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An Elastic-Plastic Constitutive Equation Taking Account of Particle Size
and Its Application to A Homogenized Finite Element Analysis of A

Composite Material

Shuji Takashima1, Michihiko Nakagaki2 and Noriyuki Miyazaki1

Abstract: Composite materials have compli-
cated microstructures. These microstructures af-
fect the macroscopic deformation of composite
materials. In the present study, we focus on the
effect of particle size in a particle-dispersed com-
posite material on the mechanical strength of the
material. For this purpose, we derived a macro-
scopic elastic-plastic constitutive equation using
a modified version of the Eshelby′s equivalent in-
clusion method combined with the gradient plas-
ticity. We incorporated this macroscopic elastic-
plastic constitutive equation into a finite element
program and performed a homogenized finite el-
ement analysis of a particle-dispersed compos-
ite material in which both the macroscopic and
microscopic behaviors of the composite material
were obtained. The present method successfully
revealed the size effect in a particle-dispersed
composite material, namely that its mechanical
strength increases with a decrease in the particle
size.

Keyword: size effect, composite material,
Eshelby′s theory, gradient plasticity.

1 Introduction

The microstructure of a polycrystalline material
has a large effect on its macroscopic deforma-
tion behavior. In particular, the Hall-Petch effect
is well known as a grain size miniaturization ef-
fect. Using this phenomenon, we can obtain high-
strength materials by reducing the grain size. The
mechanism of the Hall-Petch effect is explained
as follows. Dislocations pile up at grain bound-
aries, with the grain boundaries resisting the dis-
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location motion. When the grain size decreases,
the ratio of the grain boundary volume to a unit
volume of the material increases, hence the resis-
tance to dislocation motion increases. Therefore,
the material strength increases with a decrease in
the grain boundary size. The same phenomenon
occurs in particle-dispersed composite materials
because hard particles included in the matrix ma-
terial work to resist the dislocation motion. When
the size of the hard particles decreases while a
constant volume fraction of the particles is main-
tained, the strength of the composite material in-
creases [Aikin and Christodoulou (1991), Lloyd
(1994), Ling (2000)].

Standard plasticity theory cannot deal with the
size effect on the strength of materials since it
does not involve an internal length scale in the
constitutive equation. There have been numerous
studies dealing with this size effect on material
strength. Among them, Liu and Hu (2005) pre-
dicted the particle size dependence of the overall
plasticity for composite materials, using the mi-
cropolar theory. It seems difficult, however, to in-
corporate this theory into finite element programs,
and a finite element analysis has not been carried
out. Needleman (2000), and Yefimov, Groma, and
Giessen (2004) performed finite element analyses
of the size effect for composite materials using a
crystal plasticity model with a discrete dislocation
model. Very fine finite element models are em-
ployed in these analyses in order to account for
the microstructure of composite materials.

Recently, much attention has been paid to higher-
order gradient theories such as gradient disloca-
tion dynamics, gradient plasticity, and gradient
elasticity [Aifantis (2000)] because they can cap-
ture size effects. Among these, gradient plasticity
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[Aifantis (2001)] successfully predicted the size
effect on material strength. Zhu, Zbib, and Aifan-
tis (1997) performed a size effect analysis of com-
posite materials using gradient plasticity, but did
not incorporate the theory into a finite element
program. Nakagaki, Takashima, Matsumoto, and
Miyazaki (2005) performed a finite element anal-
ysis that included the gradient plasticity, demon-
strating the size effect on the strength of a parti-
cle dispersed composite material, as seen in Fig. 1
(b). The finite element model used in the analysis
appears in Fig. 1 (a). Numerous finite elements
are required in even the very simple structure de-
picted in Fig. 1 (a). In general, if an entire struc-
ture, including microstructure, is to be modeled
using finite elements, an enormous number of
such finite elements and an enormous amount of
computational time will be required. To overcome
these difficulties, various studies have been per-
formed on the macroscopic constitutive equation
for particle-dispersed composite materials in or-
der to predict their mechanical behavior. Among
these, the Eshelby′s equivalent inclusion method
[Eshelby (1957)] has been used for predicting the
mechanical behavior of particle-dispersed com-
posite materials. For example, Mori and Tanaka
(1973) developed a mean field theory based on
the Eshelby′s equivalent inclusion method. They
assumed that the stress and strain are uniform
in each phase of a composite material and de-
rived the elastic constitutive equation for compos-
ite materials. Tandon and Weng (1988) extended
the Mori-Tanaka theory to an elastic-plastic con-
stitutive equation for a particle-dispersed compos-
ite material.

