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A Modified Method of Fundamental Solutions with Source on the Boundary
for Solving Laplace Equations with Circular and Arbitrary Domains

D.L. Young1 , K.H. Chen2, J.T. Chen3 and J.H. Kao4

Abstract: A boundary-type method for solving
the Laplace problems using the modified method
of fundamental solutions (MMFS) is proposed.
The present method (MMFS) implements the sin-
gular fundamental solutions to evaluate the solu-
tions, and it can locate the source points on the
real boundary as contrasted to the conventional
MFS, where a fictitious boundary is needed to
avoid the singularity of diagonal term of influence
matrices. The diagonal term of influence matrices
for arbitrary domain can be novelly determined
by relating the MFS with the indirect BEM and
are also solved for circular domain analytically by
using separable kernels and circulants. The major
difficulty of the coincidence of the source and col-
location points in the conventional MFS is thereby
overcome. The off-diagonal coefficients of influ-
ence matrices can be easily determined by using
the two-point function. The ill-posed nature of the
conventional MFS then disappears.
Finally, we provide numerical evidences that the
present method improves the accuracy of the solu-
tion after comparing with the conventional MFS,
in particular for complicated boundaries in which
the conventional MFS may encounter difficulties.
Good agreements are observed as comparing with
analytic or other numerical solutions.
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1 Introduction

Because of the trend in the fast development of
computer, numerical methods play an important
role in solving realistic engineering problems es-
pecially when the geometry is complex and an ex-
act solution for the pertinent real world problem is
not available. In scientific computing realm of nu-
merical methods of the developed finite difference
method (FDM) and finite element method (FEM),
mesh generation of a complicated geometry is al-
ways the most time consuming part of the solution
process in the stage of model development for en-
gineers in dealing with the engineering and sci-
ence problems, particularly in 3-D case, because
those methods require approximations to be made
throughout the interesting domain.

Boundary element method (BEM) is essential to
discretize the boundary only instead of the do-
main, which takes a little time for one-dimension
reduction in mesh generation. Due to its unique
feature of mesh reduction, the BEM has become a
major numerical method for solving various kinds
of multi-dimensional problems with the compli-
cated domain.

The BEM is necessary to discretize the boundary
only for one-dimension reduction in contrast with
the domain methods of FEM or FDM. From the
viewpoint of mesh reduction method, the BEM
can be viewed as the first generation of mesh re-
duction method and it has attracted great atten-
tion from science and engineering communities.
Although significant mesh reduction has been
gained, the BEM still has inconvenience in irregu-
lar surface boundary for 3-D problem (Nishimura
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2002). For the first generation of mesh reduction
method, the BEM proposed a simple technique
for obtaining the principal values in the singular
and hypersingular equations (Chen & Hong 1992;
Hadamard 1952; Tanaka et al. 1994). Some ef-
ficient methods were provided by employing the
adaptive mesh scheme and the FMM to improve
the efficiency of the dual BEM (Chen et al. 2002c,
2004b; Kita & Kamiya 1994; Nishimura 2002;
Rokhlin 1983; Stewart & Hughes 1997) for solv-
ing 2-D acoustics and water wave problems.

In recent years, science and engineering com-
munities have paid attention to the meshless
method in which the element is free (Atluri et
al. 2006). The meshless method is the mesh
reduction method that no mesh is required and
only boundary nodes are necessary. From the
viewpoint of mesh reduction method, the mesh-
less method can be seen as the second generation
of mesh reduction method. The second genera-
tion of mesh reduction technique possesses a great
promise to replace the FEM and BEM as a dom-
inant numerical method. Because of neither do-
main nor surface meshing required for the mesh-
less method, it is very attractive for engineers
in model creation. The initial idea of meshless
method dates back to the smooth particle hydro-
dynamics (SPH) method for modeling astrophys-
ical phenomena (Gingold & Maraghan 1977).
Several meshless methods have also been reported
in the literature, for example, the element-free
Galerkin method (Belytschko et al. 1994) and the
reproducing kernel method (Liu et al. 1995).

The MFS has been employed to solve some en-
gineering problems (Balakrishnan & Ramachan-
dran 2000; Chen et al. 1998; Cheng et al. 2000;
Tsai et al. 2002; Young & Ruan 2005). Since
only boundary nodes are distributed, it is a kind
of meshless method. A comprehensive review
of the MFS was given by Fairweather & Kara-
geophis 1998. The source points are distributed
on the fictitious boundary (nonphysical bound-
ary). Besides, the kernel function is composed of
two-point function which is a kind of the radial
basis function. By distributing single or double
layer potentials on the fictitious boundary, the so-
lution can be solved. A regular formulation and

singularity-free method were obtained. Also, a
meshless formulation can be achieved. The MFS
is easy to learn, to use and to program and has
high order of accuracy. It seems that this method
is very attractive. However, the MFS has not be-
come a popular numerical method because of the
controversial artificial boundary (off-set bound-
ary) outside the physical domain. The off-set
boundary distance is difficult to decide in general
for real engineering problems with a complicated
geometry. The diagonal coefficients of influence
matrices become singular in common case when
the off-set boundary approaches to the real bound-
ary. The influence matrices are ill-posed when the
off-set boundary is far away from the real bound-
ary. It results in an ill-posed problem since the
condition number for the influence matrix is very
large. The location of source and observation
points is vital to the accuracy of the solution by
using the conventional MFS. Until now, no objec-
tive criterion to select the optimal source location
has been developed in spite of a large amount of
numerical experiments.

