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The Trefftz Boundary Method in Viscoelasticity

Berardi Sensale Cozzano1 and Berardi Sensale Rodríguez2

Abstract: In this paper, the Trefftz method is
applied to solve linear viscoelasticity problems in
the time domain, using Trefftz elastic series and
considering the viscoelastic components in each
time domain as fictitious body forces. The di-
rect application of the Trefftz method to elastic
problems is typically constrained to those cases in
which the Navier equation is homogeneous. In the
presence of body forces, the method of the par-
ticular solution or the method of the generalized
particular solution should be used, depending on
whether the body forces are constant or not in-
side the considered domain. Many viscoelasticity
problems with or without aging can be solved by
applying the elastic Trefftz series. To show the
accuracy of the proposed formulation, some ex-
amples are solved and the results compared with
those available in the literature.

Keyword: Viscoelasticity, Trefftz Method, Par-
ticular Solution Method

1 Introduction

Boundary methods have become quite popular
in recent years because they are able to provide
a complete solution in terms of boundary val-
ues only, and are also computationally efficient.
The Trefftz method is a boundary-type solution
procedure using T-complete functions [Herrera,
(1984)] that satisfy the governing equation. It
was first proposed by Trefftz in 1926 [Trefftz,
(1926)] to analyze problems of bars under stress.
The method includes a direct or indirect formu-
lation [Kita, (1995)]. In the indirect formulation,
the solution is approximated by a superposition of
T-complete functions with unknown coefficients,
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which are determined to satisfy the boundary con-
ditions. In the direct formulation, the weighted
residual expression is derived from the differ-
ential equation by introducing T-complete func-
tions as the weight functions. In recent years,
the Trefftz method has been used to solve two-
dimensional elasticity problems using the indirect
method [Portela and Charafi, (1999)], and lin-
ear elasticity problems using the direct method
[Sladek et al., (2000)]. Two types of material
behavior can be considered in linear viscoelastic-
ity: one that includes aging, present in polymers,
polymeric composites and concrete and another
one that does not age [Creus, (1986)]. To analyze
problems of viscoelastic materials without aging
by the Trefftz method, the elasticity problem as-
sociated with the Laplace transform domain could
be solved and then the results can be numerically
inverted to obtain the solution in the time do-
main. Conversely, the Laplace transform could
be applied to the elastic Trefftz series to obtain
the viscoelastic series. For viscoelastic materials
with aging, the Laplace transform cannot be cal-
culated because the viscoelastic constitutive equa-
tion does not allow a convolution representation
[Creus, (1986)]. To develop a general enough for-
mulation in the time domain that allows the res-
olution of viscoelastic problems with or without
aging; an analogy between the body forces and
the inelastic deformation gradient [Lin, (1968)] is
proposed in this paper.

The direct application of the Trefftz method to
elasticity problems is limited to those cases in
which the Navier equation is homogeneous. In
the presence of some particular body forces, the
Particular Solution Method could be used [Sokol-
nikof, (1968)]. A generalization of the particu-
lar solution method is needed when pseudo body
forces are present (inelastic, viscoelastic prob-
lems) because the governing equation is not ho-
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mogeneous.

Under these conditions, the case of viscoelastic
materials in which the Poisson’s ratio remains
constant in time,;nd no body forces, the gov-
erning equation is homogeneous simplifying the
solution. In order to solve problems governed
by non-homogeneous differential equations with
the Trefftz method, the non-homogeneous term
was approximated by other series expansions us-
ing global approximating functions [Kita et al.,
(2003)], [Cho et al. (2004)], and the solution will
usually be accurate if an appropriate number of
internal nodes is used to calculate the parameters
of the series [Partridge and Sensale, (1997)], what
makes the procedure lose the “boundary-only”
characteristic and the computational method in-
creases considerably.

In the generalized particular solution method pro-
posed in this paper, the non-homogeneous terms
are calculated from a series expansion obtained
from the T-complete functions. A generic expres-
sion of the particular solutions corresponding to
each of these functions is chosen so that is not
necessary to approximate it by a new series ex-
pansion. This allows maintaining the “boundary-
only” characteristic of the Trefftz method.

