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An Investigation of Wave Propagation with High Wave Numbers via the
Regularized LBIEM
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Abstract: Researches today show that, both ap-
proximation and dispersion errors are encoun-
tered by classical Galerkin FEM solutions for
Helmholtz equation governing the harmonic wave
propagation, which leads to numerical inaccu-
racies especially for high wave number cases.
In this paper, Local Boundary Integral Equa-
tion Method (LBIEM) is firstly implemented to
solve the boundary value problem of Helmholtz
equation. Then the regularized LBIE is pro-
posed to overcome the singularities of the bound-
ary integrals in the LBIEM. Owing to the ad-
vantages of the Moving Least Square Approxi-
mation (MLSA), the frequency-dependent basis
functions modified by the harmonic wave prop-
agation solutions are easily adopted instead of the
normal monomial basis functions. A plane har-
monic wave propagating case is examined in the
numerical tests. Computational results show that
excellent numerical accuracies can be obtained
when the regularized formulation and the modi-
fied basis functions are adopted, even though the
wave numbers of Helmholtz equation are high.

Keyword: Helmholtz equation; Local bound-
ary integral equation method; Moving least square
approximation; Regularization; Modified basis
function

1 Introduction

It is well known that acoustic wave harmonically
propagating problem is governed by Helmholtz
equation, Δu+κ2u = 0, where κ is the wave num-
ber. As the dominant numerical method, FEM so-
lutions for boundary value problem of Helmholtz
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equation are widely investigated, for either inte-
rior or exterior problems. References [Ihlenburg,
F. et al (1995a), Ihlenburg, F. et al (1995b), De-
raemaeker, A. et al (1999)] show that numeri-
cal errors consist of approximation and disper-
sion errors, in particular, it can be shown here that
relative error of the FE-solution defined by H1-
seminorm generally can be written as

e1 ≤C1κh+C2κ3h2 (1)

Here C1 and C2 are constants that are independent
of the wave number κ and the mesh size h. The
first term on the right of the inequation (1) repre-
sents the approximation error and the second one
reflects the dispersion error. Obviously, with in-
creasing wave number, dispersion error accord-
ingly increases even if κh is kept constant and
thus pollutes numerical accuracies.

For higher wave number cases, finer meshes and
higher orders of FEs are necessarily adopted to
reduce the approximation error and dispersion er-
ror, however, enormous computation scale usually
makes the numerical solutions unreliable. Sev-
eral methods are proposed to improve the classi-
cal FEM, such as Galerkin Least-square, Quasi-
stabilized finite element method and Residual-
free finite element method, etc. Nevertheless,
these methods eliminate or minimize the disper-
sion error only in one dimensional problem but
have not given desired numerical accuracies in
higher dimensional cases, see references [Ihlen-
burg, F. et al (1995a), Suleau, S. et al (2000a)].

Developing meshless methods present us a new
consideration. Melenk and Babuska (1997) firstly
suggested the partition of unity, a vital meshless
method, to solve the Helmholtz equation with
high wave number. They suggested that ‘gen-
eralized harmonic functions’ share the optimal-
ity properties for the approximation of harmonic
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functions which are oscillatory. Similar treat-
ments can be found in reference [Uras, R. et al
(1997)], in which Uras et al. applied the repro-
ducing kernel particle method to acoustics. Chen,
W. et al. (2002, 2003) also introduced the mesh-
free boundary particle method and boundary knot
method into Helmholtz problems, excellent re-
sults have been obtained even if wave numbers are
very high. Bouillard and Suleau (1998) applied
element free Galerkin method to the harmonic
wave propagation problem of two dimensions for
the first time, and numerical experiments showed
that, for identical distribution of nodes, better ac-
curacies were obtained with the optimal choice of
parameters in the MLSA. Furthermore, they mod-
ified normal basis functions with plane harmonic
wave propagation solutions and presented the pri-
mary proof and numerical assessment on mini-
mizing the dispersion error in one and two dimen-
sional problems [Suleau, S. et al (2000b), Suleau,
S. et al (2000a)]. High accuracies were obtained
in numerical tests especially for high wave num-
ber cases.