In the present study, we focus on the particle size
effect in particle-dispersed composite materials.
For this purpose, we employ gradient plasticity
[Zhu, Zbib, and Aifantis (1997)]. When we carry
out finite element analyses of structures made of
composite materials, the microstructures of the
composite materials are often homogenized to re-
duce the total degree-of-freedom of the finite el-
ement model. Without such homogenization, it
is practically impossible to apply gradient plastic-
ity to a finite element stress analysis of structures
made of composite materials. In the present study,
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Figure 1: Previous study (a):Composite model
with fine mesh (b):Macroscopic stress-strain
curve for uniaxial tensile loading obtained from
the gradient plasticity

we utilize the equivalent inclusion method for ho-
mogenization together with gradient plasticity to
consider the particle size effect. In the Mori-
Tanaka model and the Tandon-Weng model, the
stress and strain distributions are not taken into
account in deriving the elastic-plastic constitutive
equation. We develop a new equivalent inclusion
model to take account of both plastic strain in the
matrix material and the strain distribution around
particles. We then combine this equivalent inclu-
sion model with the gradient plasticity to obtain
a elastic-plastic constitutive equation that consid-
ers the size effect of particles in the microscopic
region. We next incorporate the constitutive equa-
tion in a finite element program for homogeniza-
tion. Finally, we will present the results of a nu-
merical example for the size effect of particles on
the strength of composite materials.

2 Equivalent inclusion method

We need a strain distribution in order to apply gra-
dient plasticity, in which a strain gradient term
is included. The equivalent inclusion method,
as in the Mori-Tanaka model [Mori and Tanaka
(1973)] and the Tandon and Weng model [Tandon
and Weng (1988)], cannot be applied to gradient
plasticity because they provide only the average
strains in a matrix and an inclusion and do not
provide the strain distribution in the matrix neces-
sary for calculating the strain gradient term. In
the present study, we derive the strains at arbi-
trary points in the matrix and the inclusion based
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on the equivalent inclusion method, thus obtain-
ing the strain distribution in the matrix.

2.1 Strain distribution at an arbitrary point

We assume that a single particle or an inclusion
exists in a uniform infinite matrix. According
to the Eshelby′s equivalent inclusion method, we
can evaluate the stresses and strains in the inclu-
sion and the matrix under uniform loading, as-
suming that the real inclusion is replaced by a vir-
tual inclusion or by an equivalent inclusion of the
same material of the matrix with a specified eigen-
strain. The total strain of the equivalent inclusion
is given as follows:

ε2 = εe
2 +ε∗

2 (1)

where ε∗ is the eigenstrain and subscripts 0, 1 and
2 indicate the respective quantities pertaining to
the matrix at the infinite location, to the matrix,
and to the inclusion. We assume that the compos-
ite material is subjected to a uniform strain ε0 at
the infinite location. Here we define the strain dif-
ference between ε1 and ε0 as εc

1 , and that between
ε2 and ε0 as εc

2 .

ε1(x) = ε0 +εc
1(x), ε2 = ε0 +εc

2 (2)

In Eq. 2, ε1(x) and εc
1(x) indicate the functions

of position, while ε2 and εc
2 in the inclusion are

assumed to be constant. We can obtain εc
1(x) and

εc
2 from the Eshelby′s tensors (Sout(x),Sin) and the

eigenstrain.

εc
1(x) = Sout(x) : ε∗, εc

2 = Sin : ε∗ (3)

The eigenstrain given by Eq. 3 is arbitrary. We
consider the equivalent condition for the stress be-
tween the real inclusion and the equivalent inclu-
sion and obtain the following equation.

σ2 = σeqv = De
1 : (ε2 −ε∗), σ2 = De

2 : ε2 (4)

Here, De
1 and De

2 are the elastic matrices for the
matrix material and the inclusion. Using Eqs.2 to
4, we obtain the eigenstrain as a function of ε0 that
satisfies the equivalent condition.

