraction is { = 0.5. A 80 x 40 mesh is
used as the global mesh for the present S-FEM
model. The distribution of the fixed RBF knots for
the present level set method is uniform, as shown
in Fig. 10 for illustrative purposes only.

For the initial design with holes as shown in

Fig. 11(a), the present level set method with a
shape parameter ¢ = 0.001 and a timestep size
7 =0.001 is used to perform simultaneous shape
and topology optimization. The evolution his-
tory of the final design is displayed in Fig. 11.
It can be seen that rapid convergence in both
shape and topology has been achieved due to the
use of a relatively large timestep size while dras-
tic topological changes are experienced during
the evolution, such as splitting and merging con-
nected components, creation of new holes and dis-
appearance of structurally disconnected compo-
nents. Hence, the advantage of the present BIBO
time-stable level set method is again illustrated.
Figure 12 displays the convergence of the objec-
tive and volume functions. It can be seen that
the present level set method converges rapidly
in terms of the total number of timesteps since
its BIBO time stability permits the use of rela-
tively large timesteps. This is a significant advan-
tage of the present method over the standard finite
difference-based level set methods for shape and
topology optimization [Wang, Wang, and Guo
(2003); Allaire, Jouve, and Toader (2004)], which
converge slowly due to the strict CFL condition
for the timestep size. Again, it can be seen that
the structural volume can be almost conservative
and the volume constraint can be accurately sat-
isfied during the level set evolution due to the
present explicit volume constraint handling ap-
proach. Figure 13 shows a comparison between
the physical model and the non-negative scalar
velocity field during the level set evolution. It
can be seen that a good agreement between the
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(a) Initial design (b) Step 1

(c) Step2 (d) Step 3

(e) Step 4 (f) Step 10

(g) Step 20 (h) Final design (Step 56)

Figure 4: Evolution of the optimal design for the Michell type structure starting with an initial design with
holes using the present level set method.
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Figure 5: Convergence of the objective and volume functions for the Michell type structure starting with an
initial design with holes using the present level set method.
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(b) Non-negative scalar velocity field
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Figure 6: The final design for the Michell type structure starting with an initial design with holes using the

present level set method.
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(a) Initial design (b) Step 10

(c) Step 20 (d) Step 25

(e) Step 30 (f) Step 35

(g) Step 40 (h) Final design (Step 61)

Figure 7: Evolution of the optimal design for the Michell type structure starting with an initial design
without a hole using the present level set method.
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Figure 8: Convergence of the objective and volume functions for the Michell type structure starting with an
initial design without a hole using the present level set method.
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Figure 9: The final design for the Michell type structure starting with an initial design without a hole using
the present level set method.
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Figure 10: Minimum compliance design problem of a cantilever beam with a uniform RBF knot
distribution.

Table 1: Effect of the free shape parameter ¢ on the optimal solution.

Timestep T Shape parameter ¢ Jmin(P) Total number of timesteps
0.0001 0.0001 131.6439 100
0.001 64.1511 100
0.01 58.6389 61
0.05 58.9288 28
0.001 0.0001 59.8658 100
0.001 58.3471 24
0.01 58.6310 100
0.01 0.00001 58.9704 100
0.0001 58.5089 43
0.001 58.5265 100

0.01 59.9086 100
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(d) Step 15 (e) Step 20 (f) Final design (step 24)

Figure 11: Evolution of the optimal design for the cantilever starting with an initial design with holes using
the present level set method.
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Figure 12: Convergence of the objective and volume functions for the cantilever starting with an initial
design with holes using the present level set method.
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physical model and the non-negative scalar veloc-
ity field can be finally arrived at, as theoretically
predicted, though initially the difference between
them is quite obvious. It should be noted that the
physical model is consistent with the geometri-
cal model due to the present S-FEM discretiza-
tion and thus a high level of accuracy in estimat-
ing the velocity field as well as the strain energy
density field can be expected. The evolution his-
tory of the strain energy density field is shown in
Fig. 14. During the present level set evolution,
the apparent heterogeneous strain energy density
distribution in the initial design can be rapidly
changed into an almost homogeneous distribution
due to the present simultaneous shape and topol-
ogy optimization, which agrees well with the the-
oretical prediction. The remaining small regions
with large density values are due to the significant
stress concentration at the loading or fixed bound-
ary regions because of the local effects of the ap-
plied force, according to Saint-Venant’s princi-
pal [Choi and Horgan (1977)], which cannot be
eliminated totally and does not affect the objec-
tive function much due to the small sizes of those
regions. Based on a trial and error procedure, the
effect of the free shape parameter ¢ on the opti-
mal solution is listed in Table 1. It can be seen
that for different timestep sizes, better solutions
can be obtained when the parameter ¢ gets larger
until it reaches an optimal point. The convergence
speed may become slow if both the shape param-
eter ¢ and the timestep size T are quite small. This
observation can be consistent with those made in
[Kansa, Powerb, Fasshauerc, and Ling (2004)]
based on approximate solutions of PDEs using
IMQ RBFs. This feature of RBF discretization
can be attractive in the present shape and topol-
ogy optimization since a broader search space can
be explored without changing other settings and
the probability of finding a solution closer to the
global optimum is increased.