In this paper, LBIEM [Zhu, T. L. et al (1998),
Zhu, T. L. et al (1999)] is addressed to solve
the Helmholtz equation of two dimensional prob-
lems. LBIEM is a significant and adoptable mesh-
less method, which can be regarded as a spe-
cial Meshless Local Petrov-Galerkin (MLPG) ap-
proach where its test functions are derived from
fundamental solutions in BEM [Atluri, S. N. et
al (1998), Han, Z. D. et al (2003), Han, Z. D.
et al (2005)]. Compared with EFGM, it needs
no background meshes for the integration, thus
is a so-called truly meshless method, and it has
been widely applied to potential problems, elas-
tostatics, elastodynamics, thermoelasticity, plate
bending problems, and so on [Sladek, J. et al
(2002a), Sladek, J. et al (2005)]. LBIEM adopts
Moving Least Square Approximation (MLSA) in
which some characteristic functions related to
the physical problems can be readily furnished
in the basis function series. For instance, such
idea can be found in reference [Sladek, V. et
al (2005)] with solutions for non-homogeneous
problems. LBIEM solutions for the equation of
Helmholtz type are firstly introduced by Zhu et al

(1999) to show convenience for volume integra-
tion, which is normally troublesome because of
the non-linear term. For the boundary value prob-
lem of Helmholtz equation, Sladek et al (2002b)
investigated the sound vibration problems based
on non-singular global and local Trefftz bound-
ary integral formulations. In the present paper,
some basic parameters, for example, the choices
of the size of the influence domain, are con-
sidered firstly, and normal linear basis functions
are then modified by the wave propagation solu-
tions in the MLSA process, which can locally ap-
proximate the acoustic field potential accurately.
The regularized LBIEs are introduced to elimi-
nate the singularity when the sourse node locates
on the global boundary. Finally, numerical exper-
iments reveal that excellent numerical accuracies
and convergences can be obtained even for high
wave number problems.

The following discussion begins with the descrip-
tion of LBIE and its regularization in section 2.
Section 3 focuses on MLSA with normal and
modified basis functions. The discretization and
numerical implementation scheme are presented
in section 4. A two-dimensional plane harmonic
wave propagation problem, as the numerical test,
is given in section 5. The article ends with some
conclusions in section 6.

2 Local boundary integral equation and reg-
ularization

The acoustic wave harmonically propagating
problem can be addressed by the potential bound-
ary value problem of Helmholtz equation as fol-
lows:⎧⎪⎨
⎪⎩

∇2u(x)+κ2u(x) = 0 x ∈ Ω
u = u on Γu

q = ∂u
∂n = q on Γq

(2)

where u is the potential function according to the
acoustic pressure of sound field Ω that is enclosed
by Γ = Γu ∪Γq, as shown in Fig. 1. κ = ω/c is
the wave number with ω and c the frequency and
velocity of wave propagation, respectively. Here
u is prescribed potential on Dirichlet boundary
Γu and q is prescribed normal flux on Neumann
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Figure 1: Local boundary, support of nodes, domain of influence of a source point, and so on, see reference
[Zhu T. L. et al (1998)]

boundary Γq, n is the outward normal direction
to the boundary Γ. Note that complex expres-
sions are more general in the sound field formulae
and boundary conditions, and combined bound-
ary condition, i.e., robin boundary conditions, are
more common especially for exterior problems.

A weak formulation of Helmholtz equation can be
written as,∫

Ω
u∗

(
∇2u(x)+κ2u(x)

)
= 0 (3)

where u∗ is the test function and u is the trail func-
tion. Two choices of test function can be intro-
duced in the LBIEM, either

∇2u∗(x,y)+δ (x,y) = 0 (4)

or

∇2u∗(x,y)+κ2u(x,y)+δ (x,y) = 0 (5)

with δ (x,y) being the Dirac delta function. Con-
sidering volume integral is so convenient in the
LBIEM that Eq. (4) can be employed here to
avoid the complex Hankel function in the integral
kernel functions.