ε∗ = A0 : ε0 (5)

A0 =
[(

I ⊗ I − (De
1)

−1 : De
2

)−1 −Sin

]−1
(6)

Here, I denotes the unit matrix. Substituting Eq. 5
into Eq. 3 and using Eq. 2, we can obtain the
strains in the matrix and the inclusion, respec-
tively as follows:

ε1(x) = (I ⊗ I +Sout(x) : A0) : ε0 (7)

ε2 = (I ⊗ I +Sin : A0) : ε0 (8)

As seen in Eqs. 7 and 8 the strains in both the
matrix and the inclusion are calculated from the
strain at the infinite location and from the several
material properties included in De

1 and De
2. The

stresses in the matrix and the inclusion may then
be written as

σ1(x) = De
1 : (I ⊗ I +Sout(x) : A0) : ε0 (9)

σ2 = De
2 : (I ⊗ I +Sin : A0) : ε0 (10)

2.2 Multi-particle model

We obtain the strain and stress distributions
around a particle from Eqs.7 to 10. These dis-
tributions do not consider the interaction of par-
ticles, since the Eshelby′s equivalent inclusion
method assumes a single particle. Actually, many
particles exist in the matrix. The interaction
among particles creates more complicated stress
and strain distributions. Here we consider such a
situation.
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Figure 2: Multi-particle model.
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Figure 3: Simplification of multi-particle model.
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Mura [Moschovidis and Mura (1975)] proposed
an equivalent inclusion method for a multi-
particle model. In the multi-particle case, the ma-
terial, size, and direction of motion of the various
particles may differ from particle to particle, as in-
dicated in Fig. 2. Now let us consider the double-
particle model in Fig. 2. The equivalent equations
for particles ΩI and ΩII are given as follows:

DI
2 : (ε0 +εc

2) = D1 : (ε0 +εc
2 −ε∗I(x)) in ΩI

(11)

DII
2 : (ε0 +εc

2) = D1 : (ε0 +εc
2 −ε∗II(x)) in ΩII

(12)

where subscripts I and II indicate quantities per-
taining to particles ΩI and ΩII, and the eigen-
strains ε∗I(x) and ε∗II(x) are given by:

ε∗I
i j (x) = BI

i j +BI
i jkxk +BI

i jklxkxl + . . . (13)

ε∗II
i j (x) = BII

i j +BII
i jkxk +BII

i jklxkxl + . . . (14)

Additionally, the following relation holds be-
tween the coordinate system of particle I and that
of particle II:

xi −ci = ai jx j (15)

where vector ci and tensor ai j indicate the
respective relative difference between the ori-
gins of the two coordinate systems and the
direction cosine of the two coordinate sys-
tems. We must solve Eqs.13 to 15 for BI

i j ,

BI
i jk,B

I
i jkl,. . . ,B

II
i j ,B

II
i jk,B

II
i jkl,. . .. Such a problem,

however, is too complicated to solve, so we try to
simplify the problem by considering the following
assumptions.

• All particles are of the same material.

DI
2 = DII

2 = D2 (16)

• All particles have the same direction.

xi −ci = xi (17)

• All particles have the same shape and size.

ε∗I(x) = ε∗II(x) = ε∗(x) (18)

• The eigenstrain is uniform in a particle.

ε∗(x) = ε∗ (19)

Under these assumptions, the double-particle
model in Fig. 2 reduces to the simplified model
seen in Fig. 3. The equivalent equation for the
double-particle model is then represented by ap-
plying Eqs.16 to 19 to Eqs. 11 and 12, as follows:

D2 : (ε0 +εc
2) = D1 : (ε0 +εc

2 −ε∗) in ΩI,ΩII

(20)

This formula is the same as Eq. 4 in the single-
particle model. The eigenstrain is solved essen-
tially as it was in the single-particle model. How-
ever, both particles I and II influence εc

1 and εc
2 .