This paper is composed by six sections: introduc-
tion; formulation of the Trefftz method applied
to elasticity with and without body forces; fun-
damentals of viscoelasticity; the analogy between
the body forces and the inelastic deformation gra-
dient using the Trefftz method for viscoelastic
materials with and without aging; numerical ex-
amples; and conclusions.

2 The Trefftz method in elasticity

The Trefftz method is a general method to solve
homogeneous partial differential equations where
the solution function is approximated by a linear
combination of T-complete functions [Kita and
Kamiya, (1995)]. The coefficients of these func-
tions can be determined among others by the col-
location method [Herrera, (1984)]. A group of
regular T-complete functions can be built so that
they satisfy the equation that governs the prob-
lem of a linear elastic body not subjected to body

forces; It is demonstrated that this infinite series
of Trefftz functions is complete since any solu-
tion of the equation that governs the problem can
be written as a linear combination of those func-
tions. It has been proven [Qinq-Hua, (2000)] that
satisfying the completeness condition guarantees
the convergence of the method.

2.1 Resolution in absence of body forces

Be Ω a bounded region with its boundary ∂Ω
given by ∂Ωu and ∂Ωp, so that ∂Ω = ∂Ωu∪∂Ωp,
where the Navier elasticity equation [Hetnarski
and Ignaczak, (2004)] is solved for the�u displace-
ments in an isotropic elastic body with shear mod-
ulus μ , and bulk modulus K without body forces.(

3K + μ
3

)
∇(∇ ·�u)+ μ∇2�u = 0

⇔
ℑ(�u) = 0, in Ω
�u = �ud in ∂Ω
T�n = �p = �pd in ∂Ωp

(1)

being�n the outside unit normal to ∂Ω.

An approximate solution of the elasticity problem
can be obtained by approximating the displace-
ment vector by the truncated series:

u1 =
NT

∑
i=1

û1iai = û1 aT ,

u2 =
NT

∑
i=1

û2iai = û2 aT

(2)

σ11 =
NT

∑
i=1

σ̂11iai = σ̂11 aT ,

σ22 =
NT

∑
i=1

σ̂22iai = σ̂22 aT

σ12 =
NT

∑
i=1

σ̂12iai = σ̂12aT

(3)

where u1 and u2 are the components of the dis-
placement vector in a given base; σ11, σ12, σ22

represent the components of the array associated
with the stress tensor in that base; ai is a group
of unknown parameters; and NT is the total num-
ber of considered Trefftz functions. All the func-
tions û1i and û2i are solutions of the homogeneous
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equation (1), and σ̂11i, σ̂22i and σ̂12i are the corre-
sponding stresses.

If these solutions guarantee the completeness (T-
complete functions according to Herrera’s defi-
nition [Herrera ,(1984)]), the global solution of
the problem is guaranteed. The accuracy of
this approximation depends on the value of NT .
For an interior domain, the T-complete functions
are [Sensale, Sensale Rodríguez and Herskovits,
(2005)]:

2Gû1 = −αo +
N

∑
i=1

{
ri [κC(i)− iC(i−2)]αi

− ri [κS(i)− iS(i−2)]βi − riC(i)γi + riS(i)δi

}
(4)

2Gû2 = βo +
N

∑
i=1

{
ri [κS(i)+ iS(i−2)]αi

+ ri [κC(i)+ iC(i−2)]βi + riS(i)γi + riC(i)δi

}
(5)

σ̂11 =
N

∑
i=1

{
ri−1 [2iC(i−1)− i(i−1)C(i−3)]αi

− ri−1 [2iS(i−1)− i(i−1)S(i−3)]βi

− ri−1iC(i−1)γi + ri−1iS(i−1)δi

}
(6)

σ̂12 =
N

∑
i=1

{
ri−1i(i−1)S(i−3)αi

+ ri−1i(i−1)C(i−3)βi

+ ri−1iS(i−1)γi + ri−1iC(i−1)δi

}
(7)

σ̂22 =
N

∑
i=1

{
ri−1 [2iC(i−1)+ i(i−1)C(i−3)]αi

− ri−1 [2iS(i−1)+ i(i−1)S(i−3)]βi

− ri−1iS(i−1)γi + ri−1iC(i−1)δi

}
(8)

where: C(i) = cos(iθ ) y S(i) = sin(iθ )