After integration by parts and application of Eq.
(4), the following integral equation can be ob-

tained,

u(y)=
∫

Γ
u∗(x,y)

∂u(x)
∂n

dΓ−
∫

Γ

∂u∗(x,y)
∂n

u(x)dΓ

+
∫

Ω
u∗(x,y)κ2u(x)dΩ (6)

where n is outward normal direction to the bound-
ary, x is a field point and y the source point.
Instead of global domain Ω of the given prob-
lem, Eq. (6) should hold over the sub-domain ΩS

which is entirely located inside Ω and contain the
source point y,

u(y) =
∫

∂ΩS

u∗(x,y)
∂u(x)

∂n
dΓ

−
∫

∂ΩS

∂u∗(x,y)
∂n

u(x)dΓ+
∫

ΩS

u∗(x,y)κ2u(x)dΩ

(7)

where ∂Ωs is the boundary of the sub-domain Ωs.
If source point y locates on the global boundary,
LBIE can be obtained similar to global BIE of the
classic BEM, as follows,

α(y)u(y)=
∫

LS+ΓS

u∗(x,y)
∂u(x)

∂n
dΓ

−
∫

LS+ΓS

∂u∗(x,y)
∂n

u(x)dΓ+
∫

ΩS

u∗(x,y)κ2u(x)dΩ

(8)
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where ΓS is the part of local boundary ∂ΩS, which
coincides with the global boundary Γ, i.e., ΓS =
∂ΩS ∩ Γ. LS is the part of local boundary ∂ΩS

inside Ω, and

α(y) =

⎧⎪⎨
⎪⎩

1/2
for y located on the smooth
boundary

θ/(2π) for y located on the boundary
corner

(9)

with θ being the internal angle of boundary cor-
ner.

Over the sub-domains, the modified test function
with the companion solution given by [Zhu, T. L.
et al (1998)] can be utilized here, i.e.,

u∗∗ = u∗−u′ =
1

2π
ln

1
r
− 1

2π
ln

1
r0

=
1

2π
ln

r0

r
(10)

where r = |x−y| denotes the distance from the
source point to the field point, and r0 is the radius
of local sub-domain. Replace u∗ with u∗∗ in Eqs.
(7) and (8), or use u∗∗ as a new test function in
Eq. (3) and integrate by parts twice, then note
that −∇2u∗∗ =−∇2u∗+∇2u′ = δ (x,y) in ΩS and
u∗∗ = 0 along ∂ΩS, we can obtain the LBIEs of
LBIEM, as

u(y) = −
∫

∂ΩS

∂u∗∗(x,y)
∂n

u(x)dΓ

+
∫

ΩS

u∗∗(x,y)κ2u(x)dΩ (11)

for source point inside Ω, and

α(y)u(y)=∫
Γs

u∗∗(x,y)
∂u(x)

∂n
dΓ−

∫
LS+Γs

∂u∗∗(x,y)
∂n

u(x)dΓ

+
∫

ΩS

u∗∗(x,y)κ2u(x)dΩ (12)

for source point on the global boundary Γ.

It should be noted that the first term on the right
of Eq. (12) is weakly singular and the second one
is strongly singular [Sellountos, E. J. et al (2005),
Sladek, V. et al (2000)]. For integration with weak

singularity, one can adopt the logarithmic quadra-
ture to achieve high accuracies, but strongly sin-
gular term should be specially treated with, for ex-
ample, using the regularization technique which
is simple and efficient [Chen, H. B. et al (1998),
Chen, H. B. et al (2001), Chen, H. B. et al (2003),
Guo, X. F. et al (2006a), Guo, X. F. et al (2006b)].

Based on the knowledge of classic BEM, the fol-
lowing expression holds,

α(y) = −
∫

LS+ΓS

∂u∗∗(x,y)
∂n

dΓ (13)

Furthermore,

α(y)u(y)= −
∫

LS+ΓS

∂u∗∗(x,y)
∂n

u(y)dΓ (14)

Subtracting Eq. (14) from Eq. (12), we have

0 =
∫

Γs

u∗∗(x,y)
∂u(x)

∂n
dΓ

−
∫

LS+Γs

∂u∗∗(x,y)
∂n

(u(x)−u(y))dΓ

+
∫

ΩS

u∗∗(x,y)κ2u(x)dΩ (15)

Eq. (15) is called the regularized LBIE. Here
∂u∗∗(x,y)

∂n = O(r−1) and u(x)−u(y) = O(r) as x →
y, thus, the strong singularity in Eq. (15) can be
eliminated.

Eqs. (11) and (12) are the LBIEs in the imple-
mentation of original LBIEM while Eqs. (11) and
(15) are those of regularized LBIM.

