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New Integrating Methods for Time-Varying Linear Systems and Lie-Group
Computations

Chein-Shan Liu1

Abstract: In many engineering applications
the Lie group calculation is very important. With
this in mind, the subject of this paper is for an
in-depth investigation of time-varying linear sys-
tems, and its accompanied Lie group calculations.
In terms of system matrix A in Eq. (11) and a
one-order lower fundamental solution matrix as-
sociated with the sub-state matrix function As

s, we
propose two methods to nilpotentlize the time-
varying linear systems. As a consequence, we ob-
tain two different calculations of the general lin-
ear group. Then, the nilpotent systems are fur-
ther transformed to a unique new system Ż(t) =
B(t)Z(t), which having a special simple B(t) ∈
sl(n + 1,R) with Bs

s and B0
0 vanishing. Corre-

spondingly, we get a third calculation of the gen-
eral linear group. By using the nilpotent property
we can develop quite simple numerical scheme of
nilpotent type to calculate the state transition ma-
trix. We also develop a Lie-group solver in terms
of the exponential mapping of B. Several numeri-
cal examples were employed to assess the perfor-
mance of proposed schemes. Especially, the new
Lie-group solver is very stable and highly accu-
rate.

Keyword: Lie-group solver, Nilpotent matrix,
Time-varying linear system, Quadratic invariant

1 Introduction

Lie group is a differentiable manifold, endowed a
group structure that is compatible with the under-
lying topology of the manifold. The main purpose
of the Lie-group solver is for providing a better al-
gorithm that retains the orbit generated from nu-
merical solution on the manifold which associated

1 Department of Mechanical and Mechatronic Engineer-
ing, Taiwan Ocean University, Keelung, Taiwan. E-mail:
csliu@mail.ntou.edu.tw

with the Lie-group.

The general linear group is a Lie group, whose
manifold is an open subset GL(n + 1,R) :=
{G ∈ R(n+1)×(n+1)|detG �= 0} of the linear space
of all (n + 1) × (n + 1) nonsingular matrices.
Thus, GL(n + 1,R) is also an (n + 1)× (n + 1)-
dimensional manifold. The group composition is
given by the matrix multiplication [Weyl (1966)].

The general linear group GL(n + 1,R) gives
uniquely a real Lie algebra gl(n+1,R). Consider
a one-parameter subgroup G(t), t ∈R, of the gen-
eral linear group GL(n + 1,R), which is a curve
passing through the group identity at t = 0,

G(0) = In+1, (1)

and which left acts on the (n+1)-dimensional Eu-
clidean space Rn+1, resulting in a congruence of
curves in R

n+1,

X(t) = G(t)X(0)= [G(t)G−1(t0)]X(t0), t0, t ∈R.

(2)

Owing to the closure property of the Lie group,
G(t)G−1(t0) also belongs to GL(n+1,R). When
t0 is put very close to t, G(t)G−1(t0) is very close
to the identity In+1. Moreover,

A(t) :=
∂
∂ t

[G(t)G−1(t0)]
∣∣∣∣
t0=t

= Ġ(t)G−1(t) (3)

defines a string of tangent vectors on the tan-
gent space at the group identity of the group
manifold, more precisely, a continuously singly
parametrized series of one-dimensional subalge-
bra of the real Lie algebra gl(n+1,R).

Differentiating Eq. (2), setting t0 = t and then us-
ing Eq. (3) yields

Ẋ(t) = A(t)X(t). (4)
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The flow generated by such a gl(n + 1,R) vector
field is the congruence of curves resulting from
solving the time-varying linear system (4). Essen-
tially, it is very important that when one wants to
establish a local coordinate on a smooth manifold
on which a finite dimensional Lie group of trans-
formations is acting, the solution of linear time-
varying differential equations is necessary.

Due to Eqs. (3) and (1), G(t) is a fundamental so-
lution matrix of the system of ordinary differential
equations in Eq. (4), and

ΦΦΦ(t, t0) := G(t)G−1(t0) (5)

is the state transition matrix [Rugh (1993)]. In
general, it may not be possible to derive an an-
alytic, closed-form expression of ΦΦΦ(t, t0) asso-
ciated with arbitrary matrix A(t). In the time-
varying case, we usually use a power series ex-
pansion, called the Peano-Baker formula [Rugh
(1993)], to express ΦΦΦ(t, t0) by

ΦΦΦ(t, t0) = In+1 +
∫ t

t0
A(τ1)dτ1

+
∫ t

t0

∫ τ1

t0
A(τ1)A(τ2)dτ2dτ1 + · · ·

+
∫ t

t0

∫ τ1

t0
· · ·

∫ τn−1

t0
A(τ1)A(τ2) · · ·A(τn)

· dτn · · ·dτ2dτ1 + · · · (6)

Follows from Eq. (3) a linear matrix differential
equation:

Ġ(t) = A(t)G(t), G(0) = In+1, (7)

whose differential structure, as observed by Haus-
dorff (1906), can be transferred to the differential
structure for the underlying Lie algebra σσσ(t) ∈
gl(n+1,R) with

σ̇σσ(t) =
∞

∑
k=0

Bk

k!
adk

σσσ A(t), σσσ (0) = 0n+1, (8)

where 0n+1 denotes the (n+1)-order zero matrix,
Bk are the Bernoulli numbers, and the adjoint op-
erator in adxy with x,y ∈ gl(n+ 1,R) is defined
by the following iterated commutation [Isidori
(1989)],

ad0
xy = y, adk

xy = [x,adk−1
x y], k ∈ N. (9)

Here, [x,y]= xy−yx denotes the Lie commutator.

Magnus (1954) has shown that

σσσ(t) =
∫ t

0
A(τ1)dτ1

+
1
2

∫ t

0

∫ τ1

0
[A(τ1),A(τ2)]dτ2dτ1

+
1
4

∫ t

0

∫ τ1

0

∫ τ2

0
[[A(τ3),A(τ2)],A(τ1)]dτ3dτ2dτ1

+
1
12

∫ t

0

∫ τ1

0

∫ τ1

0
[A(τ3), [A(τ2),A(τ1)]]dτ3dτ2dτ1

+ · · · , (10)

and proved that G(t) = expσσσ(t) is a solution of
Eq. (7).

No matter which formula, Eq. (6) or Eq. (10), is
used to calculate the state transition matrix, we
need to calculate many multivariate integrals of
matrix functions and infinite sum. Especially, the
latter further requires to calculate a large num-
ber of commutators and a single exponential of
a complicated matrix function argument. On the
other hand, when one uses Eq. (8) to calculate the
state transition matrix, one may require to solve a
highly nonlinear differential equations system.

In the past few years a number of Lie-group al-
gorithms have been proposed and studied, for ex-
ample, the rigid-frame technique of Crouch and
Grossman (1993), the Runge-Kutta-Munthe-Kaas
scheme by Munthe-Kaas (1998), the Fer expan-
sion by Iserles (1984), and the Magnus expan-
sions by Iserles and Norsett (1999) and Iser-
les, Norsett and Rasmussen (2001). In addition
these methods, the use of Wei-Norman formula
[Wei and Norman (1964)] to establish the Lie
group is fairly popular in the control and sys-
tem theory [Sastry (1999); Altafini (2005)]. The
Wei-Norman formula provides an explicit rela-
tion between the Magnus expansion and a com-
plete product of exponentials expansion. Unfortu-
nately, such a relation is given by a set of nonlin-
ear differential equations, more difficult to solve
than the Magnus expansion, which is obtained by
a local solution of a linear time-varying system
expressed by means of a single exponential.