Recently, an improved technique which is the
so called as boundary knot method or boundary
collocation method was introduced by Chen and
his collaborators (Chen & Tanaka 2002; Chen &
Hon 2003), Kang and his coworkers (Kang et al.
1999; Kang & Lee 2000) as well as Chen and
his coworkers (Chen et al. 2000, 2002a, 2002b,
2004a). The method has overcome the drawback
of ambiguous off-set boundary due to employing
the nonsingular general solutions instead of the
singular fundamental solutions to solve this trou-
ble issue. In these references, the method only
works well in regular geometry with the Dirichlet
and Neumann boundary conditions (B. Cs.). Even
though this method can locate the source points
on the physical boundary and has the non-singular
kernels, it still results in the ill-posed matrices.

Therefore, a MMFS for solving the Laplace prob-
lems is proposed based on the potential theory.
The source points and collocation points are lo-
cated on the real boundary to avoid the difficulty
in selecting the source location by using special
treatment of singularity. The present method is
to distribute the observation and source points on
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the coincident locations of the real boundary. Be-
cause the MFS is similar to the indirect BEM, it
is one kind of regular BEM instead of the dif-
ference of lumped source and distributed source.
The method can be treated as a special case of
the indirect BEM. The finite value of the diagonal
terms of the influence matrices can be extracted
out by relating the MFS with the indirect BEM
and can also be derived by using separable ker-
nels and circulants analytically. The off-diagonal
coefficients of influence matrices can be easily de-
termined by the two-point function. Finally, the
program of the new meshless method (MMFS) for
solving the Laplace problems subject to the vari-
ous types of B. C. is developed.

2 Formulation of MMFS

The governing equation for the Laplace problem
is shown as follows:

∇2u(x) = 0, x ∈ D, (1)

where ∇2 is the Laplacian operator, D is the do-
main of the problem. The boundary conditions
are shown as follows:

u(x) = u, x on B1 (2)

t(x) = t, x on B2 (3)

where t(x) = ∂u(x)/∂nx and B1 is the essential
boundary (Dirichlet boundary) in which the po-
tential is prescribed, B2 is the natural boundary
(Neumann boundary) where the normal derivative
of the potential in the nx direction is specified, and
B1 and B2 construct the whole boundary of the do-
main D. By using the MMFS, the representation
for the solution can be expressed in terms of the
strengths of the singularities (s j) as

(i) UL method

u(xi) =
2N

∑
j=1

ln(ri j)A j =
2N

∑
j=1

Ui jA j

t(xi) =
2N

∑
j=1

yknk

r2
i j

A j =
2N

∑
j=1

Li jA j

(4)

where xi is the ith collocation point. A j is
the jth generalized unknown using the UL

method, ri j =
∣∣s j −xi

∣∣, in which, s j is the jth
source point, nk is the kth component of the
outward normal vector at s; nk is the kth com-
ponent of the outward normal vector at x and
yk ≡ xk−sk, and 2N is the number of the dis-
tributed source nodes.

(ii) TM method

u(xi) =
2N

∑
j=1

yknk

r2
i j

Cj =
2N

∑
j=1

Ti jCj,

t(xi) =
2N

∑
j=1

(2
ykylnknl

r4
i j

− nknk

r2
i j

)Cj =
2N

∑
j=1

Mi jCj,

(5)

where Cj is the jth generalized unknowns us-
ing the TM method.

To desingularize the kernels, singularity, s is
shifted to on the off-set (auxiliary) boundary (B′)
away from the real boundary (B). This method
is termed the conventional MFS. However, it en-
counters the ill-posed influence matrix. The off-
set distance between B and B′ needs to be cho-
sen deliberately. To overcome the drawback of
ambiguous off-set boundary of the ill-posed prob-
lem, s j is distributed on the real boundary by us-
ing the proposed technique to overcome the sin-
gularity of the kernels. This method is called the
MMFS.

From the mathematical point of view, the MMFS
is equivalent to the indirect BEM and it can be
viewed as a discrete version of the indirect BEM
instead of the difference of lumped source and
distributed source. The method can be treated as
a special case of the indirect BEM. Therefore, the
indirect BEM can provide us useful information
for determining the diagonal terms of the influ-
ence matrices. Based on the potential theory for
the indirect BEM, we have two kinds of formula-
tion

(i) UL method (single-layer potential approach)
The field solution in terms of the single-layer
potential approach of the indirect BEM is
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represented as

u(x) =
∫

B
U(s,x)φ (s)dB(s), (6)

t(x) =
∫

B
L(s,x)φ (s)dB(s), (7)

where u and t are the potential and its nor-
mal derivative, x and s denote the field point
and source point, respectively, φ is the gen-
eralized unknown density function for the
single-layer potential and

U(s,x) = ln(ri j), (8)

L(s,x) =
∂U(s,x)

∂nx
=

yini

r2
i j

, (9)

for the 2-D Laplace problem, in which r ≡∣∣s j −xi
∣∣ is the distance between the source

(s) and collocation points (x).