3 Normal and modified basis functions in the
MLSA

Moving least square approximation (MLSA) is
the pioneer and significant approximation method
in the evolution of meshless methods, which is
based on the values (the fictitious values, further)
of the discrete nodes that are regularly or ran-
domly distributed. For node x, the trial function,
in other word, locally approximate function uh(x)
of u(x), can be defined by

uh(x) =
m

∑
i=1

pi(x) ·ai(x) = pT (x) ·a(x)

(x ∈ Ωx) (16)
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where pT (x)= [p1(x), p2(x), · · · , pm(x)] is a com-
plete monomial basis of order m, and a(x)
is the vector containing coefficients ai(x), i =
1,2, · · · ,m. For two dimensional problems, nor-
mal linear basis is pT (x) = (1,x1,x2), m =
3, and normal quadratic basis is pT (x) =
(1,x1,x2, (x1)2,x1x2, (x2)2), m = 6.

For the harmonic wave propagation problem,
other basis functions seem to be more suit-
able than the normal monomial basis functions
[Suleau, S. et al (2000a), Babuska, I. et al (1997)].
For two dimensional case of plane wave, we can
use modified normal basis functions, pT (x) =
{1,cos(κx1 cosβ + κx2 sinβ ), sin(κx1 cosβ +
κx2 sinβ ), cos(−κx1 sinβ + κx2 cosβ ),
sin(−κx1 sinβ + κx2 cosβ )}. The modified basis
functions are also called the frequency-dependent
ones in reference [Suleau, S. et al (2000a)].
Obviously, to adopt modified basis functions,
there exist more locally approximate advantages
than the normal basis ones, which is especially
important for the high wave number cases. When
being used to numerically solve the Helmholtz
equation, classical FEM requires special element
dense per wavelength to control the approxima-
tion error, which usually leads to large numbers
of elements and nodes to be imposed for high
wave number cases. MLSA with modified
basis functions possesses high approximation
accuracies in spite of high wave number cases
within special limits, for instance, nodes in the
support or special frequency range [Ihlenburg, F.
et al (1995b)]. To our joy, the dispersion error is
also remarkably eliminated with adoption of the
modified basis functions [Suleau, S. et al (2000b),
Suleau, S. et al (2000a)], however, theoretical
research needs more.

The coefficient vector a(x) is determined by min-
imizing a weighted discrete L2 norm, defined as

J(x) =
n

∑
i=1

wi(x)[pT (xi)a(x)− ûi]2

= (Pa− û)TW(x)(Pa− û) (17)

where wi(x) is the weight function associated with
node i, and ûi are the fictitious node values dif-
ferent from the node values of the unknown trial
function uh(x) in general.

The stationarity of J(x) in Eq. (17) with respect
to a(x) leads to the following linear relationship
between a(x) and û,

A(x)a(x) = B(x)û (18)

where matrices A(x) and B(x) are defined by

A(x) = PTW(x)P =
n

∑
i=1

wi(x)p(xi)pT (xi) (19)

B(x) = PTW(x)
= [w1(x)p(x1),w2(x)p(x2), . . .,wn(x)p(xn)]

(20)

A necessary condition for a well-defined MLSA is
that at least m weight functions are non-zero (i.e.
n ≥ m) for each sample point.

Solving for a(x) from Eq. (18) and substituting
it into Eq. (16), then the final approximation for-
mula can be obtained as

uh(x) = ΦΦΦT (x)û =
n

∑
i=1

Φi(x)ûi uh(xi) = ui �= ûi

(21)

where

ΦΦΦT (x) = [Φ1(x),Φ2(x), . . .,Φn(x)]

= pT(x)A−1(x)B(x) (22)

Φi(x) is called shape functions of the MLSA, the
smoothness of which is determined by that of the
basis functions and of the weight functions.

The partial derivatives of Φi(x),

Φi,k(x) =
m

∑
j=1

p j,k(A−1B) ji + p j(A−1B,k +A−1
,k B) ji

(23)

In which A−1
,k = (A−1),k represents the derivative

of the inverse of A with respect to xk, which is
given by

A−1
,k = −A−1A,kA−1 (24)

In our implementing the MLSA, the chosen Gaus-
sian weight function corresponding to node i may
be written as

ωi(x, ri)=

{
exp[−(d/ci)2k ]−exp[−(ri/ci)2k]

1−exp[−(ri/ci)2k ] 0 ≤ d ≤ ri

0 d ≥ ri

,
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(25)

where d = ‖x−xi‖; ci is a constant controlling
the shape of the weight function wi and therefore
the relative weights; and ri is the size of the sup-
port for the weight function wi and determines the
support of node xi. In present computation, k = 1
is chosen.