In Section 2 of this paper we will propose two
new methods to transform the time-varying linear
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system (4) to the index two nilpotent time-varying
linear systems:

Ẏ(t) = Ni(t)Y(t), N2
i (t) = 0, i = 1,2.

Due to this nilpotent property of Ni(t), the new
systems are more easy to treat than the original
system (4). Furthermore, we will derive the suffi-
cient conditions about the state matrix function A,
such that there exists a quadratic invariant of the
time-varying linear system.

In Section 3 we will give some examples of the
quadratic invariants for the second-order system,
the third-order linear differential equation and the
fourth-order linear differential equation.

In Section 4, we further reduce the nilpotent sys-
tems introduced in Section 2 to a simple linear
system with vanishing Bs

s and B0
0. We will prove

that the quadratic invariants can be classified into
two types: Minkowskian and Euclidean.

Corresponding to the results in Sections 2 and
3, two nilpotent type algorithms and a new Lie-
group solver are developed in Section 5. The re-
sults to be developed may facilitate us to develop
some new techniques to solve the Lie-group equa-
tion (7). The nilpotent form is first developed by
Liu (2006a) for the SO(3) system. This paper ex-
tends these results to the general linear Lie-group.

In Section 6 we will use some examples to show
that the newly developed numerical algorithms
are better to preserve the system’s invariants and
also the group structures.

Finally, the conclusions are made in Section 7.

2 Nilpotentlizations of time-varying linear
system

In this section we propose two new methods to
transform the time-varying linear system (4) to
the index two nilpotent time-varying linear sys-
tems. The state matrix A is a function of t ∈ R

with dimensions (n + 1)× (n + 1), and is decom-
posed into the following form:

A =
[

As
s As

0
(A0

s)
T A0

0

]
. (11)

Here, A(t) is assumed to be that Eq. (4) has a
unique solution, and there are no any other con-

straints on the n×n sub-matrix function As
s(t), on

the n×1 matrix functions As
0(t) and A0

s(t), and on
the scalar function A0

0(t).

2.1 An indefinite-metric method

We first prove the following results.

Theorem 1. Corresponding to the linear system
(4), if we consider the following variable trans-
formation

Y =
[

G−1
n 0n×1

VT G−1
n −η

]
X, (12)

where

Ġn = As
sGn, Gn(0) = In, (13)

η := exp

[
−

∫ t

0
A0

0(ξ )dξ
]
, (14)

U :=
1
η

G−1
n As

0, (15)

V :=
∫ t

0
η(ξ )GT

n (ξ )A0
s(ξ )dξ , (16)

then there exists a linear system

Ẏ(t) = N1(t)Y(t), (17)

where

N1 :=
[

UVT −U
VT UVT −VT U

]
, (18)

satisfying

trN1 = 0, N2
1 = 0, (19)

is a zero trace nilpotent matrix function with
index two.

Proof. Corresponding to the A given in Eq. (11),
let us decompose X into

X =
[

Xs

X0

]
=

⎡
⎢⎢⎢⎣

X1

...
Xn

X0

⎤
⎥⎥⎥⎦ . (20)

From Eqs. (4) and (11) by inserting the above X
we obtain

Ẋs = As
sX

s +X0As
0, (21)

Ẋ0 = (A0
s)

T Xs +A0
0X0. (22)
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The superscript T denotes the transpose, and
hence, the term (A0

s)T Xs is the inner product of
A0

s and Xs, which is more frequently written as
A0

s ·Xs.

The integral of the first equation leads to

Xs(t) = Gn(t)Xs(0)

+
∫ t

0
Gn(t)G−1

n (ξ )As
0(ξ )X0(ξ )dξ , (23)

where Gn is an n×n transformation matrix satis-
fying Eq. (13).

Substituting Eq. (23) into Eq. (22) we obtain

Ẋ0(t) = A0
0(t)X0(t)+UT

1 (t)Xs(0)

+
∫ t

0
UT

1 (t)U2(ξ )X0(ξ )dξ , (24)

where

U1 := GT
n A0

s =
1
η

V̇, (25)

U2 := G−1
n As

0 = ηU. (26)

Here, U and V were defined in Eqs. (15) and (16).

Introducing the integrating factor η as defined by
Eq. (14) and a new scalar variable given as fol-
lows:

W 0 := ηX0, (27)

Eq. (24), after multiplying both the sides by η(t)
and replacing X0(ξ ) by W 0(ξ )/η(ξ ), changes to

Ẇ 0(t) = η(t)UT
1 (t)Xs(0)

+
∫ t

0
η(t)UT

1 (t)
1

η(ξ )
U2(ξ )W 0(ξ )dξ . (28)

Integrating Eq. (28) and using Eqs. (25) and (26)
we obtain

W 0(t) = W 0(0)+VT (t)Xs(0)

+
∫ t

0
[VT (t)−VT (ξ )]U(ξ )W0(ξ )dξ . (29)

Left multiplying Eq. (29) by [UT VT U]T we ob-
tain an (n+1)-vectorial integral equation:[

UW 0

VT UW 0

]
=

[
UVT −U

VT UVT −VT U

]
{∫ t

0

[
U(ξ )W0(ξ )

VT (ξ )U(ξ )W0(ξ )

]
dξ +

[
Xs(0)

−W 0(0)

]}
.

(30)

Let N1 be defined by Eq. (18), and let

Y(t) =
[

Ys(t)
Y 0(t)

]

:=
∫ t

0

[
U(ξ )W 0(ξ )

VT (ξ )U(ξ )W0(ξ )

]
dξ +

[
Xs(0)

−W 0(0)

]
,

(31)

and then using Eq. (30) we obtain a linear equa-
tions system as that given by Eq. (17), where N1

can be proved to satisfy Eq. (19).

In terms of U2 defined by Eq. (26), Xs in Eq. (23)
can be written as

Xs(t) = Gn(t)
[

Xs(0)+
∫ t

0
U2(ξ )X0(ξ )dξ

]
.

(32)

By means of Eqs. (27) and (26) it further changes
to

Xs(t) = Gn(t)
[

Xs(0)+
∫ t

0
U(ξ )W 0(ξ )dξ

]
,

(33)

which being compared with Ys in Eq. (31) readily
leads to

Xs = GnYs. (34)

On the other hand, by differentiating Eq. (31) and
taking the second row we have

Ẏ 0 = VT UW 0. (35)

The term Ẏ 0 as shown in Eq. (17) with N1 defined
by Eq. (18) is equal to

Ẏ 0 = VT UVT Ys −VT UY 0. (36)

By equating Eqs. (35) and (36) and using Eq. (27)
it follows that

X0 =
W 0

η
=

1
η

[VT Ys −Y 0]. (37)

Thus, from Eqs. (34) and (37) we obtain the rela-
tion between X and Y, given as follows:[

Xs

X0

]
=

[
Gn 0n×1

1
η VT −1

η

][
Ys

Y 0

]
, (38)
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or the inverse relation given as follows:[
Ys

Y 0

]
=

[
G−1

n 0n×1

VT G−1
n −η

][
Xs

X0

]
. (39)

This completes the proof of this theorem. �

Theorem 2. N1 defined by Eq. (17) satisfies

NT
1 h+hN1 =

[
VUT +UVT −U

−UT 0

]
, (40)

where

h :=
[

In −VVT V
VT −1

]
(41)

is an indefinite matrix.