(ii) TM method (double-layer potential ap-
proach)
The double-layer potential approach is ex-
pressed as

u(x) =
∫

B
T (s,x)ϕ(s)dB(s),

t(x) =
∫

B
M(s,x)ϕ(s)dB(s),

(10)

where ϕ is the generalized unknown density
function for the double-layer potential and

T (s,x) =
∂U(s,x)

∂ns
=

yini

r2
i j

, (11)

M(s,x) =
∂ 2U(s,x)
∂ns∂nx

= 2
yiy jnin j

r4
i j

− nini

r2
i j

.

(12)

To avoid the singularity of the kernels, s j are dis-
tributed on B′ in a similar way of the conventional
MFS. However, it will encounter the ill-posed in-
fluence matrix. This method is termed the gen-
eralized indirect BEM. To overcome the draw-
back of ambiguous off-set boundary of the ill-
posed problem, s is distributed on the real bound-
ary by regularizing the singular integrals. Many
researchers have paid attention to regularization

techniques for singular and hypersingular inte-
grals to ensure a finite value (Principal value).
This method is called the indirect BEM.

By superimposing 2N constant source distribu-
tion, φ or ϕ (or concentrated strength, A j or Cj)
along the off-set boundary and collocating the 2N
points on the real boundary, we have

[Ui j] =

⎡
⎢⎢⎢⎣

a1,1 · · · a1,2N−1 a1,2N

a2,1 · · · a2,2N−1 a2,2N
...

. . .
...

...
a2N,1 · · · a2N,2N−1 a2N,2N

⎤
⎥⎥⎥⎦ , (13)

[Li j] =

⎡
⎢⎢⎢⎣

b1,1 · · · b1,2N−1 b1,2N

b2,1 · · · b2,2N−1 b2,2N
...

. . .
...

...
b2N,1 · · · b2N,2N−1 b2N,2N

⎤
⎥⎥⎥⎦ , (14)

[Ti j] =

⎡
⎢⎢⎢⎣

c1,1 · · · c1,2N−1 c1,2N

c2,1 · · · c2,2N−1 c2,2N
...

. . .
...

...
c2N,1 · · · c2N,2N−1 c2N,2N

⎤
⎥⎥⎥⎦ , (15)

[Mi j] =

⎡
⎢⎢⎢⎣

d1,1 · · · d1,2N−1 d1,2N

d2,1 · · · d2,2N−1 d2,2N
...

. . .
...

...
d2N,1 · · · d2N,2N−1 d2N,2N

⎤
⎥⎥⎥⎦ , (16)

where the elements can be obtained by

ai, j = Ui jρ( j), j = 1,2,3, · · · ,2N, (17)

bi, j = Li jρ( j), j = 1,2,3, · · · ,2N, (18)

ci, j = Ti jρ( j), j = 1,2,3, · · · ,2N, (19)

di, j = Mi jρ( j), j = 1,2,3, · · · ,2N, (20)

in which

ρ( j) =

{
ρ j, for the indirect BEM,

1, for the MMFS,
(21)

where ρ j is a set of integral weights of the indi-
rect BEM. For the MMFS, ρ( j) is reduced to one
since source distribution is lumped on the concen-
trated point.

3 An analytical derivation of diagonal coef-
ficients of influence matrices with circular
domain for MMFS

By adopting the addition theorem, the four ker-
nels in the dual formulation are expanded into de-
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generate kernels which separate the field point,
x, and source point, s, as follows (Abramowitz
1972):

U(s,x) = lnr =√
(ρ cos(φ )−Rcos(θ ))2 +(ρ sin(φ )−Rsin(θ ))2

(22)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ui(s,x) = lnR−
∞
∑

m=1

1
m

(ρ
R

)m
cosm(θ −φ ),

R > ρ

Ue(s,x) = lnρ −
∞
∑

m=1

1
m

(
R
ρ

)m
cosm(θ −φ ),

R < ρ
(23)

L(s,x) =
∂ lnr
∂ρ

=
ρ −Rcos(φ −θ )

R2 +ρ2 −2Rρ cos(φ −θ )
(24)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Li(s,x) = −
∞
∑

m=1

ρm−1

Rm cos(m(θ −φ )),

R > ρ

Le(s,x) = 1
ρ +

∞
∑

m=1

Rm

ρm+1 cos(m(θ −φ )),

R < ρ
(25)

T (s,x) =
∂ lnr
∂R

=
R−ρ cos(φ −θ )

R2 +ρ2 −2Rρ cos(φ −θ )
(26)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T i(s,x) = 1
R +

∞
∑

m=1

ρm

Rm+1 cos(m(θ −φ )),

R > ρ

T e(s,x) = −
∞
∑

m=1

Rm−1

ρm cos(m(θ −φ )),

R < ρ
(27)

M(s,x) =
∂ 2 lnr
∂ρ∂R

=
−2Rρ +(R2 +ρ2)cos(θ −φ )
(R2 +ρ2 −2Rρ cos(θ −φ ))2

(28)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Mi(s,x) =
∞
∑

m=1

mρm−1

Rm+1 cos(m(θ −φ )),

R > ρ

Me(s,x) =
∞
∑

m=1

mRm−1

ρm+1 cos(m(θ −φ )),

R < ρ
(29)

where s = (R,θ ) and x = (ρ ,φ ) in the polar coor-
dinate.