4 Discretization scheme

Substituting Eq. (21) into Eqs. (11) and (12), af-
ter imposing boundary condition on the right hand
side for node i and carrying out numerical integra-
tion, the following equations may be obtained

αiui = f ′i +
n

∑
j=1

K′
i j û j, i = 1,2, . . .,N (26)

where N is the total number of nodes in the entire
domain Ω; coefficientsαi, i = 1,2, . . .,N, are

αi =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 for internal nodes

1/2
for y located on a smooth
boundary

θ/(2π)
for y located on a bound-
ary corner

(27)

with θ being the internal angle of the boundary
corner. Then{

f ′i = 0

K′
i j = −∫

Ls
Φ j(x) ∂u∗∗

∂n dΓ+
∫

ΩS
u∗∗κ2Φ j(x)dΩ

(28)

for internal nodes, and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f ′i =
∫

Γsq
u∗∗qdΓ−∫

Γsu
u∂u∗∗

∂n dΓ

K′
i j =

∫
Γsu

u∗∗ ∂Φ j(x)
∂n dΓ−∫

Γsq
Φ j(x) ∂u∗∗

∂n dΓ
−∫

Ls
Φ j(x) ∂u∗∗

∂n dΓ+
∫

ΩS
u∗∗κ2Φ j(x)dΩ

(29)

for boundary nodes, where Γsq and Γsu are the
flux and essential boundary sections of Γs with
Γs = Γsu ∪ Γsq, and u is the prescribed potential
at Γsu, q is the prescribed flux at Γsq. Ls is a part
of the local boundary ∂Ω which is not located on

the global boundary Γ. For those interior nodes
located inside the domainΩ, Ls = ∂Ω, see Fig. 1.

It is very convenient to impose the essential
boundary conditions on the left hand side of Eq.
(26), and then we have the following linear sys-
tem

Kû = f (30)

with the fictitious nodal values û as unknowns,
where the entries of K and f are given by

Ki j =

⎧⎪⎨
⎪⎩
−K′

i j
for nodes with ui

prescribed

−K′
i j +αiφ j(xi)

for nodes with ui

unknown

(31)

and

fi =

⎧⎪⎨
⎪⎩

f ′i −αiui
for nodes with ui

prescribed

f ′i
for nodes with ui

unknown

(32)

For regularized LBIE, the discrete expressions are⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K′
i j = −∫

∂Ωs

u∗∗(x,y)
∂n φ j(x)dΓ

+
∫

Ωs
u∗∗(x,y)κ2φ j(x)dΓ

f ′i = 0

(33)

for internal nodes, and for the nodes on the bound-
ary,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K′
i j = −∫

LS

∂u∗∗(x,y)
∂n φ j(x)dΓ

+
∫

Γsu
u∗∗(x,y) ∂φ j(x)

∂n dΓ−∫
Tsq

∂u∗∗(x,y)
∂n φ j(x)dΓ

+
∫

Ωs
u∗∗(x,y)κ2φ j(x)dΓ

f ′i = −∫
LS

∂u∗∗(x,y)
∂n (−u(y))dΓ

−∫
Γsu

∂u∗∗(x,y)
∂n (u−u(y))dΓ+

∫
Γsq

u∗∗(x,y)qdΓ
−∫

Tsq

∂u∗∗(x,y)
∂n (−u(y))dΓ

(34)

when the potential is known, and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K′
i j = −∫

LS

∂u∗∗(x,y)
∂n (φ j(x)−φ j(y))dΓ

+
∫

Γsu
u∗∗(x,y) ∂φ j(x)

∂n dΓ
−∫

Γsu

∂u∗∗(x,y)
∂n (−φ j(y))dΓ

−∫
Tsq

∂u∗∗(x,y)
∂n (φ j(x)−φ j(y))dΓ

+
∫

Ωs
u∗∗(x,y)κ2φ j(x)dΓ

f ′i = −∫
Γsu

∂u∗∗(x,y)
∂n udΓ+

∫
Γsq

u∗∗(x,y)qdΓ
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(35)

when the potential is unknown. Obviously, for the
formulation of regularized LBIE, αi ≡ 0.