Proof. Substituting Eq. (18) for N1 and Eq. (41)
for h into Eq. (40) and through some calcula-
tions we can prove Eq. (40). For any nonzero
Y = (Ys,Y0) ∈ Rn+1 we have

[
(Ys)T Y 0

][
In −VVT V

VT −1

][
Ys

Y 0

]
= ‖Ys‖2 − (VT Ys −Y 0)2, (42)

where ‖Ys‖2 := (Ys)T Ys denotes the squared
norm of Ys. Since the right-hand side may be pos-
itive, zero or negative, h is indefinite. �
Theorem 3. The fundamental matrix Gn+1 for
Eq. (7) has the following representation:

Gn+1 =
[

Gn 0n×1
1
η VT −1

η

]
Hg, (43)

where H ∈ SL(n+1,R) is the fundamental matrix
for Eq. (17), satisfying

Ḣ(t) = N1(t)H(t), H(0) = In+1, (44)

and

g =
[

In 0n×1

01×n −1

]
(45)

is the metric tensor of the (n + 1)-dimensional
Minkowski space.

Proof. With H satisfying Eq. (44), the solution of
Eq. (17) can be expressed by

Y(t) = H(t)Y(0). (46)

Substituting it into Eq. (38) and using Y(0) =
gX(0) resulting from Eq. (12) by inserting t = 0,
we obtain

X(t) =
[

Gn 0n×1
1
η VT −1

η

]
HgX(0), (47)

which upon comparing with the solution of
Eq. (4), i.e., X(t) = Gn+1(t)X(0) with Gn+1(t)
satisfying Eq. (7), we obtain Eq. (43). �

Theorem 4. For system (17) if V̇ = U holds, then

NT
1 h+hN1 + ḣ = 0, (48)

HT hH = g, (49)

and

YT (t)h(t)Y(t)= YT (0)gY(0) (50)

is a quadratic invariant. Similarly, under the same
condition,

XT (t)ηηηa(t)X(t) = XT (0)gX(0) (51)

is a quadratic invariant of system (4), where

ηηηa =
[

G−T
n G−1

n 0n×1

01×n −η2

]
. (52)

At the same time, we have

ATηηηa +ηηηaA+η̇ηηa = 0, (53)

GT
n+1ηηηaGn+1 = g. (54)

Proof. Taking the time derivative of Eq. (41) and
using the condition of V̇ = U we obtain

ḣ =
[ −UVT −VUT U

UT 0

]
, (55)

which combined with Eq. (40) leads to Eq. (48).
Taking the time derivative of HT hH, then substi-
tuting Eq. (44) for Ḣ and using Eq. (48) we obtain

d
dt

[HT hH] = 0n+1,

which indicates that HT hH is a constant matrix.
At t = 0 we have HT (0)h(0)H(0) = g, and thus
Eq. (49) is proved.
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Substituting Eq. (46) for Y into the quadratic form
YT hY and using Eq. (49) and g = h(0) we can
prove that YT hY = YT (0)gY(0) is a quadratic in-
variant of system (17).

Substituting Eq. (12) for Y into Eq. (50) we can
obtain Eq. (51). Taking the time derivative of
Eq. (51) and inserting Eq. (4) for Ẋ, we can ob-
tain Eq. (53). Substituting Eq. (43) for Gn+1 into
the left-hand side of Eq. (54) and using Eq. (49)
and g2 = In+1 we can obtain the right-hand side
of Eq. (54). �
In Table 1 we compare the above two X and Y
systems under the condition of V̇ = U, where the
Lie algebras, Lie groups and the invariants are
compared. It is clear that these systems are dif-
ferent representations of the same linear systems
in the Minkowskian type space. Now, we apply
the above theorem to the linear Lorentzian system
[Liu (2002)] as a direct result.

Corollary 1. Eq. (4) is a linear Lorentzian system
if

AT g+gA = 0. (56)

For this system we have a quadratic invariant

XT (t)gX(t)= XT (0)gX(0), (57)

and Gn+1 satisfies

GT
n+1gGn+1 = g. (58)

Proof. It is easy to check that the general form for
such an A satisfying Eq. (56) is

A =
[

As
s As

0
(As

0)
T 0

]
, (59)

where As
s is a skew-symmetric matrix function

with dimensions n× n. Therefore, by Eq. (13)
we have Gn = R, where R is an orthogonal ma-
trix satisfying RT R = In. On the other hand, by
Eq. (14) we have η = 1 because of A0

0 = 0. Ac-
cording to these two results, from Eq. (52) we ob-
tain ηηηa = g. Inserting it into Eqs. (51) and (54)
we can prove Eqs. (57) and (58) immediately. �
From this corollary we can see that the results
presented in Theorem 4 are the extensions of the
famous linear Lorentzian system. This extended

system has the general form in Eq. (4) but with
the following constraint on its state matrix:

As
0 = η2GnGT

n A0
s , (60)

which is obtained by inserting Eqs. (15) and (16)
into V̇ = U.

2.2 A positive-definite metric method

In this section we will nilpotentlize the time-
varying linear system (4) by a different method.
We next prove the following results.

Theorem 5. Corresponding to the linear system
(4), if we consider the following variable trans-
formation

Y =
[

G−1
n 0n×1

−VT G−1
n η

]
X, (61)

then there exists a linear system

Ẏ(t) = N2(t)Y(t), (62)

where

N2 :=
[

UVT U
−VT UVT −VT U

]
, (63)

satisfying

trN2 = 0, N2
2 = 0, (64)

is a zero trace nilpotent matrix function with
index two.

Proof. In addition to Eq. (30), we can left multi-
ply Eq. (29) by [UT −VT U]T to obtain another
(n+1)-vectorial integral equation:[

UW 0

−VT UW 0

]
=

[
UVT U

−VT UVT −VT U

]
{∫ t

0

[
U(ξ )W0(ξ )

−VT (ξ )U(ξ )W0(ξ )

]
dξ +

[
Xs(0)
W 0(0)

]}
.

(65)

Let N2 be defined by Eq. (63), and let

Y(t) =
[

Ys(t)
Y 0(t)

]

:=
∫ t

0

[
U(ξ )W 0(ξ )

−VT (ξ )U(ξ )W0(ξ )

]
dξ +

[
Xs(0)
W 0(0)

]
,

(66)
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Table 1: Under the condition of V̇ = U the comparisons of three linear systems in the Minkowskian type
space

Variables Equations Metrics Lie Algebras Lie Groups Invariant Forms
X Ẋ = AX ηηηa ATηηηa +ηηηaA+η̇ηη a = 0 GT

n+1ηηηaGn+1 = g XTηηηaX

Y Ẏ = N1Y h
NT

1 h+hN1 + ḣ = 0
trN1 = 0, N2

1 = 0
HT hH = g YT hY

Z Ż = BZ g
BT g+gB = 0
trB = 0

GT
n+1gGn+1 = g ZT gZ

and then from Eq. (65) we obtain a linear equa-
tions system as that given by Eq. (62), where N2

can be proved to satisfy Eq. (64).

The proof of

Xs = GnYs

is similar to that given in Theorem 1. From
Eq. (66) by differentiating and taking the second
row we have

Ẏ 0 = −VT UW 0.