2.1.1 Collocation method

The weak formulation of the weighted residuals
method corresponding to an elasticity problem
can be expressed [Qinq-Hua, (2000)] as:
∫

∂Ωu

ϖu(�u− �ud)dΓ+
∫

∂Ωp

ϖp(�p− �pd )dΓ = 0 (9)

The weight functions ϖu and ϖp can be chosen
arbitrarily, leading to different techniques of the
Trefftz method. When these functions are defined
through the Dirac Delta function, as:

ϖu = ϖp = δ (P−Pi) (10)

where Pi is the collocation point placed in the
boundary, the collocation technique can thus be
applied and (9) and (10) lead to:

�u(Pi) = ûaT = �ud(Pi) ∀ Pi ∈ ∂Ωu

�p(Pi) = p̂aT = �pd(Pi) ∀ Pi ∈ ∂Ωp
(11)

The previous equations (11) can be written as:

Ki ja j = bi ⇔ Ka = b (12)

where the unknown a j represent the coefficients
of the jth term of the expansion, while the bi terms
are given by:

bi = �ud(Pi) or bi = �pd(Pi) (13)

In this paper, the limits of the expansions (2) and
(3) are set by minimizing the functional:

F =
1

LMax

Mu

∑
i=1

‖�u(Pi)− �ud(Pi)‖

+
1
μ

Mp

∑
i=1

‖�p(Pi)− �pd(Pi)‖ (14)

where Mu and Mp are the number of boundary
points placed in the regions ∂Ωu y ∂Ωp respec-
tively μ the shear modulus and LMax is the maxi-
mum length between two points. In viscoelastic-
ity, Mu and Mp would be determined for the initial
time and would hold for the other times of the do-
main.
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2.2 Resolution in presence of body forces

Considering the solution to the Navier equation
with a body force term�b:
(

3K + μ
3

)
∇(∇ ·�u)+ μ∇2�u+�b = 0

⇔
ℑ(�u)+�b = 0, in Ω
�u = �ud in ∂Ωu

T�n = �p = �pd in ∂Ωp

(15)

A direct way of solving (15) avoiding the non-
homogeneous term is by exchanging variables in
a way that the domain term disappears. This can
be accomplished by adding a particular solution
to a new variable [Sokolnikof (1968)]:

�u = �̂u+�u(p) and �p = �̂p+�p(p) (16)

where the particular solution �u(p) satisfies (15),
while �̂u satisfies (1) with boundary conditions de-
rived from (16). A homogeneous problem is now
obtained, and the Trefftz method can be used

ℑ(�̂u) = 0, in Ω
�̂u =�ud −�u(p) in ∂Ωu

and

�̂p = �pd −�p(p) in ∂Ω f

(17)

When the acceleration of gravity is in the x2-
direction, the body force vector is given by:

b1 = 0, b2 = −ρg (18)

where ρ is the mass density and g is the accel-
eration of gravity. A group of particular solu-
tions corresponding to this problem were intro-
duced;Sokolnikof (1968)]:

u(p)
1 (P) =

−ρg(3K−2μ)
4μ (3K + μ)

(x1x2) (19)

u(p)
2 (P) =

ρg
8μ (3K + μ)

[
(3K +4μ)x2

2 +(3K −2μ)x2
1

]
(20)

p(p)
1 (x) = 0 (21)

p(p)
2 (x) = ρgx2n2 (22)

In a similar way, there are particular solutions
[Partridge and Sensale, (1997)] that allow the ap-
proximation of terms corresponding to general
body forces for which the determination of an an-
alytical formulation of the particular solutions is
not possible.