5 Numerical tests

In this chapter, numerical examples are firstly per-
formed to show the original implementation of
LBIEM for Helmholtz equation, and some fun-
damental parameters, e.g., sizes of the domain of
influence, basis functions, are discussed. Com-
parisons among the linear basis functions, the
quadratic basis functions and the modified basis
functions are also implemented. Then an example
with elliptical boundary is used to show the im-
provement in numerical accuracies after the LBIE
is regularized. In the end, plane wave propagating
through a two dimensional domain of car section
with complex geometry boundary is adopted to
test the computer codes of the regularized LBIEM
with modified basis functions. For the purpose
of error estimation and convergence studies, the
semi-norm of Sobolev space,

|u|1 = (
∫

Ω
((

∂u
∂x1

)2 +(
∂u
∂x2

)2)dΩ)
1
2 (36)

is used to define the relative error,

er =
|unum−uexact |1

|uexact|1
×100% (37)

where superscript exact and num denote exact
and numerical solutions, respectively. To show
the improving numerical accuracies of regular-
ized LBIEM, the node relative error over node i
is defined as

ei =
|unum

i −uexact
i |

(
n
∑
i
|uexact

i |)/n
×100% (38)

The boundary values of all the numerical tests are
described by exact solution,

u = cos (κx1 cosβ +κx2 sinβ ) (39)

for the plane harmonic wave propagation prob-
lem.

5.1 Original LBIEM solutions for Helmholtz
equation

In this section, a square domain with correspond-
ing boundary conditions that potentials are known
on the horizontal sides (x2 = ±1) and flows are
known on the vertical sides (x1 = ±1), see Fig. 2.
In the numerical implementation of LBIEM, the
choices of parameters such as the size of the in-
fluence domain, radii of local sub-domain, or con-
trolling constants of relative weights, etc., have
special effect on the numerical accuracies. There-
fore, the size of the influence domain, the plane
wave propagating angle and the wave number are
discussed here.

2x

1x

u

q

u

q

(-1,-1)

(1, 1)

(1, -1)

(-1, 1)

Figure 2: Test example of a square domain

5.1.1 Study on the size of the influence domain

Based on the present literatures of meshless meth-
ods, the radius of sub-domain r0 = 0.005, and
the ratio between the size of the influence do-
main and the controlling constant of the relative
weight, i.e. din f/c ≈ 4, are used in the compu-
tation of all cases. Regularly distributed nodes
of 36(6×6), 49(7×7), 64(8×8) and 81(9×9)
are used to study numerical accuracies with re-
spect to the size of the influence domain. Lin-
ear and modified basis functions are considered
here. The plane wave propagating angle is set
β = 45o and the wave number is setκ = 1.0. The
ratio between the size of the influence domain and
the distance of the two closest nodes is defined as
α = din f/h. After keeping the coefficient ma-
trix non-singular and the wave number under the
cut-off value (see reference [Ihlenburg, F. et al
(1995b)]), we can choose increasing ratios with
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Figure 3: Relative error with respect to the size of
influence domain, linear basis case

Figure 4: Relative error with respect to the size of
influence domain, modified basis case

Figure 5: Comparison of the nodal errors between
linear and quadric basis functions, κ = 1

Figure 6: Comparison of the nodal errors between
linear and quadric basis functions, κ = 8

Figure 7: Comparison of the nodal errors between
linear and modified basis functions

Figure 8: Relative error with respect to propaga-
tion angle
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single step 0.5, hence, din f = 1.5h−3.0 for lin-
ear basis cases while din f = 2.5h− 3.0 for the
modified basis cases. The relative error is defined
by Eq. (37). Numerical results are shown in Figs.
3 and 4 for linear and modified basis functions,
respectively.

It can be seen from Figs. 3 and 4 that, the size
of influence domain has great effect on the nu-
merical results, especially for normal linear basis
case. For a given node distribution, there is an
optimal radius of influence domain. Smaller radii
may lead to inaccuracies and singular coefficient
matrix in MLSA, while bigger size of the influ-
ence domain will lead to more computational cost.
Furthermore, the desired numerical results also lie
on the optimal parameters in the implementation
of the LBIEM.

5.1.2 Study on the order of monomial basis
functions

For low wave number case (κ = 1) in the above
test, linear approximation with 81 nodes gives ac-
ceptable accuracy, see fig. 3. In fact, higher order
basis functions in MLSA, quadratic basis func-
tions, can give better numerical results, shown
in the following Fig.5. But for high wave num-
ber cases, say κ = 8, neither linear (L81) nor
quadratic (Q81) basis functions with the 81 nodes
can give desired accuracy, see Fig. 6. Here the
propagation angle is set β = 45o and the sizes of
the influence domain are din f = 1.8.