The term Ẏ 0 as shown in Eq. (62) with N2 defined
by Eq. (63) is equal to

Ẏ 0 = −VT UVT Ys −VT UY0.

From the above two equations and Eq. (27) one
has

X0 =
W 0

η
=

1
η

[VT Ys +Y 0].

Then, we obtain the relation between X and Y:[
Xs

X0

]
=

[
Gn 0n×1

1
η VT 1

η

][
Ys

Y 0

]
, (67)

or the inverse relation:[
Ys

Y 0

]
=

[
G−1

n 0n×1

−VT G−1
n η

][
Xs

X0

]
. (68)

This completes the proof of this theorem. �

Theorem 6. N2 defined by Eq. (62) satisfies

NT
2 k+kN2 =

[
VUT +UVT U

UT 0

]
, (69)

where

k :=
[

In +VVT V
VT 1

]
(70)

is a positive definite matrix.

Proof. Substituting Eq. (63) for N2 and Eq. (70)
for k into the left-hand side of Eq. (69) and
through some calculations we obtain the right-
hand side of Eq. (69). The positive definiteness
of k can be proved as follows. For any nonzero
Y = (Ys,Y0) ∈ R

n+1 we have

[
(Ys)T Y 0

][
In +VVT V

VT 1

][
Ys

Y0

]
= ‖Ys‖2 +(VT Ys +Y 0)2.

Since the right-hand side is positive, by definition
k is positive definite. �

Theorem 7. The fundamental matrix Gn+1 for
Eq. (7) has the following representation:

Gn+1 =
[

Gn 0n×1
1
η VT 1

η

]
K, (71)

where K ∈ SL(n+1,R) is the fundamental matrix
for Eq. (62), satisfying

K̇(t) = N2(t)K(t), K(0) = In+1. (72)

Proof. With K satisfying Eq. (72), the solution of
Eq. (62) can be expressed by

Y(t) = K(t)Y(0). (73)

Substituting it into Eq. (67) and using Y(0) =
X(0) we obtain

X(t) =
[

Gn 0n×1
1
η VT 1

η

]
KX(0), (74)
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which when comparing with the solution of
Eq. (4), i.e., X(t) = Gn+1(t)X(0) with Gn+1(t)
satisfying Eq. (7), we obtain Eq. (71). Since
trN2 = 0 and det K(0) = 1, by the Abel for-
mula we have det K(t) = 1 for all t, that is,
K ∈ SL(n+1,R). �

Theorem 8. For system (62) if V̇ = −U holds,
then

NT
2 k+kN2 + k̇ = 0, (75)

KT kK = In+1, (76)

and

YT (t)k(t)Y(t)= YT (0)In+1Y(0) (77)

is a quadratic invariant. Similarly, under the same
condition,

XT (t)ηηηb(t)X(t) = XT (0)In+1X(0) (78)

is a quadratic invariant of system (4), where

ηηηb =
[

G−T
n G−1

n 0n×1

01×n η2

]
. (79)

At the same time, we have

ATηηηb +ηηηbA+η̇ηηb = 0, (80)

GT
n+1ηηηbGn+1 = In+1. (81)

Proof. Taking the time derivative of Eq. (70) and
using the condition of V̇ = −U we obtain

k̇ =
[ −UVT −VUT −U

−UT 0

]
. (82)

Upon combining it with Eq. (69) we obtain
Eq. (75). Taking the time derivative of KT kK,
then substituting Eq. (72) for K̇ and using Eq. (75)
we obtain

d
dt

[KT kK] = 0n+1.

Due to KT kK = In+1 at t = 0, Eq. (76) is proved.

Substituting Eq. (73) for Y into the quadratic form
YT kY and using Eq. (76) and k(0) = In+1 we can
prove that YT kY = YT (0)In+1Y(0) is a quadratic
invariant of system (62).

Substituting Eq. (61) for Y into Eq. (77) we can
obtain Eq. (78). Taking the time derivative of
Eq. (78) and inserting Eq. (4) for Ẋ, we can ob-
tain Eq. (80). Substituting Eq. (71) for Gn+1 into
the left-hand side of Eq. (54) and using Eq. (76)
we can obtain the right-hand side of Eq. (81). �
In Table 2 we compare the above two X and Y
systems under the condition of V̇ = −U, where
the Lie algebras, Lie groups and the invariants
are compared. It is clear that these systems
are different representations of the same linear
systems in the Euclidean type space. We apply
the above theorem to the linear skew system as a
direct result.

Corollary 2. Eq. (4) is a linear skew system if

AT In+1 + In+1A = 0. (83)

For this system we have a quadratic invariant:

XT (t)In+1X(t) = XT (0)In+1X(0), (84)

and Gn+1 satisfies the orthogonal condition:

GT
n+1In+1Gn+1 = In+1. (85)

Proof. It is easy to check that the general form for
such an A satisfying Eq. (83) is

A =
[

As
s As

0
−(As

0)
T 0

]
, (86)

where As
s is a skew-symmetric matrix function

with dimensions n× n. Therefore, by Eq. (13)
we have Gn = R, where R is an orthogonal ma-
trix satisfying RT R = In. On the other hand, by
Eq. (14) we have η = 1 because of A0

0 = 0. Ac-
cording to these two results, from Eq. (79) we ob-
tain ηηηb = In+1. Inserting it into Eqs. (78) and (81)
one is easily proved Eqs. (84) and (85). �
From this corollary we can see that the results pre-
sented in Theorem 8 are the extensions of the fa-
mous linear skew system. This extended system
endows the general form in Eq. (4) with the fol-
lowing constraint:

As
0 = −η2GnGT

n A0
s , (87)

which is obtained by inserting Eqs. (15) and (16)
into V̇ = −U.
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Table 2: Under the condition of V̇ =−U the comparisons of three linear systems in the Euclidean type space

Variables Equations Metrics Lie Algebras Lie Groups Invariant Forms
X Ẋ = AX ηηηb ATηηηb +ηηηaA+η̇ηηb = 0 GT

n+1ηηηbGn+1 = In+1 XTηηηbX

Y Ẏ = N2Y k NT
2 k+kN2 + k̇ = 0

trN2 = 0, N2
2 = 0

KT kK = In+1 YT kY

Z Ż = BZ In+1
BT In+1 + In+1B = 0
trB = 0

GT
n+1In+1Gn+1 = In+1 ZT In+1Z

3 Examples of quadratic invariants

In this section we are going to apply Theorems
4 and 8 to derive the sufficient conditions for the
existence of quadratic invariants for some lower
order linear systems, and the quadratic invariants
are written out explicitly. Also, we demonstrate
the use of Theorems 3 and 7 by an example. Of
course, Theorems 4 and 8 are applicable to any
linear system when the corresponding conditions
are satisfied.

3.1 Second-order system

Let us first consider the second-order linear dif-
ferential equations system with

A =
[

a11 a12

a21 a22

]
. (88)

For this case we have

G(t) = exp

[∫ t

0
a11(ξ )dξ

]
, (89)

η(t) = exp

[
−

∫ t

0
a22(ξ )dξ

]
, (90)

such that from Eqs. (60) and (87) the conditions
for the existence of quadratic invariants are

a12 = η2G2a21 (91)

= exp

(
2

∫ t

0
[a11(ξ )−a22(ξ )]dξ

)
a21,

a12 = −η2G2a21 (92)

= −exp

(
2

∫ t

0
[a11(ξ )−a22(ξ )]dξ

)
a21.