For the purpose of comparison, a standard level
set method [Osher and Fedkiw (2002); Mitchell
(2004)] coupled with an Ersatz material ap-
proach [Allaire (2001); Allaire, Jouve, and Toader
(2004)] in the physical model together the present
explicit volume constraint handling approach is
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also developed to solve this minimum compli-
ance design problem. In this level set method,
a second-order ENO (essentially non-oscillatory)
upwind scheme is used for the propagation of the
free boundary and a third-order reinitialization al-
gorithm is adopted to minimize the numerical dif-
fusion around the location of the original interface
[Tsai and Osher (2003)], and an aggressive CFL
number of 0.9 is used to drive a fast convergence.
Reinitialization as an auxiliary step is performed
every 5 times of transport and the maximum num-
ber of timesteps is specified as 1000.

For the same initial design with holes as shown in
Fig. 11(a), the evolution history of the final design
using the standard level set method is displayed
in Fig. 15. It can be seen that topology optimiza-
tion is performed by splitting connected compo-
nents. The topological changes are rather smooth
and the final design has fewer holes than the ini-
tial design. The final design shown in Fig. 15(f)
can be quite similar to the one shown in Fig. 11(f)
using the present level set method. However, the
convergence speed is quite slow due to the CFL
condition for time stability, comparing the con-
vergence history shown in Fig. 16 with the one us-
ing the present BIBO time-stable level set method
as shown in Fig. 12. Due to the decrease of the
volume to drive the design to the feasible set, the
objective function value may increase rather than
decrease in the first few timesteps. The volume
constraint can be almost exactly satisfied after the
first few timesteps because of the present vol-
ume constraint handling approach. As a compar-
ison, the implicit volume constraint handling ap-
proaches in [Wang, Wang, and Guo (2003); Wang
and Wang (2006a)] cannot satisfy the volume con-
straint accurately and significant fluctuation of the
total volume may be observed in [Wang, Wang,
and Guo (2003); Wang and Wang (2006a)]. Fur-
thermore, it should be noted that the geometrical
changes are quite slow due to the CFL condition
and some structurally disconnected components
cannot be eliminated completely when the present
convergence criteria have been reached, as shown
in Fig. 15(f). Theoretically, the structurally dis-
connected components can be completely elimi-
nated by the level set evolution due to their neg-
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Figure 13: Comparison between the physical model and the non-negative scalar velocity field (v, > 0) for
the cantilever starting with an initial design with holes using the present level set method.
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(a) Initial design (b) Step 5

(c) Step 10 (d) Step 15

(e) Step 20 (f) Final design (step 24)

Figure 14: Evolution of the strain energy density field of the optimal design for the cantilever starting with
an initial design with holes using the present level set method.
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ative velocities (¢ Ce = 0). As shown in Fig.
17, the final design shown in Fig. 17(a) cannot
reach a good agreement with the non-negative
scalar extension velocities shown in Fig. 17(b).
Hence, more iterations are needed to eliminate
those disconnected components and to reach a
better agreement between the geometry and the
normal velocities and thus the computational cost
may become much higher. Figures 17(c) and
17(d) show that the disconnected components can
be eliminated and a better agreement between
the geometry and the scalar velocity field can be
achieved when 1000 designs are produced. Since
the Ersatz material approach is used in the stan-
dard level set method, the physical model cannot
be consistent with the geometrical model and a
relatively low level of accuracy in evaluating the
objective function and the strain field can be ex-
pected, compared with the present consistent S-
FEM model, in which a more accurate modeling
of the free boundary is provided, as shown in Fig.
18.