3 Fundamentals of viscoelasticity

We consider bodies of a general linear aging vis-
coelastic material for which the constitutive rela-
tions may be written [Creus, (1986)] as:

εεε(t) =
t∫

τo

(t,τ)dσσσ(τ) =
t∫

τo

D(t,τ)σ̇σσ(τ)dτ

= D(t,τ) ∗σσσ(τ) (23)

where εεε is the infinitesimal strain tensor, σσσ is the
stress tensor, D(t,τ) is the time-dependent creep
function, to be experimentally determined, and
the last expression is merely an equivalent oper-
ational notation. For each tensor component, the
elastic and inelastic parts can be isolated:

D(t,τ) = E−1(t)+C(t,τ) (24)

where E(t) is the time-dependent elastic tensor
and C(t,τ) is the creep compliance. In the case
of an isotropic material, only two independent
functions are required for the elastic part and two
for the delayed part. Decomposing stresses and
strains into spherical and deviatoric terms:

σσσ = s+σoId, σo =
1
3

tr(σσσ)

εεε = e+εoId, εo =
1
3

tr(εεε)
(25)

where Id is the identity tensor. For the elastic part,
it can be written:

ε (e)
o (t) =

1
3

K−1(t)σo(t)

e(e)(t) =
1
2

μ−1(t)s(t)
(26)
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where K(t) y μ(t) are the bulk modulus and shear
modulus respectively. For the delayed part, it is:

ε (v)
o =

1
3

CK ∗σo(t) e(v) =
1
2

Cμ ∗ s(t) (27)

where CK(t,τ) and Cμ(t,τ) are the corresponding
creep compliances.

Two particular cases are of importance in struc-
tural applications and will receive special atten-
tion in this paper.

1) For some materials (concrete, for example),
experience has shown that Cμ(t,τ) is propor-
tional to CK(t,τ) for all times. This indicates
that the Poisson’s ratio is a constant, which;s
referred as the synchronous approximation in
viscoelasticity [Pipkins, (1972)] and:

KCK = μCμ = ECE (28)

2) For some other materials (polymers and rub-
bers), the creep compliance under shear may
be several orders of magnitude larger than
the creep compliance under volumetric strain.
Then, it can be assumed that the material has
no delayed volumetric strains.

4 The Trefftz method in viscoelasticity

In section 2, the Trefftz Method in elasticity was
analyzed in order to extend it to viscoelasticity.
The analogy between the body forces and the in-
elastic strain gradient [Lin, (1968)] can be consid-
ered to analyze solids under inelastic strains with
the methods applied to elastic materials. For a
time t, the equation that governs the viscoelastic
problems is:

(
3K + μ

3

)
∇(∇ ·�u)+μ∇2�u+(�b+�b(v)) = 0 (29)

with boundary conditions:

�u =�ud in ∂Ωu and �p = �pd −�p(v) in ∂Ωp (30)

where the equivalent body force is given by:

�b(v) = −
(

3K−2μ
3

∇tr(εεε(v))+2μ∇ ·εεε (v)
)

(31)

and the equivalent surface traction is given by:

�p(v) =
(

3K −2μ
3

tr(εεε(v))Id +2μεεε (v)
)

�n (32)

These vectors are calculated from the viscoelastic
strain tensor by the equations:

σσσ (v) = Eεεε (v)

�p(v) = σσσ (v)�n

�b(v) = −∇ ·σσσ (v)

(33)

An important result is that the equivalent body
force and the equivalent surface traction depend
on the body forces, surface tractions, the first in-
variant of the stress tensor and its gradient at time
t. To demonstrate this, it can be seen that:

σσσ (v) = Eεεε (v) = 3Kε (v)
o Id +2μe(v)

= K(CK ∗σo)Id + μ(Cμ ∗ s) (34)

By replacing the deviatoric stress tensor s, with
σσσ −σoId, it is obtained:

σσσ (v) = K(CK ∗σo)Id+μ(Cμ ∗σσσ)−μ(Cμ ∗σo)Id

�p(v) = σσσ (v)�n

= K(CK ∗σo)�n+ μ(Cμ ∗�p)−μ(Cμ ∗σo)�n (35)

�b(v) = −∇ ·σσσ (v)

= −K(CK ∗∇σo)+ μ(Cμ ∗�b)+ μ(Cμ ∗∇σo)

Replacing (28) in (35):

�b(v) = E(CE ∗�b) (36)