Under condition (91) the quadratic invariant is

G−2(t)x2
1(t)−η2(t)x2

2(t) = x2
1(0)−x2

2(0). (93)

To prove it, we write

d
dt

[G−2x2
1 −η2x2

2]

= −2G−3Ġx2
1 +2G−2x1ẋ1 −2ηη̇x2

2 −2η2x2ẋ2

= −2a11G−2x2
1 +2G−2x1(a11x1 +a12x2)

+2a22η2x2
2 −2η2x2(a21x1 +a22x2)

= 2a12G−2x1x2 −2a21η2x2x1

= 2a21η2G2G−2x1x2 −2a21η2x2x1

= 0,

where ẋ1 = a11x1 +a12x2, ẋ2 = a21x1 +a22x2, and
Eq. (91) were used.

Similarly, under condition (92) we can prove the
following quadratic form is an invariant:

G−2(t)x2
1(t)+η2(t)x2

2(t) = x2
1(0)+x2

2(0). (94)

Under a special condition of a11 = a22, we have
ηG = 1, and thus the condition for the existence
of quadratic invariant is a12 = a21 or a12 = −a21.
For example, for

A =
[ 1

2 (cost −esin t) sin2 t
sin2 t 1

2(cos t −esin t)

]
, (95)

the invariant is

η2(t)[x2
1(t)−x2

2(t)] = x2
1(0)−x2

2(0), (96)

where

η(t) = exp

[
−1

2

∫ t

0
(cosξ −esin ξ )dξ

]
. (97)

Similarly, for

A =
[ 1

2 (cost −esin t) sin2 t
−sin2 t 1

2(cos t −esin t)

]
, (98)
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the invariant is

η2(t)[x2
1(t)+x2

2(t)] = x2
1(0)+x2

2(0). (99)

From these examples it can be seen that Theorems
4 and 8 can help us to judge which system pos-
sesses a quadratic invariant and to derive that in-
variant.

3.2 Third-order system

Then, let us consider the third-order linear differ-
ential equation:

d3x
dt3 −A0

0(t)
d2x
dt2 −A0

2(t)
dx
dt

−A0
1(t)x = 0. (100)

Let x1 := x, x2 := ẋ and x0 := ẍ, and then we ob-
tain a three-dimensional time-varying linear sys-
tem (4) with the state matrix being

A =

⎡
⎣ 0 1 0

0 0 1
A0

1 A0
2 A0

0

⎤
⎦ . (101)

For this case

G2 =
[

1 t
0 1

]
, η(t) = exp

[
−

∫ t

0
A0

0(ξ )dξ
]
,

(102)

such that we have

V̇ = ηGT
2

[
A0

1
A0

2

]
= η

[
A0

1
tA0

1 +A0
2

]
,

U =
1
η

G−1
2 (t)

[
0
1

]
=

1
η

[ −t
1

]
.

(103)

Under the condition of V̇ = U, i.e.,

A0
1 = − t

η2 , A0
2 =

1
η2 − tA0

1 =
1+ t2

η2 , (104)

the system has a quadratic invariant:

x2
1(t)−2tx1(t)x2(t)+(1+ t2)x2

2(t)−η2(t)x2
0(t)

= x2
1(0)+x2

2(0)−x2
0(0). (105)

Similarly, under the condition of V̇ = −U, i.e.,

A0
1 =

t
η2 , A0

2 = − 1
η2 − tA0

1 = −1+ t2

η2 , (106)

the system has a quadratic invariant:

x2
1(t)−2tx1(t)x2(t)+(1+ t2)x2

2(t)+η2(t)x2
0(t)

= x2
1(0)+x2

2(0)+x2
0(0). (107)

3.3 Fourth-order system

We use the following example to demonstrate the
use of Theorems 3 and 7, which is the fourth-
order linear differential equation:

d4x
dt4 −A0

0(t)
d3x
dt3 −A0

3(t)
d2x
dt2 −A0

2(t)
dx
dt

−A0
1(t)x

= 0. (108)

Let x1 := x, x2 := ẋ, x3 := ẍ and x0 := d3x/dt3, and
then we obtain a four-dimensional time-varying
linear system (4) with the state matrix being

A =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1

A0
1 A0

2 A0
3 A0

0

⎤
⎥⎥⎦ . (109)

For this case it is easy to write

G3 =

⎡
⎣ 1 t t2

2
0 1 t
0 0 1

⎤
⎦ , (110)

which is a fundamental matrix corresponding to
the submatrix As

s in Eq. (109),

As
s =

⎡
⎣ 0 1 0

0 0 1
0 0 0

⎤
⎦ . (111)

By Theorem 3, we have

G3 =
[

G2 02×1
1
η VT −1

η

]
Hg, (112)

where G2 is defined by Eq. (102) and H is the
fundamental matrix for Eq. (17), satisfying

Ḣ = N1H, H(0) = I3, (113)

and

g =
[

I2 02×1

01×2 −1

]
. (114)

In view of Eq. (111) we have η = 1, As
0 = (0,1)T ,

A0
s = (0,0)T , and thus by Eqs. (15) and (16) we

obtain

U =
[ −t

1

]
, V =

[
0
0

]
. (115)
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These make N1 having a simple form:

N1 =

⎡
⎣ 0 0 t

0 0 −1
0 0 0

⎤
⎦ . (116)

Correspondingly, solving Eq. (113) we van get

H =

⎡
⎣ 1 0 t2

2
0 1 −t
0 0 1

⎤
⎦ . (117)

Inserting Eqs. (117) and (114) into Eq. (112) we
have

G3 =⎡
⎣ 1 t 0

0 1 0
0 0 −1

⎤
⎦

⎡
⎣ 1 0 t2

2
0 1 −t
0 0 1

⎤
⎦

⎡
⎣ 1 0 0

0 1 0
0 0 −1

⎤
⎦ ,

(118)

which recovers to Eq. (110) again.

Similarly, by Theorem 7 we have

G3 =
[

G2 02×1
1
η VT 1

η

]
K, (119)

where

K̇ = N2K, K(0) = I3, (120)

N2 =

⎡
⎣ 0 0 −t

0 0 1
0 0 0

⎤
⎦ . (121)

Correspondingly, solving Eq. (120) we can get

K =

⎡
⎣ 1 0 −t2

2
0 1 t
0 0 1

⎤
⎦ . (122)

Inserting Eq. (122) into Eq. (119) we have

G3 =

⎡
⎣ 1 t 0

0 1 0
0 0 1

⎤
⎦

⎡
⎣ 1 0 −t2

2
0 1 t
0 0 1

⎤
⎦ , (123)

which recovers to Eq. (110) again.

The above derivations indicate that Theorems 3
and 7 can help us to construct the higher-order

fundamental matrix from the lower-order funda-
mental matrix and other fundamental matrices
solved from the nilpotent systems.

Now, we turn our attention to the quadratic invari-
ants of the present example. From Eq. (110) it
follows that

G−1
3 =

⎡
⎣ 1 −t t2

2
0 1 −t
0 0 1

⎤
⎦ , (124)

such that we have

V̇ = ηGT
3

⎡
⎣ A0

1
A0

2
A0

3

⎤
⎦ = η

⎡
⎣ A0

1
tA0

1 +A0
2

t2

2 A0
1 + tA0

2 +A0
3

⎤
⎦ ,

U =
1
η

G−1
3 (t)

⎡
⎣ 0

0
1

⎤
⎦ =

1
η

⎡
⎣ t2

2
−t
1

⎤
⎦ .