According to Mura′s reference [Moschovidis and
Mura (1975)], εc

1 and εc
2 are given as follows:

εc
1 = εcI

1 +εcII
1 = (SI

out(x)+SII
out(x)) : ε∗ (21)

εc
2 = εcI

2 +εcII
1 = (SI

in +SII
out(x)) : ε∗ (22)

In the double-particle model, εc
1 and εc

2 are repre-
sented by the product of the sum of the Eshelby′s
tensors pertaining to each particle and the eigen-
strain. Under the assumptions of Eqs.16 to 19,
we can extend Eqs.21 and 22 to a general multi-
particle model in which more than two particles
are included by replacing the sum of the Eshelby′s
tensors in those equations with more than two
terms. In consideration of particle interaction,
Eqs.5 to 8 are modified as follows for a general
multi-particle model:

ε∗ = A0 : ε0 (23)

A0 =
[
(I⊗ I − (De

1)
−1 : De

2)
−1−Ssum2

]−1

(24)

ε1(x) =
[
I ⊗ I +Ssum1(x) : A0

]
: ε0 (25)

ε2 =
[
I ⊗ I +Ssum2 : A0

]
: ε0 (26)

σ1(x) = De
1 :

[
I ⊗ I +Ssum1(x) : A0

]
: ε0 (27)

σ2 = De
2 :

[
I ⊗ I +Ssum2 : A0

]
: ε0 (28)

Ssum1(x) = SI
out(x)+SII

out(x)+ . . . (29)

Ssum2 = SI
in +SII

out(x)+ . . . (30)

where Ssum1(x) and Ssum2 indicate the respective
influence of each particle on the matrix material
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and on the particle ΩI . Using these equations, we
can analytically calculate the strain and stress at
an arbitrary point in the multi-particle model as
well as in the single-particle model. We can then
obtain the distributions of strain and stress in the
matrix from the results. The number of terms in
Ssum1(x) and Ssum2 increases with an increase in
the number of particles. Even with a large number
of particles, the strain and stress remain finite be-
cause the influence of particles far from the point
of interest is small enough to be neglected.

3 Macroscopic constitutive equation

In this section, we derive a macroscopic constitu-
tive equation for the multi-particle model from the
equations shown in the previous section. Fig. 4
depicts a unit cell in the present model, consisting
of numerous background cells for numerical in-
tegration, which will be mentioned later. For the
unit cell, we define the average strain of the ma-
trix ε1 and that of the inclusion ε2 as follows:

ε1 =
1
V1

∫
V1

ε1dV, ε2 =
1
V2

∫
V2

ε2dV (31)

where V1, V2 and V are the respective volume of
the matrix, that of the inclusion, and the overall
volume. We assume that the average strain of the
overall volume ε is given as:

ε = (1− f )ε1 + f ε2, (32)

V1 σ 1 ε 1

V2 σ 2 ε 2

V σ ε 

Matrix

Particle

Figure 4: A unit cell in the present model

where f is the particle volume fraction. By sub-
stituting Eqs.7, 8 and 31 into Eq. 32, ε is written
as a function of ε0 as follows:

ε = α : ε0, (33)

α =
1
V

[∫
V1

I ⊗ I +Ssum1(x) : A0dV

+
∫

V2

I ⊗ I +Ssum2 : A0dV
] (34)

Similarly, the average stress in the matrix σ1, that
in the inclusion σ 2 and that of the overall volume
σ are written as:

σ1 =
1

V1

∫
V1

σ1dV, σ2 =
1

V2

∫
V2

σ2dV, (35)

σ = β : ε0, (36)

β =
1
V

[∫
V1

De
1 (I ⊗ I +Ssum1(x) : A0)dV

+
∫

V2

De
2 (I ⊗ I +Ssum2 : A0)dV

]
,

(37)

The average stress σ is written as a function of ε0

as well as the average strain ε . α and β are the
fourth-order tensors that relate the average strain
and the average stress to the strain at the infinite
location. Finally, we obtain the relationship be-
tween the average stress and the average strain by
eliminating ε0 from Eqs. 33 and 36 as follows:

σ = D
e

: ε = β : α−1 : ε (38)

We can regard the above as a constitutive equation
for a particle-dispersed composite material. When
the matrix material is in a plastic state and the
inclusion remains elastic, a constitutive equation
for the elastic-plastic problem can be obtained by
changing the elastic matrix of the matrix material
De

1 in Eqs.24 and 37 to the elastic-plastic matrix of
the matrix material Dep

1 and revising Eq. 38 to an
incremental form. The constitutive equation for
the elastic-plastic problem in a particle-dispersed
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composite material is given as follows:

dσ = D
ep

: dε = β : α−1 : dε , (39)

α =
1
V

[∫
V1

I ⊗ I +Ssum1(x) : A0dV

+
∫

V2

I ⊗ I +Ssum2 : A0dV
]
,

(40)