It is seen that in the case of synchronic approxi-
mation, the equivalent body force vanishes when
the regular body forces are disregarded or approx-
imated as an external load. This result simpli-
fies the analysis of applications where the applied
body forces can be disregarded or approximated
as an external load, because the equation that gov-
erns the problem is homogeneous, and thus the Tr-
efftz method can be applied directly. The numeri-
cal integration of viscoelasticity with reference to
the constitutive relations defined by equation (23)
was made by the Algorithmic Internal Variables
[Simo and Hughes, (1998)].
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The fundamental idea of the algorithm is to trans-
form the constitutive relations given by equa-
tion (23) into a two step recurrence formula that
involves the internal variables in the boundary
nodes. From a computational point of view, this
scheme avoids the need to store the entire history
of deformations in all the boundary nodes, which
would be unnecessary with a direct integration of
equation (23).

This method is applicable when the creep func-
tion consisting of a linear combination of func-
tions of time possesses the semi-group property.
This property holds for the exponential function
e

t+Δt
a = e

Δt
a e

t
a for any constants Δt and a in R and

t ∈ R [Simo and Hughes, (1998)].

The implementation of the Trefftz method in vis-
coelasticity, will be considered for three cases:

4.1 Synchronic approximation without body
forces

In this implementation, to reduce the number of
degrees of freedom of the problem, an algorithm
of the state variables [Creus, (1986)] will be con-
sidered for the viscoelastic method with a series
of parallel Kelvin elements. For this case:

�p(v)(t) = �p(v)
0 (t) = E(CE ∗�p(t)) (37)

Splitting the time in n intervals, each one of length
Δt, and assuming �p(t) as constant inside each in-
terval, it is easy to demonstrate [Creus, (1986)]
that for a Kelvin element of constants E1 and θ1:

�p(v)(t +Δt) = �p(v)(t)e−
Δt
θ1 +

E
E1

(1−e−
Δt
θ1 )�p(t)

(38)

The generalization to n Kelvin elements is im-
mediate;ue to the fact that they are in parallel.
It is enough to add the state variables �p(v)(t) of
each element. To which a particular solution
�p

(p)

0 (x1,x2, tn) will correspond, given by an ana-
logue expression in function of �p0(x1,x2).

To solve this viscoelastic problem in a time t is
reduced, then, to solve an elastic problem ruled

by the equations:

ℑ(�u(x1,x2, t)) = 0 in Ω
�u(x1,x2, t) =�ud(x1,x2, t) in ∂Ωu

�p(x1,x2, t) = �pd(x1,x2, t)−�p(v)(x1,x2, t) in ∂Ωp

(39)

where �p(v)(t) is given by the equations (38).

4.2 Synchronic approximation with body
forces

In this second case, besides having to calculate
�p(v)(t) as in the previous case,�b(v)

0 (t) needs to be
calculated. The following properties will be con-
sidered:
�b(x1,x2, t) =�b0(x1,x2) f0(t),
and

�b(v)
0 (x1,x2, t0) = 0

(40)

With these values and using equation (40) for
�b(v)

0 (t), it can be demonstrated through mathemat-
ical induction that for a time tn = t0 + nΔt, where
t0 is the initial time, and Δt is the step increment:

�b(v)
0 (x1,x2, tn) =�b0(x1,x2) fn(tn) (41)

This last equation along with the fact that the
Navier operator ℑ is linear allow the determina-
tion of a particular solution �u

(p)

0 (x1,x2, tn) for the
Navier equation when body force act according
to (40). If �u0(x1,x2) is a particular solution for
�b0(x1,x2):

ℑ(�u0(x1,x2)) = −�b0(x1,x2) (42)

Multiplying both sides of the equation (42) by
fn(tn), and applying the linearity of the Navier op-
erator ℑ, it is obtained:

fn(tn)ℑ(�u0(x1,x2)) = ℑ(�u0(x1,x2) fn(tn))

= −�b0(x1,x2) fn(tn) = −�b(v)
0 (x1,x2, tn) (43)

leading to the desired particular solution
�u

(p)

0 (x1,x2, tn) as:

�u
(p)

0 (x1,x2, tn) =�u0(x1,x2) fn(tn)

=�u
(p)