(125)

Under the condition of V̇ = U, i.e.,

A0
1 =

t2

2η2 ,

A0
2 = − t

η2
− tA0

1 = −2t + t3

2η2
,

A0
3 =

1
η2 − tA0

2 −
t2

2
A0

1 =
(2+ t2)2

4η2 ,

(126)

the system has a quadratic invariant:

x2
1(t)−2tx1(t)x2(t)+(1+ t2)x2

2(t)+ t2x1(t)x3(t)

− (2t + t3)x2(t)x3(t)+
(

1+
t2

2

)2

x2
3(t)

−η2(t)x2
0(t) = x2

1(0)+x2
2(0)+x2

3(0)−x2
0(0).

(127)

Similarly, under the condition of V̇ = −U, i.e.,

A0
1 = − t2

2η2 ,

A0
2 =

t
η2 − tA0

1 =
2t + t3

2η2 ,

A0
3 = − 1

η2 − tA0
2 −

t2

2
A0

1 = −(2+ t2)2

4η2 ,

(128)



168 Copyright c© 2007 Tech Science Press CMES, vol.20, no.3, pp.157-175, 2007

the system has a quadratic invariant:

x2
1(t)−2tx1(t)x2(t)+(1+ t2)x2

2(t)+ t2x1(t)x3(t)

− (2t + t3)x2(t)x3(t)+
(

1+
t2

2

)2

x2
3(t)

+η2(t)x2
0(t) = x2

1(0)+x2
2(0)+x2

3(0)+x2
0(0).

(129)

4 A new Lie-group solver

Before utilizing the property of nilpotent matrix to
develop numerical methods for time-varying lin-
ear system, we give a more effective and unique
representation of systems (17) and (62) and then
system (4).

Theorem 9. The nilpotent system (17) can be
transformed to a new system:

Ż(t) = B(t)Z(t), (130)

where

B :=
[

0n U
V̇T 0

]
, (131)

Z :=
[

In 0n×1

VT −1

]
Y. (132)

Proof. N1 as defined by Eq. (18) is a nilpotent
matrix with index two, i.e., N2

1 = 0. Accordingly,
we can transform it to a upper-triangular matrix
by considering a similar transformation Q−1N1Q,
where

Q = Q−1 =
[

In 0n×1

VT −1

]
. (133)

Through some calculations we obtain

Q−1N1Q =
[

0n U
01×n 0

]
. (134)

Now considering the variable transformation
(132) and using Eq. (17), we can derive

Ż = [Q−1N1Q−Q−1Q̇]Z.

By means of Eqs. (134) and (133) we can obtain
Eq. (130) with its B given by Eq. (131). �
A similar result holds for system (62).

Theorem 10. The nilpotent system (62) can also
be transformed to Eq. (130) with B still given by
Eq. (131) but with

Z :=
[

In 0n×1

VT 1

]
Y. (135)

Proof. N2 as defined by Eq. (63) is a nilpotent
matrix with index two, i.e., N2

2 = 0. Similarly, we
can transform it to a upper-triangular matrix by

Q−1N2Q =
[

0n U
01×n 0

]
, (136)

where

Q =
[

In 0n×1

−VT 1

]
, Q−1 =

[
In 0n×1

VT 1

]
.

(137)

Now considering the variable transformation
(135) and using Eq. (62), we can get

Ż = [Q−1N2Q−Q−1Q̇]Z.

By means of Eqs. (136) and (137) we obtain
Eq. (130) again with its B still given by Eq. (131).
�
System (130) is the simplest representation of the
time-varying linear system (4), of which both the
spatial part Bs

s and the scalar part B0
0 vanish. So

in addition to these two representations (43) and
(71) we may obtain a better representation of the
fundamental matrix for Eq. (7) in terms of the
fundamental matrix for Eq. (130) as follows.

Theorem 11. The fundamental matrix Gn+1 for
Eq. (7) has the following representation:

Gn+1 =
[

Gn 0n×1

01×n
1
η

]
Mn+1, (138)

where Mn+1 ∈ SL(n + 1,R) is the fundamental
matrix for Eq. (130), satisfying

Ṁn+1(t)= B(t)Mn+1(t), Mn+1(0)= In+1. (139)

Proof. We first note that either by Eqs. (16) and
(39) or by Eqs. (135) and (68) we obtain the same
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Ẋ = AX

Y =

[
G−1

n 0n×1

VTG−1
n −η

]
X � Ẏ = N1Y Z =

[
In 0n×1

VT −1

]
Y

�

Y =

[
G−1

n 0n×1

−VTG−1
n η

]
X � Ẏ = N2Y Z =

[
In 0n×1

VT 1

]
Y

�

Z =

[
G−1

n 0n×1

01×n η

]
X � Ż = BZ

Figure 1: A summary of the transformations for the time-varying linear systems.

transformation from X to Z as shown in Fig. 1, or
from Z to X as given by

X =
[

Gn 0n×1

01×n
1
η

]
Z. (140)

With Mn+1 satisfying Eq. (139), the solution of
Eq. (130) can be expressed by

Z(t) = Mn+1(t)Z(0). (141)

Substituting it into Eq. (140) and using Z(0) =
X(0) we obtain

X(t) =
[

Gn 0n×1

01×n
1
η

]
Mn+1X(0), (142)

which upon comparing with the solution of
Eq. (4), i.e., X(t) = Gn+1(t)X(0) with Gn+1(t)
satisfying Eq. (7), we obtain Eq. (138). Since
trB = 0 and det Mn+1(0) = 1, by the Abel for-
mula we have det Mn+1(t) = 1 for all t ∈ R, that
is, Mn+1 ∈ SL(n+1,R). �
In Fig. 1 we summarize the three transformations
from system (4) to system (130). Substituting
Eq. (140) into Eq. (4) we can get

Ż = [Q−1AQ−Q−1Q̇]Z.

where

Q :=
[

Gn 0n×1

01×n
1
η

]
, Q−1 :=

[
G−1

n 0n×1

01×n η

]
.

Then through some derivations and using
Eqs. (11), (13) and (14) we can also derive
system (130). From Theorems 9 and 10 we can
derive the following results.

Corollary 3. For system (130) if the condition
V̇ = U holds, then there exists a quadratic invari-
ant

ZT (t)gZ(t) = ZT (0)gZ(0) (143)

Proof. Under the condition of V̇ = U, the
system matrix B in Eq. (131) satisfies Eq. (56).
Therefore, the result in Eq. (143) follows directly
from Corollary 1. �

In Table 1 we compare the above system under the
same condition of V̇ = U with that in Theorem 4,
where the Lie algebras, Lie groups and the invari-
ants are compared. It is clear that those systems
are different representations of the linear sys-
tems in the Minkowskian type space [Liu (2001)].

Corollary 4. For system (130) if the condition
V̇ = −U holds, then there exists a quadratic in-
variant

ZT (t)In+1Z(t) = ZT (0)In+1Z(0) (144)

Proof. Under the condition of V̇ = −U, the
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system matrix B in Eq. (131) satisfies Eq. (83).
Therefore, the result in Eq. (144) follows directly
from Corollary 2. �
In Table 2 we compare the above system under
the same condition of V̇ = −U with that in The-
orem 8, where the Lie algebras, Lie groups and
the invariants are compared. It is clear that those
systems are different representations of the linear
systems in the Euclidean type space.