There is a rule in the simulation of acoustic prob-
lems that at least six linear elements or three
quadratic elements per wave length are required to
obtain enough approximate accuracy, as is done in
the acoustic software SYSNOISE. Obviously, for
high wave number cases, normal monomial ele-
ments (linear, quadratic, or even higher order el-
ements) are largely required, which lead to high
computational cost. As a result, modified basis
functions possess the special advantage, and only
much fewer nodes can attain high accuracy, which
can be observed from the following Fig. 7.

5.1.3 Study on the modified basis functions

It can be seen through the comparison between
Figs. 3 and 4 that high accuracies can be ob-

tained by adoption of modified basis function.
In particular, we choose the results of 49(7× 7)
and 81(9×9) node discretizations in section 5.1.1
when the size of the influence domain is din f =
1.8. The node relative errors over the nodes are
given in Fig. 7. Obviously, LBIEM solutions with
modified basis functions lead to much higher ac-
curacies.

5.1.4 Study on plane wave propagating angles

This section will present numerical results for the
relationship between the relative error and the
plane wave propagating angle. Here, we adopt
the regularly distributed nodes of 64(8× 8), and
choose an optimal radius of influence domain
din f = 1.8, based on numerical result in the sec-
tion 5.1.1. The plane wave propagating angle
changes from 0o to 90o, i.e., β = 0o − 90o, in-
creasing with single step 5o. It can be seen from
Fig. 8 that when using modified basis functions
relative errors keep very low level and are in-
sensitive to the change of wave propagating an-
gle. However, when using linear basis functions
the relative errors are sensitive to angle variation
and in big level, and the minimal relative error
takes place when the propagation angle is close
to 45 degrees, which accords well with other lit-
eratures’ investigation.

5.1.5 Study on wave numbers

In classic FEM, numerical errors increase with
approximation and dispersion errors in the high
wave number cases. In LBIEM, numerical accu-
racies are remarkably improved by MLSA with
the basis functions modified by plane harmonic
wave propagating solutions. A regular nodal dis-
tribution of 64(8×8) is used to illustrate the nu-
merical accuracies. We choose the size of the in-
fluence domain din f = 1.8. Based on the con-
clusion in reference [see reference [Ihlenburg, F.
et al (1995b)], a cut-off value exists for the prod-
uct κh, where k is the wave number and h is the
distance between two close nodes. In this exam-
ple, the wave number is chosen from 1 to 12, i.e.,
κ = 1.0− 12.0. Numerical results are shown in
Fig. 9, where L64 and M64 denote the relative er-
rors with adopted linear and modified basis func-
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Figure 9: Relative error with respect to wave
number

Figure 10: Test example with elliptical boundary

Figure 11: Numerical comparison for linear ba-
sis functions and Dirichlet condition on elliptic
boundary

Figure 12: Numerical comparison for modified
basis functions and Dirichlet condition on ellip-
tic boundary

Figure 13: Numerical comparison for linear ba-
sis functions and Neumann condition on elliptic
boundary

Figure 14: Numerical comparison for modified
basis functions and Neumann condition on ellip-
tic boundary
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tions, respectively. It can be seen from Fig. 9 that,
when using the modified basis functions, numer-
ical results are not sensitive to the wave number
and they are in good accuracies, while when us-
ing the normal linear basis functions, the relative
errors are oscillatory in big range, which also ac-
cords with other reference results.

5.2 Comparison between the original LBIEM
and the regularized one

For the integration along the local boundary that
is also a part of the global boundary, strong sin-
gularity will occur except for regular boundary
geometries, e.g., straight lines. To show numer-
ical inaccuracies of strongly singular integration,
we choose a test example with quarter ellipse
domain, see Fig. 10. 44 nodes are distributed
in the domain, uniformly. We choose radius of
sub-domain r0 = 0.005, size of the influence do-
main din f = 2.0, plane wave propagating angle
β = 45o and wave number κ = 0.5. Potentials are
prescribed on the part of straight boundary, while
the potentials or fluxes are prescribed on the el-
liptical boundary separately. Obviously, singular-
ity will arise when integrating along local bound-
ary coinciding with the elliptical boundary. In
Figs. 11-14, L and M denote the results using the
linear and modified basis functions, respectively,
while O and R represent those using the original
and the regularized LBIEs. Numerical compar-
isons in Figs. 11-14 together with Figs. 4-9 show
that regularized LBIEM can present higher com-
putational accuracies, in particular, regularized
LBIEM with modified basis functions can present
high accuracies and excellent convergence.