We can find the following relations between the
interior and exterior kernels from Eqs. (22)∼(28),
as shown below:

UE
i j = UI

i j or UE(s,x) = UI(s,x) (30)

T E
i j = LI

i j orT E(s,x) = LI(s,x) (31)

LE
i j = T I

i j orLE(s,x) = T I(s,x) (32)

ME
i j = MI

i j orME(s,x) = MI(s,x). (33)

Since the rotation symmetry is preserved for a
circular boundary, the four influence matrices in
Eqs. (13)∼(16) are the circulants with the ele-
ments

Ki j = K (R,θ j,ρ ,φi) (34)

where the kernel K can be U , T , L or M in
Eqs. (13)∼(16), φi and θ j are the angles of collo-
cation and source points, respectively. By super-
imposing 2N lumped strength along the boundary,
we have the influence matrices,

[K] =

⎡
⎢⎢⎢⎢⎢⎣

k0 k1 · · · k2N−2 k2N−1

k2N−1 k0 · · · k2N−3 k2N−2

k2N−2 k2N−1 · · · k2N−4 k2N−3
...

...
. . .

...
...

k1 k2 · · · k2N−1 k0

⎤
⎥⎥⎥⎥⎥⎦

(35)

where the elements of the first row can be ob-
tained by

Kj = K (R,θ j,ρ ,0) (36)

in which φ = 0 without loss of generality. The
matrix [K] in Eq.(35) is found to be a circulant
(Chen et al. 2000) since the rotational symmetry
for the influence coefficients is considered. By in-
troducing the following bases for the circulants, I,
(C2N)1, (C2N)2, . . . ., and (C2N)2N−1, we can ex-
pand [K] into

[K] = k0I +k1(C2N)1 +k2(C2N)2 + · · ·
+ k2N−1(C2N)2N−1, (37)
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where I is an identity matrix and

C2N =

⎡
⎢⎢⎢⎢⎢⎣

0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1
1 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

2N×2N

. (38)

Based on the circulant theory, the eigenvalues for
the influence matrix, [K], are found as follows:

λl = k0 +k1αl +k2α2
l + · · ·+k2N−1α2N−1

l

l = 0,±1,±2, · · · ,±(N −1),N
(39)

where λl and αl are the eigenvalues for [K] and
[C2N], respectively. It is easily found that the
eigenvalues for the circulant [C2N] are the roots
for α2N = 1 as shown below:

αl = ei 2π l
2N ,

l = 0,±1,±2, · · · ,±(N −1),N or

l = 0,1,2, · · · ,2N −1.

(40)

Substituting Eq.(40) into Eq.(39), we have

λl =
2N−1

∑
m=0

kmαm
l =

2N−1

∑
m=0

kmei 2π
2N ml,

l = 0,±1,±2, · · · ,±(N −1),N.

(41)

According to the definition for km in Eq.(36), we
have

km = k2N−m, m = 0,1,2, · · · ,2N −1. (42)

Substitution of Eq.(42) into Eq.(41) yields

λl = k0 +(−1)lkN +
N−1

∑
m=1

(αm
l +α2N−m

l )km

=
2N−1

∑
m=0

cos(mlΔθ )km.

(43)

Substituting Eq. (23) into Eq. (43) for U matrix
by setting φ = 0 without loss of generality, the
Riemann sum of infinite terms reduces to the fol-
lowing integral

λl =
1

Δθ
lim

N→∞

2N−1

∑
m=0

cos(mlΔθ )U(mΔθ ,0)Δθ (44)

≈ 2N
2π

∫ 2π

0
cos(lθ )U(θ ,0)dθ, (45)

where Δθ = 2π/2N.

(i) Interior problem

By using the degenerate kernel Ui(s,x) for inte-
rior problem (R > ρ) in Eq. (23) and the orthogo-
nal conditions, Eq. (45) reduces to

λ i
l =

{
2N lnR, l = 0

−N/ |l| , l = ±1,±2, · · · ,±(N −1),N

(46)

Similarly, we have

μ i
l =

{
0, l = 0

−N/R, l = ±1,±2, · · · ,±(N −1),N

(47)

vi
l =

{
2N/R, l = 0

N/R, l = ±1,±2, · · · ,±(N −1),N

(48)

δ i
l =

{
0, l = 0

N |l|/R2, l = ±1,±2, · · · ,±(N −1),N

(49)

where μ i
l , vi

l and δ i
l are the eigenvalues of

[
Li

]
,[

T i
]

and
[
Mi

]
matrices, respectively. Using the

invariant property for the influence matrices, the
first invariant is the sum of all the eigenvalues.
The diagonal coefficients for the four matrices are
obtained by adding all the eigenvalues and can be
shown below:

2Na j j =
2N−1

∑
m=0

λ i
m, ( j no sum) (50)

2Nb j j =
2N−1

∑
m=0

μ i
m, (51)

2Ncj j =
2N−1

∑
m=0

vi
m, (52)

2Nd j j =
2N−1

∑
m=0

δ i
m. (53)