0 (x1,x2, tn−1)e−
Δt
θ1

+
E
E1

(
1−e−

Δt
θ1

)
�u0(x1,x2) f0(tn−1) (44)
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and its particular solution �p(p)
0 (x1,x2, tn) will cor-

respond to a similar expression in function of
�p0(x1,x2). The resolution of this viscoelasticity
problem at time t, is reduced to the resolution of
an elasticity problem governed by the equations:

ℑ(�u(x1,x2, t)) = 0 in Ω

�u(x1,x2, t)=�ud(x1,x2, t)−�u
(p)

0 (x1,x2, t) in ∂Ωu

(45)

�p(x1,x2, t) = �pd(x1,x2, t)−�p(p)
0 (x1,x2, t)

−�p(v)(x1,x2, t) in ∂Ωp

where �p(v)(t) and �u(p)(t) are given by the equa-
tions (38) and (43) respectively.

4.3 General case

In this last case, �p(v)(t) and�b(v)(t) have to be cal-
culated through the equations (35).

4.3.1 Calculation of �p(v)(t)

Naming:

�p(v)(t) = �p(v)
0 (t)+�p(v)

K (t)−�p(v)
μ (t)

�p(v)
0 (t) = μ(Cμ ∗�p(t))

�p(v)
K (t) = K(CK ∗σ0(t))�n

�p(v)
μ (t) = μ(Cμ ∗σ0(t))�n

(46)

and according to the algorithm of the state vari-
ables:

�p(v)
0 (t +Δt)=�p(v)

0 (t)e
− Δt

θμ +
μ
μ1

(
1−e

− Δt
θμ

)
�p0(t)

�p(v)
K (t +Δt)=�p(v)

K (t)e−
Δt
θK +

K
K1

(
1−e−

Δt
θK

)
σ0(t)�n

�p(v)
μ (t +Δt)=�p(v)

μ (t)e
− Δt

θμ +
μ
μ1

(
1−e

− Δt
θμ

)
σ0(t)�n

(47)

In order to calculate the last two equations (47),
there is a need to calculate the first invariant of
the stress tensor. Applying the Trefftz method at
each time t, it is possible to calculate the invari-
ant in every point of the domain with the equa-
tions (48), valid for the plane stress; for the plane

strains, those equations shall be multiplied by the
respective factor:

σo(x1,x2, t)∼= σ̃o (a(t),x1,x2)

=
NT

∑
j=1

a j(t)σ∗
o j

(x1,x2)

= a(t)Tσσσ∗(x1,x2)

=
N

∑
i=1

4iri−1 [C(i−1)αi(t)+S(i−1)βi(t)]

(48)

From this expression and by means of the vis-
coelastic operators, the equivalent body forces
vector �p(v)(t) can be determined.

4.3.2 Calculation of�b(v)(t)

To calculate�b(v)(t) a generalization of the partic-
ular solution method is considered, namely:

�b(v)(t) =�b(v)
0 (t)−�b(v)

K (t)+�b(v)
μ (t)

�b(v)
0 (t) = μ(Cμ ∗�b(t))

�b(v)
K (t) = K(CK ∗∇σ0(t))

�b(v)
μ (t) = μ(Cμ ∗∇σ0(t))

(49)

and according to the state variables algorithm:

�b(v)
0 (t +Δt)=�b(v)

0 (t)e
− Δt

θμ +
μ
μ1

(
1−e

− Δt
θμ

)
�b0(t)

�b(v)
K (t +Δt)=�b(v)

K (t)e−
Δt
θK +

K
K1

(
1−e−

Δt
θK

)
∇σ0(t)

�b(v)
μ (t +Δt)=�b(v)

μ (t)e−
Δt
θμ +

μ
μ1

(
1−e−

Δt
θμ

)
∇σ0(t)

(50)

The first of the equations (50) can be solved as
described in section 4.2, obtaining a particular so-
lution in the displacement �u

(p)

0 (x1,x2, t), given by
the equation (44) changing E by μ . To work with
the two remaining equations let’s consider the re-
spective gradients in equation (48) to obtain:

∇σo(x1,x2, t)∼= ∇σ̃o(x1,x2, t)

=
NT

∑
j=1

a j(t)∇σ∗
o j

(x1,x2)