5.3 A numerical test with complex boundary

A classic example is introduced in this test, i.e.,
a car section in two dimensions (see Fig. 15),
which boundary is so complex that we can use
it to test the program we developed. Note that
local boundary LS inside the domain can be pa-
rameterized exactly, but ΓS is not the case. Here
we adopt the polynomial interpolation of 2-th or-
der to approximateΓS. Regularized LBIEM and
modified basis functions are adopted here. The
size of the influence domain is din f = 0.5 and the

plane wave propagation angle is 45 degrees. M1
and M2 denote the results when the front panel
boundary is Dirichlet or Neumann type, respec-
tively. High accuracies are obtained even though
the wave number is high.

Figure 15: Test example for a car section in two
dimensions

However, for the foregoing adoption of modified
basis functions, there is a limitation for the prac-
tical implementation. The wave number and the
propagation angle should be known in advance.
For the acoustic field induced by the vibrating
structure, we can use the results of vibration anal-
ysis for the structure as the acoustic boundary
conditions, that is to say, the wave numbers of
acoustic wave propagation can be obtained spon-
taneously while the propagation angles are usu-
ally indefinite. We fix the wave propagation an-
gle to 45o in the modified basis functions, and
in the exact solution of the considered problem,
the wave propagation angles vary from 0o to 90o.
The wave number is 3.0 here. From Fig. 17,
we can observe that, highly numerical accuracy
can be obtained when the wave propagation an-
gle in the exact solution accords with the one in
the modified basis functions, and the numerical
accuracies may reduce obviously for other cases.
Even though we find that the error levels are still
acceptable for the general cases.

6 Conclusions

The current paper performs a numerical assess-
ment of the original LBIEM and the regularized
LBIEM in acoustic propagation problem gov-
erned by Helmholtz equation, especially for high
wave number cases. Many parameters, such as the
size of the influence domain, the shape controlling
parameters, even weight function itself, and so
on, should be optimally chosen to get the desired
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Figure 16: Relative error with respect to wave
number for the car section problem

Figure 17: Relative error with respect to propaga-
tion angle for the car section problem

computational accuracies. Regularized LBIEM
can efficiently deal with the singular integration
when the source node locates on the global bound-
ary. Numerical tests show that such improve-
ment is significant. With the implementation of
MLSA in the LBIEM, it is natural and convenient
to use some special basis functions, which are not
easily coped with in the classic FEM. When us-
ing basis functions modified with wave propaga-
tion solutions, we can obtain the highly numeri-
cal accuracies and good convergences in spite of
higher wave number cases. In summary, the main
contribution of the present paper is the combina-
tion of the proposed regularized LBIE formula-
tion with the frequency-dependent basis function
in the MLS procedure, and its successful applica-
tion in the analysis of acoustic wave propagation
problems.

It is worth noting that, based on the knowledge of
data fitting, MLSA with the basis functions modi-
fied with wave propagation solutions can give bet-
ter local approximation for acoustic propagation
problem, in contrast to either the normal mono-
mial basis functions or the interpolation func-
tions in the classical FEM. Therefore, approx-
imation error is greatly decreased even though
the same or less nodes are used. Moreover, ref-
erences [Suleau, S. et al (2000b), Suleau, S. et
al (2000a)] drew a conclusion that dispersion er-
ror can be also reduced due to implementation of

MLSA with modified basis functions. In a word,
the obtained high accuracies lie on decrease of
both approximation and dispersion errors, espe-
cially for high wave number problems. However,
there still lack theoretical discussions in interpret-
ing the high numerical accuracies in our imple-
mentation of LBIEM, consequently, further inves-
tigation is necessary.

Furthermore, it should be pointed out that the
present numerical tests are relatively simple and
more general cases should be considered in our
further investigations. In general, the vibration
characters of structures which induce the acous-
tic propagation may be obtained through simpli-
fied numerical analysis and the acoustic charac-
ters may be obtained accordingly. By using the
acoustic characters in the MLSA approximation,
the relevant acoustic wave propagation problem
can be solved through appropriate superposition
algorithm.
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