The capacity of the present level set method for
nucleation of new holes is to be further discussed.
A design with a single hole as shown in Fig.
19(a) is chosen as the initial design to perform
the simultaneous shape and topology optimiza-
tion again. Since the volume of the initial de-
sign with a volume fraction of 0.9649 is far higher
than the the desired volume, in a single time step,
the Lagrange multiplier will become too large and
the resulting negative extension velocities are too
high such that the structural connectivity may be
broken due to the use of a large timestep. In this
study, the approach proposed by the authors in
[Wang and Wang (2006a)] is adopted, in which
a fixed Lagrange multiplier was used to decrease
the material volume in a stable manner. For
this example, we set the fixed Lagrange multi-
plier as ¢ = 20, the shape parameter ¢ = 0.001
and the timestep size 7 = 0.001. Figure 19 dis-
plays the evolution history of the final design us-
ing the present level set method. It can be seen
that creation of new holes is obtained and the fi-
nal design has more holes than the initial design
due to the present physically meaningful nucle-
ation mechanism. The final design shown in Fig.
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19(f) can even be similar to the one shown in Fig.
11(f) under this setting. Hence, the present level
set method can be less sensitive to the initial de-
signs due to its nucleation capacity. The conver-
gence of both the objective and constraint func-
tions is shown in Fig. 20. It can be seen that
an uphill climbing process in the objective func-
tion is involved due to the dominant volume de-
crease to achieve a feasible design. Compared
with the convergence history shown in Fig. 12 us-
ing an initial design with more holes, this conver-
gence needs more iterations since more efforts are
needed to drive the volume to the feasible set.

The design with a single hole as shown in Fig.
19(a) is further investigated using the standard
level set method and Fig. 21 displays the evo-
lution history of the final design. It can be seen
that creation of new holes is not permitted and the
final design cannot have more holes than the ini-
tial design due to the lack of a nucleation mech-
anism in the standard level set methods [Sethian
(1999); Osher and Fedkiw (2002); Wang, Wang,
and Guo (2003); Allaire, de Gournay, Jouve, and
Toader (2005)]. Hence, the final design converges
to a local optimum and may become largely de-
pendent of the initial designs. The convergence
history of both the objective and constraint func-
tions is shown in Fig. 22. It can be seen that the
uphill climbing process in the objective function
needs significantly much more timesteps due to
the strict CFL condition. The volume constraint
can be almost exactly satisfied after the volume
has been driven to the feasible set due to the use of
the present volume constraint handling approach.

The capacity of the present consistent meshfree
level set method for nucleation of new holes is
further demonstrated by using an initial design
without any holes. A design without a hole and
with a volume fraction as prescribed ({ = 0.5) as
shown in Fig. 23(a) is chosen as the initial design.
Figure 23 shows the evolution history of the final
design using the present level set method. It can
be seen that creation of new holes is allowed for
and the final design have three holes, though the
initial design does not have a hole. Hence, the
final design is less sensitive to the initial design
due to the present nucleation capacity. This final
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(a) Initial design (b) Step 30 (c) Step 60

(d) Step90 (e) Step 120 (f) Final design (step 165)

Figure 15: Evolution of the optimal design for the cantilever starting with an initial design with holes using
a standard level set method.
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Figure 16: Convergence of the objective and volume functions for the cantilever starting with an initial
design with holes using a standard level set method.
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(a) Design 165 (b) Scalar velocity 165

(c) Design 1000 (d) Scalar velocity 1000

Figure 17: Comparison between the geometry and the scalar velocity (v¢ > 0) for the cantilever starting
with an initial design with holes using a standard level set method.

(a) Ersatz material model (J(®)=63.9106) (b) S-FEM model (J(P)=61.4321)

(c) Shear strain field of (a) (d) Shear strain field of (b)
Figure 18: Comparison of the physical models for the design 165.
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(a) Initial design (b) Step 10 (c) Step 15
(d) Step 17 (e) Step 20 (f) Final design (step 47)