β =
1
V

[∫
V1

Dep
1 (I⊗ I +Ssum1(x) : A0)dV

+
∫

V2

De
2 (I ⊗ I +Ssum2 : A0)dV

]
,

(41)

where

A0 =

[(
I ⊗ I −

(
Dep

1

)−1
: De

2

)−1

−Ssum2

]−1

(42)

Numerical integration is required to calculate α
and β for either an elastic problem or an elastic-
plastic problem. Fig. 4 indicates the background
cells used for the numerical integration. Due to
symmetry, the numerical integration is performed
over only a half-region. When the matrix material
is in a plastic state and the inclusion remains elas-
tic, the incremental strain and stress in the matrix
material are given by the following equation, de-
rived by replacing De

1 with Dep
1 in Eqs.25 and 27:

dε1(x) = (I ⊗ I +Ssum1(x) : A0) : dε0, (43)

dσ1(x) = Dep
1 : (I ⊗ I +Ssum1(x) : A0) : dε0. (44)

Fig. 5 presents a flow chart of the present cal-
culation scheme. First, the strain increment is
calculated at each integral point of the finite el-
ements in the macroscopic domain. In the micro-
scopic domain, this strain increment is expressed
as the average strain increment. The strain incre-
ment and the stress increment at each point in the
matrix material are calculated in the microscopic
domain. The macroscopic elastic-plastic matrix
is obtained after the integral loop for the micro-
scopic domain. In the macroscopic domain, this
matrix is given at each integral point of the finite
elements and is utilized as a homogenized elastic-
plastic matrix in a conventional FE analysis.

Figure 5: Flow chart of the present method

4 Gradient plasticity

According to gradient plasticity [Aifantis (2001)],
the equivalent stress σ is defined by :

σ = κ (ε)−c∇2ε (45)

where σ , ε , κ (ε) and c denote the respective
equivalent stress, the equivalent plastic strain, a
conventional homogeneous part of flow stress,
and a phenomenological gradient coefficient. ∇2ε
is a strain gradient term that permits the inclu-
sion of a length scale in the plastic constitutive
equation. Next, we define a yield function as
F = σ −κ (ε)+ c∇2ε . Using this yield function,
we obtain a modified Prandtl-Reuss equation in-
cluding a strain gradient term as follows:

dσ = Depdε , (46)

Dep = De − dDdT
D(

1− c∇2ε p
σy

)(
H ′ −cd∇2ε p

dε p

)
+dT

Da
,

(47)

aT =
[

∂F
∂σx

,
∂F
∂σy

,
∂F
∂σz

,
∂F
∂τyz

,
∂F
∂τzx

,
∂F
∂τxy

]
(48)

where Dep denotes the elastic-plastic matrix, De

is the elastic matrix, H ′ is the rate of strain hard-
ening, and dD = Dea. If the gradient coefficient
c is zero, Eq. 47 is the same as the conventional
Prandtl-Reuss equation. We utilize Eq. 45 and
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Eqs. 46 and 47 as the yield criterion and elastic-
plastic constitutive equations in the present anal-
ysis. Eq. 47 is used for Dep in the flow chart in
Fig. 5.

5 Numerical example

5.1 Analysis conditions

We performed a homogenized finite element anal-
ysis using the elastic-plastic constitutive equation
based on the modified version of the Eshelby′s
equivalent inclusion method combined with gra-
dient plasticity. In this analysis, we consider
two domains, a macroscopic domain and a micro-
scopic domain. Fig. 6 illustrates the concept of
this analysis. We assume that the particles have a
circular shape and that all have the same diam-
eter. We apply the conventional finite element
method to the macroscopic domain with a ho-
mogeneous material subjected to uniaxial tensile
loading. For the macroscopic analysis, we em-
ploy the macroscopic elastic-plastic constitutive
equation in Eqs. 39 to 42, in which Dep given by
Eq. 47 is used to take the gradient plasticity into
account. In the microscopic domain, we obtain
the strain and stress distributions around a par-
ticle using the strain calculated from the macro-
scopic analysis. We calculate the strain gradient
term by differentiating a polynomial expression

Matrix Particle

ε

D ep

Input

Output

Macroscopic domain Microscopic domain

Particle size

Homogeneious

(Conventional FEM) Modified equivalent
inclusion model( )