Hence, the diagonal elements are easily deter-
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mined from the first invariant as follows:

a j j = lnR− [2(
1
1

+
1
2

+ · · ·+ 1
N −1

)+
1
N

], (54)

b j j =
1−2N

2R
≈ −π

2πR/2N
, N >> 1, (55)

c j j =
1+2N

2R
≈ π

2πR/2N
, N >> 1, (56)

d j j =
1

R2 [1+2+ · · ·+(N −1)+N]. (57)

(ii) Exterior problem

By using the degenerate kernel Ue(s,x) for exte-
rior problem (R < ρ) in Eq. (23) and the orthogo-
nal conditions, Eq.(45) reduces to

λ e
l =

{
2N lnR, l = 0

−N/ |l| , l = ±1,±2, · · · ,±(N −1),N

(58)

Similarly, we have

μe
l =

{
−2N/R, l = 0

−N/R, l = ±1,±2, · · · ,±(N −1),N

(59)

ve
l =

{
0, l = 0

N/R, l = ±1,±2, · · · ,±(N −1),N

(60)

δ e
l =

{
0, l = 0

N |l|/R2, l = ±1,±2, · · · ,±(N −1),N

(61)

where μe
l , ve

l and δ e
l are the eigenvalues of [Le],

[T e] and [Me] matrices, respectively. Using the
invariant property for the influence matrices, the
first invariant is the sum of all the eigenvalues.
The diagonal coefficients for the four matrices are
obtained by adding all the eigenvalues and can be

shown below:

2Na j j =
2N−1

∑
m=0

λ e
m, (62)

2Nb j j =
2N−1

∑
m=0

μe
m, (63)

2Ncj j =
2N−1

∑
m=0

ve
m, (64)

2Nd j j =
2N−1

∑
m=0

δ e
m. (65)

Hence, the diagonal elements are easily deter-
mined from the first invariant as follows:

a j j = lnR− [2(
1
1

+
1
2

+ · · ·+ 1
N −1

)+
1
N

], (66)

( j no sum)

b j j =
−(1+2N)

2R
≈ −π

2πR/2N
, N >> 1, (67)

c j j =
−(1−2N)

2R
≈ π

2πR/2N
, N >> 1, (68)

d j j =
1

R2 [1+2+ · · ·+(N −1)+N]. (69)

The properties for the influence matrices are
shown in Table 1.

4 Derivation of diagonal coefficients of influ-
ence matrices with arbitrary domain for
the MMFS

The finite value of the diagonal terms of the influ-
ence matrices for the MMFS can be extracted out
by the analog of Eq. (21) between the MMFS and
the indirect BEM (Chen & Hong 1992) on an ad
hoc concept.

4.1 Interior problem

By employing the regularized technique for
singular element (Cauchy principal value and
Hadamard principal value) in the indirect BEM,
the explicit form of diagonal coefficients in the
four influence matrices of the indirect BEM can
be derived. From the relation between the MMFS
and the indirect BEM in Eq. (21), the diagonal
coefficients in the four influence matrices of the
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Table
1:

T
he

properties
of

the
influence

m
atrices

for
the

L
aplace

equation.

kernel
func-
tion

U
(s,x)=

ln
r

L(s,x)
=

∂U
(s,x)

∂
n

x

=
y

i n
i

r
2

T
(s,x)

=
∂U

(s,x)
∂

n
s

=
−

y
i n

i
r

2

M
(s,x)

=
∂

2U
(s,x)

∂
n

s ∂
n

x

=
2y

i y
j n

i n
j

r
4

−
n

i n
i

r
2

Eigenvalue
λl

E
xterior

Interior
E

xterior
Interior

E
xterior

Interior
E

xterior
Interior

λ
e0
=

2N
ln

R
λ

el
=
−

Nl

λ
i0 =

2N
ln

R
λ

il =
−

Nl

λ
e0
=

−
2NR

λ
el
=

−
NR

λ
i0 =

0
λ

il =
−

NR

λ
e0
=

0
λ

el
=

NR

λ
i0 =

2NR
λ

il =
NR

λ
e0
=

0
λ

el
=

NR
2

λ
i0 =

0
λ

il =
NR

2

Diagonal
value

12N

2N∑m
=

0 λ
m

=
Sum

of
diagonalterm

s
2N

(circular
dom

ain
only)

ln
R−

[2(
11 +

12 +
...+

1
N−

1 )+
1N
]

ln
R−

[2(
11 +

12 +
...+

1
N−

1 )+
1N
]

−
NR −

12R
−

NR
+

12R
NR −

12R
NR

+
12R

1R
2 [1

+
2
+

...

+
(N−

1)+
N

]

1R
2 [1

+
2
+

...

+
(N

−
1)+

N
]

A
pproxim

ate
solution

(arbitrary
dom

ain)

vlog|v|| 0
.5li,i+

1

−
0
.5li,i−

1
vlog|v|| 0

.5li,i+
1

−
0
.5li,i−

1

−
π

0
.5(li,i−

1 +
li,i+

1 )
−

π
0
.5(li,i−

1 +
li,i+

1 )
π

0
.5(li,i−

1 +
li,i+

1 )
π

0
.5(li,i−

1 +
li,i+

1 )
π

0
.5v(li,i−

1 +
li,i+

1 ) ∣∣∣ 0
.5li,i+

1

−
0
.5li,i−

1

π
0
.5v(li,i−

1 +
li,i+

1 ) ∣∣∣ 0
.5li,i+

1

−
0
.5li,i−

1

H
ere

r
=
|x−

s|,y
i =

x
i −

si ,n
i denotes

the
ith

com
ponents

of
norm

alvector
on

x,respectively.