= a(t)T∇σσσ ∗(x1,x2)

(51)
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Being:

σ̃o,1 =
N

∑
i=1

4i(i−1)ri−2 [C(i−2)αi(t)−S(i−2)βi(t)]

σ̃o,2 =

−
N

∑
i=1

4i(i−1)ri−2 [S(i−2)αi(t)−C(i−2)βi(t)]

(52)

By looking at equation (51) and the fact that
�b(K)(t0) = 0 and�b(μ)(t0) = 0, the problem corre-
sponds to the the conditions for the body forces of
section 4.2. Therefore, there are particular solu-
tions �u(p)

K (x1,x2, t) and �u(p)
μ (x1,x2, t) correspond-

ing to the pseudo-body forces �b(v)
K (t) and�b(v)

μ (t)
given by:

�u(p)
K (t +Δt) =

�u(p)
K (t)e−

Δt
θK +

K
K1

(1−e−
Δt
θK )

n

∑
j=1

a j(t)�u
(p∗)
j

�u(p)
μ (t +Δt) =

�u(p)
μ (t)e

− Δt
θμ +

μ
μ1

(1−e
− Δt

θμ )
n

∑
j=1

a j(t)�u
(p∗)
j

(53)

where �u(p∗)
j is a particular solution of the Navier

equation when applied a body force equal to ∇σ∗
o j

.
When a body force equal to each of the terms in
equation (51) is applied to the Navier equation, it
is possible to demonstrate that the respective par-
ticular solutions are:

ℑ
(
�u(p∗)

4n

)
= 4n(n−1)rn−2 [C(n−2)�e1

− S(n−2)�e2]
⇒

�u(p∗)
4n ·�e1 =

n(n−1)rn

2μ(3K + μ)

[
7μ +3K

n−1
C(n−2)

− 3K + μ
2

C(n−4)
]

�u(p∗)
4n ·�e2 = − n(n−1)rn

2μ(3K + μ)

[
7μ +3K

n−1
S(n−2)

+
3K + μ

2
S(n−4)

]

ℑ(�u(p∗)
4n+1)) = 4n(n−1)rn−2 [S(n−2)�e1

+ C(n−2)�e2]
⇒

�u(p∗)
4n+1 ·�e1 =

n(n−1)rn

2μ(3K + μ)

[
7μ +3K

n−1
S(n−2)

+
3K + μ

2
S(n−4)

]

�u(p∗)
4n+1 ·�e2 =

n(n−1)rn

2μ(3K + μ)

[
7μ +3K

n−1
C(n−2)

− 3K + μ
2

C(n−4)
]

(54)

These equations are valid for values of n differ-
ent from 1 and 2, which yield the corresponding
equations relatively easily.

Similar formulas are obtained for the surface trac-
tions.

It is thus concluded that in order to solve the gen-
eral viscoelasticity problem at time t, it is needed
to solve an elasticity problem governed by the
equations:

ℑ(�u(x1,x2, t)) = 0 in Ω

�u(x1,x2, t) =�ud(x1,x2, t)−�u
(p)

(x1,x2, t) in ∂Ωu

�p(x1,x2, t) = �pd(x1,x2, t)−�p(p)(x1,x2, t)

−�p(v)(x1,x2, t) in ∂Ωp

(55)

where �p(v)(t) is given by the formulas developed

in section 4.3.1, while�u(p)(t)=�u(p)
0 (t)−�u(p)

K (t)+
�u(p)

μ (t) is given by three terms from the equations
(44) and (53) respectively.

In the generalized particular solution method pro-
posed in this paper, the non-homogeneous terms
are calculated from a series expansion obtained
from the T-complete functions. The particular so-
lution corresponding to each of these functions
can be found without approximation with new
polynomials as in other formulations of the Tre-
fftz method [Kita, Ikoda and Kamiya, (2003)].

This allows keeping the characteristics of the Tr-
efftz method of only working in the boundary.
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Figure 1: Considered load histories.

 

Figure 2: Square plate of a viscoelastic material.

Figure 3: Schematic and constitutive equation of
Maxwell model.