The above two Corollaries 3 and 4 indicate
that when the linear system (4) possesses the
quadratic invariants, the simplest forms are rep-
resented by the Z-quadratics in Eqs. (143) and
(144). The first quadratic invariant is know as the
Minkowskian separation, which is further clas-
sified into three types: space-like if ZT gZ > 0,
light-like if ZT gZ = 0, and time-like if ZT gZ < 0.
Refer Liu (2001). Conversely, for the second in-
variant in Eq. (144), there is only one type of
ZT In+1Z > 0, which describes an invariant set
on the n-dimensional sphere S

n with a radius√
ZT (0)In+1Z(0) determinated by the initial con-

dition.

5 Numerical methods

In this section, we will derive numerical methods
for systems (17) and (62) by utilizing the nilpotent
matrix property. Here we will use N to denote N1

or N2. By means of the Peano-Baker formula the
state transition matrix ΦΦΦ(t, t0) for system (17) or
(62), which maps the state vector Y(t0) at time t0
to the state vector Y(t) at time t, can be expressed
as:

ΦΦΦ(t, t0) = In+1 +
∫ t

t0
N(τ1)dτ1

+
∫ t

t0

∫ τ1

t0
N(τ1)N(τ2)dτ2dτ1 + · · ·

+
∫ t

t0

∫ τ1

t0
· · ·

∫ τn−1

t0
N(τ1)N(τ2) · · ·N(τn)

· dτn · · ·dτ2dτ1 + · · · (145)

For developing a numerical scheme we search a
state transition matrix from state Y� at time t� to
state Y�+1 at time t�+1 with Δt = t�+1 − t� small
enough. Upon letting t0 to be t� and t to be t�+1 in
the above integrals, then approximating of which

by the trapezoidal rule and taking advantage of
N2(t) = 0 for all t ∈ R, we obtain

ΦΦΦ(t�+1, t�) = In+1 +
Δt
2

[N(t�)+N(t�+1)]

+
(Δt)2

4
N(t�+1)N(t�). (146)

Substituting it into

Y�+1 = ΦΦΦ(t�+1, t�)Y�, (147)

results in a numerical scheme for systems (17) and
(62):

Y�+1 =
(

In+1 +
Δt
2

[N(t�)+N(t�+1)]

+
(Δt)2

4
N(t�+1)N(t�)

)
Y�. (148)

Then, by means of Eq. (38) or (67) we can calcu-
late X forward step-by-step.

It should be emphasized that the matrix result-
ing from the Peano-Baker formula is not equal to
exp

∫ t
t0 N(τ)dτ , and is not guaranteed to be an ele-

ment of SL(n + 1,R) even N is an element of the
Lie algebra sl(n + 1,R), i.e., trN = 0. In order to
obtain this type numerical scheme which preserv-
ing SL(n+1,R), let us return to systems (17) and
(62). The resulting N makes us easily to derive
the so-called Lie-group scheme as follows:

Y�+1 = exp[ΔtN(�)]Y� = [In+1 +ΔtN(�)]Y�,

(149)

where N(�) = N(t� + Δt/2). The higher order
terms disappear due to Nk = 0, k ≥ 2. Obviously,
In+1 +ΔtN(�) ∈ SL(n+1,R).

The above method can be also applied to the cal-
culations of H in Eq. (44) or K in Eq. (72), which
is denoted by M for unifying the notations. In
Eq. (43) or Eq. (71) we have expressed Gn+1 in
terms of Gn and M, the latter of which can be cal-
culated forward step-by-step with

Mn+1(�+1) = [In+1 +ΔtN(�)]Mn+1(�). (150)

However, we need to know Gn in advance. This
can be achieved by using Eq. (43) or Eq. (71)
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again but with n replaced by n− 1. We can re-
peat this process by decreasing n until Gn−1 was
obtained in a closed-form for an n.

Corresponding to the nilpotent type algorithms
(148) and (149), we can also employ Theorems
9, 10 and 11 to develop the so-called Lie-group
solver. In Eq. (138) we have expressed Gn+1 in
terms of Gn and Mn+1, the latter of which can be
calculated by

Mn+1(�+1) = exp[ΔtB(�)]Mn+1(�)

=

⎡
⎣ M1 M2

M3 M4

⎤
⎦Mn+1(�), (151)

where

M1 = In +
cosh

(
Δt
√

U(�)·V̇(�)
)
−1

U(�)·V̇(�)
U(�)V̇T (�)

M2 =
sinh

(
Δt
√

U(�)·V̇(�)
)

√
U(�)·V̇(�)

U(�)

M3 =
sinh

(
Δt
√

U(�)·V̇(�)
)

√
U(�)·V̇(�)

V̇T (�)

M4 = cosh

(
Δt

√
U(�) · V̇(�)

)
.

In the above, if U(�) · V̇(�) < 0, then cosh and
sinh are replaced by cos and sin and the term√

U(�) · V̇(�) is replaced by
√

−U(�) · V̇(�). If
we replace the above Mn+1 by Z we have a
numerical method to calculate the solution of
Eq. (130). Then, with the aid of Eq. (140) we
have a numerical method to calculate the solution
of Eq. (4). On the other hand, the combination of
Eqs. (151) and (138) led to a new Lie-group solver
to calcualte the linear group Gn+1.

6 Numerical examples

6.1 Example 1

We first consider a definite example of

d3x
dt3 +

dx
dt

+
2

et +2

(
x+

d2x
dt2

)
= 0, (152)

whose solution is

x(t) =
(

ẋ(0)+
1
3
[x(0)+ ẍ(0)]

)
sint

+
(

1
3

x(0)− 2
3

ẍ(0)
)

cost

+
1
3
[x(0)+ ẍ(0)](1+e−t).

(153)

We apply schemes (148) and (149) to calculate Y
and Eq. (38) to calculate X. The numerical errors
in terms of the differences of numerical solutions
to closed-form solution for x are shown in Fig. 2.
Here we fix the time stepsize to be Δt = 0.01 sec
in all calculations. It can be seen that scheme
(149) gives better numerical result than scheme
(148). Under the same condition we also apply
scheme (151) to this problem. After Z is calcu-
lated, we use Eq. (140) to calculate X. It can be
seen that scheme (151) gives better numerical re-
sult than both schemes (149) and (148).
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Figure 2: For Example 1 we comparing the nu-
merical errors by schemes (148), (149) and (151).

6.2 Example 2

Then, let us consider a third-order linear differen-
tial equation:

d3x
dt3 +

1
1+ t

d2x
dt2 − 1+ t2

(1+ t)2

dx
dt

− t
(1+ t)2 x = 0.
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(154)

This equation has a quadratic invariant:

x2
1(t)−2tx1(t)x2(t)+(1+ t2)x2

2(t)+(1+ t)2x2
0(t)

= x2
1(0)+x2

2(0)+x2
0(0). (155)

We apply scheme (149) to calculate Y and then
Eq. (38) to calculate X. Starting from an initial
point (x1(0),x2(0),x0(0)) = (1,1,1) we plot the
time histories of (x1(t),x2(t),x0(t)) in Fig. 3(a).
The numerical error of invariant in terms of

Error := |x2
1(t)−2tx1(t)x2(t)+(1+ t2)x2

2(t)

+(1+ t)2x2
0(t)− [x2

1(0)+x2
2(0)+x2

0(0)]| (156)

is shown in Fig. 3(b). It can be seen that scheme
(149) implies a good persistence of the invariant.
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Figure 3: For Example 2: (a) displaying the time
histories of solutions, and (b) comparing the nu-
merical errors of invariant by schemes (149) and
(151).