MMFS can be shown below:

aii =
[v ln |v|−v]

0.5(li,i−1 + li,i+1)

∣∣∣0.5li,i+1

−0.5li,i−1
, (70)

bii =
−π

0.5(li,i−1 + li,i+1)
, (71)

cii =
π

0.5(li,i−1 + li,i+1)
, (72)

dii =
1

v0.5(li,i−1 + li,i+1)

∣∣∣0.5li,i+1

−0.5li,i−1
(73)

where li,i−1 is the distance between the (i−1)th
source point and the ith source point.

4.2 Exterior problem

According to the dependence of the outward nor-
mal vector in the four kernel functions of the
MMFS for the interior and exterior problems, the
diagonal coefficients of the four influence matri-
ces are the same for the interior and exterior prob-
lems. The diagonal terms of the influence ma-
trices in the MMFS using the analytical method
and the approximate method are shown in Table
1. The UL method of the MMFS is adopted here
for solving the below four numerical examples.

5 Numerical examples

To demonstrate the validity of the MMFS, four
examples for the interior and exterior Laplace
problems subject to the various types of B.Cs. are
given. The real physical problems for the Laplace
equation contain potential flow problems, torsion
bar problem, Stokes equations of the vorticity
transport equation in the scalar form etc. In case
1, the interior problems for circular domain sub-
ject to the Neumman B. C. are discussed. In case
2, we deal with the exterior problems for circular
domain subjected to the discontinuous Dirichlet
B. C. In case 3, the square geometry with discon-
tinuous Dirichlet B. C. is considered. In case 4,
we demonstrate the ability of the MMFS to solve
the water wave problem with infinite strip domain
of normal incident water wave past a submerged
breakwater. The governing equation considered is
the Laplace equation.
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Collocation points

Source points

s(R, )

x(a, )

(a) Conventional MFS

Collocation points

Source points

s(R, )
x(a, )

(b) MMFS

Figure 1: The sketch of node distribution for the interior problem with circular domain in the case 1 (a)
Conventional MFS, (b) MMFS.
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Case 1: Interior problem with a circular domain
subject to the Neumann B. C.

A circular domain (a = 2m) subject to the Neu-
mann B. C. (t = a5 cos(6φ )) is considered. The
sketch of node distribution using the different
methods is plotted in Fig.1.

In this case, an analytical solution is available as
follows:

u(ρ ,φ )=
ρ6

6
cos(6φ ), 0≤ ρ ≤ a, 0≤ φ < 2π

(74)

The results on the real boundary (ρ = 2m) by us-
ing the conventional MFS for different off-set dis-
tances to boundary, are obtained in Fig.2.

There are non-unique solutions by using the MFS
in Fig. 2(a) and (b) for ρ = 2m and ρ = 1m,
respectively. To deal with the non-unique prob-
lem, the rigid body terms are added in the solu-
tions to constrain the potential in the origin point
to be zero. Therefore, we can shift the solution to
the exact solution as shown in Fig.3 (a) and (b).
It is obvious that the relative errors of the con-
ventional MFS comparing with the exact solution
for R = 2.1m and R = 50m are larger than that of
R = 3m from Fig.3 (a) and (b).

This means that the location of source points is
very important to the accuracy of the solution by
using the conventional MFS. The results by using
the MMFS and the conventional MFS (R = 3m)
are plotted in Fig.4 (a) and (b).

Fig.4 (a) and (b) show the convergence of the so-
lution using the MMFS. The field solutions by us-
ing the two MFS and the exact solution are plotted
in Fig.5 (a)∼(c).

Case 2: Exterior problem with a circular domain
subject to the discontinuous Dirichlet B. C.

A circular domain (a = 1m) subject to the discon-
tinuous Dirichlet B. C. is given as follows:

u(a,φ ) =

{
1, 0 < φ < π ,

−1, π < φ < 2π .
(75)

The sketch of node distribution using the different
methods is plotted in Fig.6.

The exact solution is available as

u(x,y) =
2
π

tan−1(
2y

x2 +y2 −1
). (76)

The field potential solution of the exact solution
is shown in Fig.7.

We obtain the results of the field potential solution
by using the conventional MFS (100 nodes) for
different off-set distances to boundary as shown
in Fig.8.

The relative errors of the conventional MFS are
larger for R = 0.9999m and R = 0.5m than R =
0.8m. The field solution of the MMFS is plotted
in Fig.9.

The problem of non-unique solutions using the
conventional MFS and the MMFS is overcome by
superimposing a rigid body term in the fundamen-
tal solution to avoid the zero eigenvalue originat-
ing from the degenerate scale (Chen et al., 2003).
The result matches the exact solution very well by
using the MMFS.

Case 3: Interior problem with a square domain
subject to the Dirichlet B. C.

A square domain (1m×1m) subject to the Dirich-
let boundary condition is considered as

u(x,0)= x, u(x,1)= u(0,y)= u(1,y)= 0. (77)

In this case, an analytical solution is available as
follows:

u(x,y) =
∞

∑
n=1

Cn sinh(nπ(1−y)) sin(nπx), (78)

where

Cn =
2

sinh(nπ)

∫ 1

0
xsin(nπx)dx =

2(−1)n+1

nπ sinhnπ
.