Figure 4: Results obtained for a viscoelastic material that responds to a Maxwell model in its longitudinal
mode.
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Figure 5: Schematic and constitutive equation of
Boltzmann model. Figure 7: One-quarter hollow cylinder subject to

constant internal pressure.

Figure 6: Results obtained for a viscoelastic material that responds to a Boltzmann model.

Figure 8: Radial displacement of the hollow cylinder.
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5 Examples

5.1 Fading memory

Three load histories as shown in Figure 1 are ap-
plied to a two-meter-side square plate.

The plate in Figure 2 was modelled with 12 nodes,
taking double nodes in the corners and consider-
ing;he collocation method with 16 terms in the Tr-
efftz series.

At first, it was assumed that a viscoelastic mate-
rial (Figure 3) responds according to a Maxwell
model in its longitudinal mode with E1 = 500 MPa
, η1 = 50 MPa/s, and with a time-independent
Poisson’s ratio of 0.25.

In Figure 4, the obtained results are compared
with the analytical solution for three load histo-
ries .

Similarly, the same loads are applied to a Boltz-
man model with E1 = 500 MPa , E2 = 1000 MPa ,
η2 = 100 MPa/s and ν = 0.25 (Figure 5).

In Figure 6, the obtained results are compared
with the analytical solution.

A time step equal to 0.01 s was considered in both
models.

It can be seen that, when the time increases in
the Maxwell model, the deformation histories are
different, while the Boltzmann model erases the
details of the loading process. This is a charac-
teristic behaviour of stable non-aging viscoelastic
materials and is related to the concept of fading
memory [Creus, (1986)].

5.2 Hollow cylinder subject to constant inter-
nal pressure

A thick hollow cylinder of internal radius, a, equal
to 10 cm and external radius, b, equal to 20 cm
is subject to an internal pressure P(t) = PoH(t) ,
with Po = 10 MPa , and H(t) being the Heaviside
function [Sim and Kwak, (1988)]. Due to sym-
metry, only one-quarter of the cylinder was con-
sidered in Figure 7. It was discretized using 126
nodes and 132 terms for the expansion.

A viscoelastic material having a Boltzmann
model for the shear component and elastic model
for the dilatational component was considered.

The constants were: G1 = 480 MPa; G2 = 160
MPa; η2 = 1600 MPa/s, K = 1280 MPa. A time
step of Δt = 1s was considered.

The numerical solution for radii of 20 cm,
17.5cm, 15 cm, 12.5 cm, and 10 cm are plotted
along with the exact solution and shown in Figure
8.

5.3 Flat plate subjected to prescribed displace-
ments

A flat plate was subjected to displacements that
vary linearly along the considered boundary ap-
plied at zero time, and then kept constant as
shown in Figure 9. The plate was discretized us-
ing 24 nodes and 36 terms in the expansion.

Figure 9: Flat plate under prescribed displace-
ments.

A Dischinger model, as shown in Figure 10, is
considered for the material in the shear mode with
constants μ(t) = 8571 MPa, γ = 0.026 day−1, γη0

= 35,667 MPa, and linear elasticity in the dilata-
tion mode with constant K =10,000 MPa.

Figure 10: Schematic and constitutive equation of
Dischinger model.
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Figure 11: Results for flat plate under constant prescribed displacements.

In Figure 11, σx at point A and displacements uy at
point E are compared with analytical results using
integration intervals of Δt = 2 days and Δt = 0.02
days.

6 Conclusions

A generalization of the Trefftz method for ana-
lyzing problems of viscoelastic materials, with or
without aging, was presented in this paper. It
was shown that the elastic Trefftz method allows
the solution of synchronic problems, in which the
Poisson’s ratio is constant, where the governing
equation is homogeneous in the absence of body
forces. Through the analogy between the pseudo
body forces and the inelastic deformations gra-
dient, the method of the particular solution was
extended to the solution of general viscoelastic
problems in which the Poisson’s ratio changes
with time. The Trefftz method is typically used
on the boundary but it was proven here to work in
spite of the the fact that the differential equation

was non-homogeneous at every time step. The re-
sults obtained by the authors for several viscoelas-
tic materials show the good performance of the
method.
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