Figure 19: Evolution of the optimal design for the cantilever starting with an initial design with a single
hole using the present level set method.
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Figure 20: Convergence of the objective and volume functions for the cantilever starting with an initial
design with a single hole using the present level set method.
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(a) Initial design (b) Step 100 (c) Step 300
(d) Step 600 (e) Step 1000 (f) Final design (step 1345)
Figure 21: Evolution of the optimal design for the cantilever starting with an initial design with a single
hole using a standard level set method.
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Figure 22: Convergence of the objective and volume functions for the cantilever starting with an initial
design with a single hole using a standard level set method.
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design with a higher objective function value of
59.617 is different from the one with a lower ob-
jective function value of 58.870, as shown in Fig.
14(f). Hence, only a sub-optimal solution is ob-
tained for this case. This is not strange since the
present steepest gradient-based local optimiza-
tion method is still dependent on the initial guess
[Bendsge and Sigmund (2003)] and the ability of
the present method to create new holes cannot to-
tally eliminate this dependence. The convergence
history of both the objective and constraint func-
tions is shown in Fig. 24. It can be seen that the
objective function decreases while new holes are
created in the material domain. The present nu-
cleation mechanism can be justified. Rapid con-
vergence can be obtained due to the use of a rel-
atively large timestep and thus the computational
efficiency can be improved significantly. The vol-
ume constraint can be almost exactly satisfied af-
ter the first few timesteps due to the use of the
present volume constraint handling approach.

The design without a hole as shown in Fig. 23(a)
is further investigated using the standard level set
method as aforementioned and Fig. 25 shows the
evolution history of the final design. It can be
seen that nucleation of new holes is not allowed
for and the final design cannot have a hole due
to the lack of a nucleation mechanism in the stan-
dard level set methods [Sethian (1999); Osher and
Fedkiw (2002); Wang, Wang, and Guo (2003);
Allaire, de Gournay, Jouve, and Toader (2005)].
The convergence history of both the objective and
constraint functions is shown in Fig. 26. The con-
vergence speed of the objective function is sig-
nificantly slower than the one using the present
level set method, as shown in Fig. 24, due to the
CFL condition for stability in the standard level
set method. The final design converges to a lo-
cal optimum with an objective function value of
80.125 due to its strong dependence on the initial
designs. Hence, compared with the present BIBO
time-stable meshfree level set method, the stan-
dard level set method can be quite inefficient for
simultaneous shape and topology optimization.

33

5 Conclusions

An unconditionally BIBO time-stable meshfree
level set method is presented and applied to struc-
tural shape and topology optimization as an accu-
rate and efficient approach. The infinitely smooth
inverse multiquadric radial basis functions are
used to discretize the implicit level set function
to obtain a high level of smoothness and accuracy
of the solution to the Hamilton-Jacobi PDE. The
original initial value problem is discretized into a
time-dependent interpolation problem and the re-
sulting dynamic system of coupled ODEs is posi-
tive definite, reinitialization-free and BIBO time-
stable because of the present globally supported
RBF discretization. Furthermore, a moving su-
perimposed finite element method with adaptive
local mesh refinement is adopted to make the
physical model consistent with the geometrical
model and to achieve a high level of computa-
tional accuracy. The present method thus pos-
sesses significant advantages in efficiency and ac-
curacy over the standard finite difference-based
level set methods. The present level set method
is further implemented in the framework of struc-
tural shape and topology optimization. An ex-
plicit volume constraint handling approach is pre-
sented to resolve the volume constraint accurately.
The total volume can become conservative and the
final design is guaranteed to be feasible. Since
reinitialization is eliminated, a physically mean-
ingful nucleation mechanism is established and
creation of new holes can be allowed for at the
sites where the material is ineffectively used. The
final solution becomes less sensitive to the initial
design and the probability of converging to a local
minimum is greatly reduced. Due to the simulta-
neous shape and topology optimization, the mate-
rial domain of the final design will agree well with
the region with non-negative extension velocities
and an almost homogeneous energy distribution
can be achieved. The present method is finally
applied to 2D shape and topology optimization
of minimum compliance design. Numerical ex-
amples can illustrate the superior performance of
the present method in accuracy, efficiency, con-
vergence and insensitivity to initial designs over
a standard level set method. It is suggested that
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Figure 23: Evolution of the optimal design for the cantilever starting with an initial design without a hole
using the present level set method.
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Figure 24: Convergence of the objective and volume functions for the cantilever starting with an initial
design without a hole using the present level set method.
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(a) Initial design (b) Step 20 (c) Step 50

(d) Step 100 (e) Step 200 (f) Final design (step 450)

Figure 25: Evolution of the optimal design for the cantilever starting with an initial design without a hole
using a standard level set method.
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Figure 26: Convergence of the objective and volume functions for the cantilever starting with an initial
design without a hole using a standard level set method.
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the present level set method is an effective alter-
native for simultaneous shape and topology opti-
mization.
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