(79)

The sketch of node distribution using the conven-
tional MFS and MMFS is plotted in Fig.10 (a) and
(b), respectively.

To ensure the accuracy of the conventional MFS
and the MMFS, the field potential solution of the
analytical solution (n =200) is plotted in Fig.11.



Solving Laplace Equations with Circular and Arbitrary Domains 207

� � � �
φ

����	
���

����	
���

���	
���

���	
���

��
ρ �

��
φ �

�	
���� �����		 �������� �� 	����
����
 ����
�	

��	��	
�	�� ��! ������

��	��	
�	�� ��! ����"#��

��	��	
�	�� ��! ���$���

� � � �
φ

����	
���

����	
���

���	
���

���	
���

��
ρ �

��
φ �

�	
���� �����		 �������� �� 	����
����
 ����
�	

��	��	
�	�� ��! ������

��	��	
�	�� ��! ����"#��

��	��	
�	�� ��! ���$���

(a) ρ = 2m

� � � �
φ

����	
���

����	
���

���	
���

���	
���

� �
ρ �

#�
φ �

�	
���� �����		 �������� �� 	����
����
 ����
�	

��	��	
�	�� ��! ������

��	��	
�	�� ��! ����"#��

��	��	
�	�� ��! ���$���

� � � �
φ

����	
���

����	
���

���	
���

���	
���

� �
ρ �

#�
φ �

�	
���� �����		 �������� �� 	����
����
 ����
�	

��	��	
�	�� ��! ������

��	��	
�	�� ��! ����"#��

��	��	
�	�� ��! ���$���

(b) ρ = 1m

Figure 2: The potential solution using the conventional MFS for the case 1, (a) ρ = 2m, (b) ρ = 1m.
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Figure 3: The potential solution of the conventional MFS by adding a rigid body term for the case 1, (a)
ρ = 2m, (b) ρ = 1m.
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Figure 4: The potential solution using the proposed method by adding a rigid body term for the case 1, (a)
ρ = 2m, (b) ρ = 1m.
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(c) Exact solution

Figure 5: The field potential solution for the case 1, (a) Conventional MFS (R = 3m), (b) MMFS, (c) Exact
solution.
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Figure 6: The node distribution sketch for exterior problem in the case 2, (a) Conventional MFS, (b) MMFS.
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Figure 7: The field potential solution of the exact solution for the case 2.

By collocating eighty nodes, we obtain the re-
sults by using the conventional MFS for different
off-set distances (de) to boundary as depicted in
Fig.12

It is obvious that the relative errors of the con-
ventional MFS comparing with the exact solution
for de =0.1m and de =1m are larger than that of
de=0.5m. This illustrates the fact that the location
of source is vital to the accuracy of the solution by
using the conventional MFS. The error arises from
the kernel’s singularity which causes substantial
difficulties in solving problems. In such a situa-
tion, the conventional MFS does not yield reliable
and consistent solutions. The results by using the
MMFS are plotted in Fig.13.

It shows the accuracy of the present method after
comparing with the analytical solution in Fig.11.
Thus the selection of the off-set distances to
boundary in the conventional MFS is avoided by
adopting the MMFS of the present study.

Case 4: Water wave problem

The water wave problem with a semi-infinite do-
main of normal incident water wave past a sub-
merged breakwater is considered. An example
given by Abul-Azm (1994) with the geometry
shown in Fig.14 is solved.

The boundary conditions of the interested domain
are summarized as (Chen et al. 2002):

1. The linearized free water surface B. C.:

∂u
∂y

− σ2u
g

= 0, (80)

in which g is the acceleration of gravity and
σ is the frequency of incident water wave.

2. Seabed and breakwater B. C.:

∂u
∂n

= 0, (81)

where n is boundary normal vector.

3. The boundary conditions on the fictitious in-
terfaces:
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(b) R=0.8

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

(c) R=0.5

Figure 8: The field potential solutions of the conventional MFS (100 nodes) by adding a rigid body term for
the case 2, (a) R=0.9999, (b) R=0.8, (c)R=0.5.
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Figure 9: The field potential solution of the MMFS (100 nodes) by adding a rigid body term for the case 2.
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Figure 10: The sketch of node distribution (80 nodes) for the case 3, (a) Conventional MFS, (b) MMFS.
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Figure 11: The field potential solution of the exact solution (n=200) for the case 3.

For the infinite strip problem, the domain can
be divided into three regions after introduc-
ing two pseudo-boundaries on both sides of
the barrier, x = ±l, as shown in Fig.14. The
potential in the region I without energy loss
can be expressed as:

u(1)(x,y) = (eiη(x+l) +Re−iη(x+l))

· cosh(k(h+y))
cosh(kh)

, (82)

where the superscript of u denotes the region
number, k is the wave number which satisfies
the dispersion relation, R is the reflection co-
efficient and η = k cos(θ ). The potential in
the region III without energy loss can be ex-
pressed as:

u(3)(x,y) = Teiη(x−l) cosh(k(h+y))
cosh(kh)

, (83)

where T is the transmission coefficient.