When we apply scheme (151) on this problem,
it is surprisingly that this scheme is very good
to retain the invariant with the error smaller than
10−13.

6.3 Example 3

The following example

Ġ3(t) =

⎡
⎣ 0 −ω3(t) ω2(t)

ω3(t) 0 −ω1(t)
−ω2(t) ω1(t) 0

⎤
⎦G3(t),

G3(0) = I3

(157)

is of SO(3) flow equation [Liu (2006a)].

For this example, it is immediately to obtain η = 1
and

G2(t) =
[

cosω3(t) −sinω3(t)
sinω3(t) cosω3(t)

]
, (158)

where

ω3(t) =
∫ t

0
ω3(ξ )dξ . (159)

Therefore, we have

U =
[

ω2 cosω3 −ω1 sinω3

−ω2 sinω3 −ω1 cosω3

]
, V̇ = −U,

(160)

and B is read as

B =

⎡
⎣ 0 0 M5

0 0 M6
M7 M8 0

⎤
⎦ , (161)

where

M5 = ω2 cosω3 −ω1 sinω3

M6 = −ω2 sinω3 −ω1 cosω3

M7 = −ω2 cosω3 +ω1 sinω3

M8 = ω2 sinω3 +ω1 cosω3.

Now, we can apply scheme (151) to calculate
G3. For definite we consider ω3 = Ω−ω , ω2 =
−sinΩt and ω1 = cosΩt. For this case the closed-
form solution of G3 has been derived by Liu
(2006a).

For this SO(3) flow, it is utmost important that the
numerical method can retain the orthogonality of
G3, that is, GT

3 G3 = I3. The error of orthogonal-
ity is defined as ‖GT

3 G3 − I3‖ with G3 calculated
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by numerical method. Under the parameters of
ω = 2 and Ω = 3, the numerical error by using
the numerical scheme (151) is shown in Fig. 4(a),
where Δt = 0.01 sec was used. It can be seen that
even up to a very large rotation the error is still
smaller than 2×10−13. A highly accurate result
is obtained by this new Lie-group solver.
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Figure 4: For Example 3 of the SO(3) flow we
comparing the numerical errors of orthogonal-
ity by (a) the Lie-group solver (151) and (b) the
Runge-Kutta method.

Under the same parameters as that used in the
above, we plot the numerical result calculated by
the fourth-order Runge-Kutta method with a post
projection as shown by Liu (2006b) in Fig. 4(b). It
can be seen that this method preserves the orthog-
onality rather well; however, the Runge-Kutta
method is still less accurate about five orders than
our Lie-group solver. Through these investiga-
tions, the scheme based on Eq. (151) is a very sta-
ble one in both the aspects of accuracy and preser-
vation of orthogonality.

6.4 Example 4

The following example

Ġ4(t) =⎡
⎢⎢⎣

0 t sin πt
4 0 0

−t sin πt
4 0 t sin πt

2 0
0 −t sin πt

2 0 t sin 3πt
4

0 0 −t sin 3πt
4 0

⎤
⎥⎥⎦G4(t),

G4(0) = I4

(162)

is of SO(4) flow equation. Iserles, , Norsett and
Rasmussen (2001) have used it to show that the
Runge-Kutta method fails to preserve the orthog-
onality condition.

For this example we first note that G2 has a
closed-form solution given as follows:

G2 =

⎡
⎣ M9 M10

M11 M12

⎤
⎦ . (163)

where

M9 = cos

(
16
π2 sin

πt
4
− 4t

π
cos

πt
4

)

M10 = sin

(
16
π2 sin

πt
4
− 4t

π
cos

πt
4

)

M11 = −sin

(
16
π2 sin

πt
4
− 4t

π
cos

πt
4

)

M12 = cos

(
16
π2 sin

πt
4
− 4t

π
cos

πt
4

)
.

Then we apply scheme (151) with n = 2 to cal-
culate M3 and Eq. (138) with n = 2 to calculate
G3. After that we apply scheme (151) with n = 3
to calculate M4 and Eq. (138) with n = 3 to cal-
culate G4. The numerical results are shown in
Fig. 5. Figure 5(a) displays the (1,1) compo-
nent of G4 calculated by our numerical scheme
(151) together with Eq. (138). On the other hand
we also apply the scheme by the Peano-Baker
formula with directly inserting the above A into
Eq. (145) up to third order. Figure 5(b) shows
the difference of the numerical results obtained
from the Peano-Baker scheme to our scheme. The
orthogonality error in terms of ‖GT

4 G4 − I4‖ for
our scheme and for the Peano-Baker scheme are
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shown in Figs. 5(c) and 5(d), respectively. The er-
ror of our Lie-group solver is almost nil by design.
This, however, is not the case with the Peano-
Baker scheme, which displays unstable behav-
ior after about 13 seconds as shown in Fig. 5(b),
and reveals exponentially-growing orthogonality
error as shown in Fig. 5(d). It demonstrates that
this new Lie-group solver possesses significantly
better stability properties than other conventional
schemes.
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Figure 5: For Example 4 of the SO(4) flow: (a)
The (1,1) component of the numerical solution
calculated by the Lie-group solver (151), (b) the
difference of the numerical solution by the Peano-
Baker formula up to the third order to that in (a),
and the numerical errors of orthogonality for (c)
scheme (151), and (d) the Peano-Baker formula.

7 Conclusions

We have developed new methods to transform the
time-varying linear systems into the nilpotent lin-
ear systems with index two. In the derivations
an indefinite metric and a positive definite met-
ric play the key roles to underpin the Lie algebras
and Lie groups behavior as well as the invariant
forms of the new systems. The sufficient condi-
tions for the existence of quadratic invariants are
derived, which can be classified into two types:
the Minkowskian and the Euclidean invariants.

According to these results we have developed two
different representations and calculations of the
general linear group Gn+1 ∈ GL(n + 1,R). Then,
the nilpotent systems were further transformed
to a new system (130) having a special simple
B(t)∈ sl(n+1,R) with Bs

s and B0
0 vanishing. Cor-

respondingly, we derived a third representation
and calculation of the general linear group Gn+1.
The last one is called the Lie-group solver, which
is simpler than the nilpotent type algorithms, bea-
cuse its state matrix B includes V̇ without needing
a further integral, rather than that the V appeared
in the nilpotent matrix N, which needs an integral
as shown in Eq. (16).

The accuracy of the Lie-group solver is much
better than the scheme by directly applying the
discretized Peano-Baker formula to the original
system or the fourth-order Runge-Kutta method.
Numerical examples confirmed that our scheme
can preserve the group properties very well. The
present Lie-group computation method is effec-
tive allowing us to sequentially construct the
higher order Lie-group from its one-order lower
Lie-group as demonstrated by Example 4 of the
computation of G4 by using an exact G2. Of
course, if G2 is also not known exactly, we can
start from G1 for the computation of G4. In
the Lie-group computations, the Lie-group solver
possesses significantly better stability properties
than other non Lie-group integrators. As a
byproduct, the accuracy of the Lie-group solver
is also better than other conventional schemes.
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