Figure 6: Numerical model

Table 1: Material paramaters

E [GPa] σy [MPa] ν B [MPa] n
Matrix 76.0 205.0 0.33 280.0 30
Particle 410.0 - 0.33 - -

of the strain distribution obtained using the least
square method. The material properties used in
the present study are summarized in Tab. 1, where
E,σy and ν denote the respective Young′s modu-
lus, the yield stress and the Poisson′s ratio and B
and n are the coefficients of the Ramberg-Osgood
relation given by

ε = (σ/E)+(σ/B)n (49)

These material properties correspond to those of
Al-SiC composite materials, in which SiC parti-
cles are dispersed in an Al matrix [Lloyd (1994)].
In addition, we need to determine the gradient co-
efficient c in Eq. 45. This coefficient should be
measured experimentally [Aifantis (2000)]. One
way of measuring it is to use initial yield data
for specimens of varying grain size for poly-
crystalline materials and varying particle size for
particle-dispersed composite materials. We are
unable to find such data, thus, in the present study
we choose the gradient coefficient c as zero in the
case where the strain gradient effect is not con-
sidered and -0.01 N in the case where the strain
gradient effect is considered.

5.2 Results and discussion

The results for the strain distribution around a par-
ticle and the stress-strain relation at the loading lo-
cation without the strain gradient effect (c = 0) are
presented in Figs.7 and 8. The results are in good
agreement with conventional FEM results. We
confirmed that the present model, using the modi-
fied equivalent inclusion model, has sufficient ac-
curacy.

The stress-strain relation at the loading location
is presented in Fig. 9 for a particle volume frac-
tion f of 15%. We utilized five particle sizes,
32μm, 16μm, 12μm, 9μm, and 7μm when in-
vestigating the size effect. Fig. 10 (a) shows the
variation in the 0.2% offset yield stress with par-
ticle size. When the particle is large, the stress-
strain curves become almost independent of par-
ticle size. As the particle becomes smaller, the
yield stress and the tangent modulus in the plastic
range become larger. Experiment results [Aikin
and Christodoulou (1991)] are given in Fig. 10
(b). Although the particle material used in their
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(a) Present model (b) FEM

Figure 7: Strain distribution without the strain gradient effect ( c = 0 ) when the macroscopic strain is 0.015
(a) Present model (b) conventional FEM.

Figure 8: Macroscopic stress-strain relation without
the strain gradient effect ( c = 0 )

Figure 9: Stress-strain curve depending on particle
size (c = -0.01)

Figure 10: 0.2 % offset yield stress. (a) Results of the present study (b) Experimental results
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∇2ε

(a) elastic, plastic region (b) strain gradient distribution 

Figure 11: Plasticity and strain distribution domain when the macroscopic strain is 0.002 and coefficient c
is zero.

experiment differs from the present study, the re-
sults of the present calculation are similar to the
experiment results. The analytical results agree
with the experiment results, demonstrating that
a particle-dispersed composite material with a
smaller particle has greater mechanical strength
[Lloyd (1994), Zhu, Zbib, and Aifantis (1997),
Ling (2000)]. Fig. 11 depicts the strain gradient
distribution when the macroscopic strain is 0.002
and coefficient c is zero. The strain gradient distri-
bution exhibits positive values at the outer periph-
eral region around the plastic domain. If coeffi-
cient c is positive, the yield stress near the outer
boundary around the plastic regions decreases, ac-
cording to Eq. 45. In this case, plastic deforma-
tion will be promoted. In contrast, if coefficient c
is negative, the yield stress near the outer bound-
ary around the plastic regions increases. In this
case, plastic deformation will be suppressed. The
present study corresponds to the latter case.

6 Summary

In the present study, we derived a macro-
scopic elastic-plastic constitutive equation for a
particle-dispersed composite material based on
the Eshelby′s equivalent inclusion method and
gradient plasticity. We incorporated this macro-
scopic elastic-plastic constitutive equation into
a finite element program and performed a ho-
mogenized finite element analysis of a particle-
dispersed composite material, by which both the
macroscopic and microscopic behaviors of the
composite material were obtained. The present

method is able to conclusively demonstrate the
effect of particle size on the strength of a com-
posite material. Very efficient computation can be
performed for structures composed of composite
materials using the present method, since it uses
the homogenized elastic-plastic constitutive equa-
tion derived from the modified equivalent inclu-
sion model in the finite element analysis and does
not need a fine-element mesh to represent the dis-
persed particles.
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