The boundary conditions on the fictitious inter-

faces are

u(1)(−l,y) = u(2)(−l,y), (84)

∂u(1)

∂x

∣∣∣∣∣
x=−l

=
∂u(2)

∂x

∣∣∣∣∣
x=−l

, (85)

u(3)(l,y) = u(2)(l,y), (86)

∂u(3)

∂x

∣∣∣∣∣
x=l

=
∂u(2)

∂x

∣∣∣∣∣
x=l

. (87)

According to Eqs. (82), (83), (84) and (86), we
can derive the reflection and transmission coeffi-
cients as follows:

R =

−1+
k

n0 sinh(kh)

∫ 0

−h
u(2)(−l,y)cosh(k(h+y))dy,

(88)

T =
k

n0 sinh(kh)

∫ 0

−h
u(2)(l,y)cosh(k(h+y))dy,

(89)
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Figure 12: The field potential solutions of the conventional MFS (80 nodes) for the case 3, (a) de= 0.1 m,
(b) de= 0.5 m, (c) de= 1.0 m.
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Figure 13: The field potential solution of the MMFS (80 nodes).
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Figure 14: Problem sketch of the case 4.
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Figure 15: The sketch of node distribution for the case 4, (a) the conventional MFS, (b) the MMFS.



218 Copyright c© 2007 Tech Science Press CMES, vol.19, no.3, pp.197-221, 2007

� � � �

��

�

���

���

���

���

�

��	��	
�	�� ��! �����"#� �
��	��	
�	�� ��! �����"�$� �

��	��	
�	�� ��! �����"��� �

��	��	
�	�� ��! �����"�#� �

�%�	.�	�
�	 ����	��	 ��
-��
/1���314��#556�7

� � � �

��

�

���

���

���

���

�

��	��	
�	�� ��! �����"#� �
��	��	
�	�� ��! �����"�$� �

��	��	
�	�� ��! �����"��� �

��	��	
�	�� ��! �����"�#� �

�%�	.�	�
�	 ����	��	 ��
-��
/1���314��#556�7

(a) R

� � � �

��

�

���

���

���

���

�

��	��	
�	�� ��! �����"#��

��	��	
�	�� ��! �����"�$� �

��	��	
�	�� ��! �����"��� �

��	��	
�	�� ��! �����"�#� �

�

�%�	.�	�
�	 ����	��	 ��
-��
/1���314��#556�7

� � � �

��

�

���

���

���

���

�

��	��	
�	�� ��! �����"#��

��	��	
�	�� ��! �����"�$� �

��	��	
�	�� ��! �����"��� �

��	��	
�	�� ��! �����"�#� �

�

�%�	.�	�
�	 ����	��	 ��
-��
/1���314��#556�7

(b) T

Figure 16: The reflection (R) and transmission (T ) coefficients versus kh using the conventional MFS (400
nodes) for the case 4, (a) R, (b)T .
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Figure 17: The reflection and transmission coefficients versus kh using the MMFS (400 nodes) for the case
4.
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Figure 18: The field potential solution (kh=2) using the BEM (400 elements) and MMFS (400 nodes) for
the case 4, (a) BEM, (b) MMFS.

where n0 = 1
2 (1+ 2kh

sinh(2kh)). The similar B. C. was
handled by using the MFS (Balakrishnan & Ra-
machandran 2000). According to several numeri-
cal experiments (Chen et al. 2002), the length of
each pseudo-boundary (l) is adopted by the dou-
ble of water depth (h). In this case, the width of
the breakwater to water depth ratio (b/h) is 1, and
the submergence ratio (D/h) is 0.75. The node
distribution for the scattering water wave prob-
lem using the conventional MFS and the MMFS
is shown in Fig.15 (a) and (b), respectively.

By collocating 400 nodes, the results of the re-
flection and transmission coefficients by using the
conventional MFS for different off-set distances
to boundary (de), are plotted against kh in Fig.16
(a) and (b), respectively.

It is obvious that the results of the conventional
MFS for de=0.01m, 0.03m, 0.05m and 0.1m are
all divergent after comparing with the analytical
solution by Abul-Azm (1994). This means that
the results fail for different off-set distances to
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boundary by using the conventional MFS. The re-
sults are plotted in Fig.17.

Fig.17 shows the convergence of the solution us-
ing the MMFS. The field potential solution for
kh=2 using the MMFS (400 nodes) and the BEM
(400 elements) are shown in Fig.18.

6 Conclusions

In this paper, we proposed a new meshless method
(MMFS) to solve the Laplace problems for arbi-
trary domains subject to the various kinds of B.
Cs. Only the boundary nodes on the real bound-
ary are required. It can avoid selecting the off-set
distances to boundary in the conventional MFS.
Thus the major difficulty of the coincidence of
the source and collocation points in the conven-
tional MFS is overcome. Besides, the contro-
versy of the artificial (off-set) boundary outside
the physical domain by using the conventional
MFS is no longer existent. Although it results
in the singularity, the finite values of the diago-
nal terms for the influence matrices have been ex-
tracted out. The ill-posed influence matrices were
eliminated when the off-set boundary far from the
real boundary is used in the numerical procedures
using the conventional MFS. The numerical re-
sults were obtained by using the developed pro-
gram for the four cases of Laplace problems and
were compared well with the analytical solutions
or other numerical methods.
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