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Mesoscopic Simulation of Binary Immiscible Fluids Flow in a Square
Microchannel with Hydrophobic Surfaces

S. Chen1,2, Y. Liu1,3, B.C. Khoo4, X.J. Fan5 and J.T. Fan6

Abstract: The mesoscopic simulation for flu-
ids flow in a square microchannel is investigated
using dissipative particle dynamics. The veloc-
ity distribution for single fluid in a square chan-
nel is compared with the solutions of CFD solver,
which is found to be in good agreement with each
other. The no-slip boundary condition could be
well held for the repulsive coefficient ranged from
9.68 to 18.0. For the same range of repulsive co-
efficient, various wettabilities could be obtained
by changing the repulsive coefficient for binary
immiscible fluids, in which the immiscible fluids
are achieved by increasing the repulsive force be-
tween species. The typical motion of the DPD
particle might be described as Brownian, which
is similar to MD simulation results. The DPD
simulated fluid/fluid interfacial tension is in ac-
cord with theoretical prediction. For the same re-
pulsive parameters, the fluid/solid interfacial ten-
sion is always greater than the fluid/fluid interfa-
cial tension. The DPD simulated static contact an-
gles are in good agreement with Young’s equation
even though some differences exist due to thermal
fluctuation. For moving contact line, the advanc-
ing and receding contact angles are different with
each other. It is found that the cross-section area
of hydrophobic fluid retracts towards the central
part of the square microchannel and forms a cir-

1 Department of Mechanical Engineering, The Hong Kong
Polytechnic University, Hung Hom, Kowloon, Hong Kong

2 School of Mechanical and Power Engineering, Shanghai
Jiaotong University, Shanghai, P. R. China, 200030

3 Corresponding author. E-mail: mmyliu@polyu.edu.hk
4 High Performance Computation for Engineered System,

Singapore-MIT Alliance, National University of Singa-
pore, Singapore 117576

5 Cooperative Research Centre for Polymers, 32 Business
Park Drive Notting Hill, VIC 3168, Australia

6 Institute of Textile and Clothing, The Hong Kong Poly-
technic University, Hung Hom, Kowloon, Hong Kong

cle. The retraction extent of the hydrophobic fluid
is dependant on the velocity itself. For immisci-
ble fluid, the moving velocities of fluid A in a mi-
crochannel could be increased by increasing the
repulsive coefficient between fluid A and walls,
and larger static angle may produce larger mov-
ing velocity.

Keyword: Dissipative particle dynamics; Mi-
crochannel; Immiscible binary fluids

1 Introduction

In the past decade, microfluidics have been found
increasing applications in a variety of industrial
fields. For example, emulsification is an impor-
tant structure-forming process applied in the food,
pharmaceutical, and cosmetics industry, and mi-
crochannel emulsification has been a novel tech-
nique for producing monodispersed emulsions in
which droplets formed by spontaneous transfor-
mation caused by interfacial tension (Abrahamse
et al. 2001; Sugiura et al. 2002a & 2002b;
Vladisavljevic and Williams 2005). Furthermore,
the ability to control surface tension promises a
new powerful actuation mechanism for micro-
electromechanical systems (MEMS) because of
the advantageous scaling effect of the surface ten-
sion in microscale (Lee and Kim 2000). On the
other hand, hydrophilic-hydrophobic patterning is
used by a variety of biosystems to direct the mo-
tion of fluids at surfaces, such as steering the mo-
tion of fluid droplets in liquid microchips (Gau
et al. 1999 and Kuksenok et al. 2002). How-
ever, the rapid progress in utilizing MEMS has
not been matched by completely understanding of
microscale flow behaviour and it is still an open
problem (Croce and D’Agaro 2005; Tang et al.
2005).
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In order to understand the physics involved in the
operation and manufacture of small devices, it is
important to develop predictive models that re-
veal the thermodynamic behavior and hydraulic
performances of complex fluids in micron-sized
channels. One of the challenges inherent in mod-
elling such a complex system is incorporating
not only the interactions between the components
but also, the interactions between the fluid and
the substrate, i.e., wettability and surface tension,
which play a dominate role in the behavior of con-
fined fluids (Kuksenok et al. 2003).

Though Brownian dynamics simulation (BDS)
(Hur et al. 2000), Lattice Gas Automata (LGA)
(Frisch et al. 1986) and Lattice Boltzmann (LB)
(Suppa et al. 2002) are mesoscale simulation
methods, it is difficult for BDS to deal with com-
plex flow field and for LGA and LB to cope
with complex fluids. Dissipative particle dynam-
ics (DPD), which was introduced by Hooger-
grugge and Koelman (1992), is a potentially very
effective approach in simulating mesoscale hy-
drodynamics with its basis in statistical mechan-
ics founded by Español and Warren (1995), and
Marsh (1998). DPD facilitates the simulations
of static and dynamics complex fluid systems
on physical interesting length and time scales.
The DPD model consists of particles that cor-
respond to coarse-grained entities, thus, repre-
senting molecular clusters rather than individ-
ual atoms (Pivkin and Karniadakis, 2005). The
particles move off-lattice interacting with each
other through a set of prescribed and velocity-
dependent forces.

DPD has been successfully used to model rhe-
ologically complex liquids (Zhang et al. 1997;
Chen et al. 2004), including interfaces. For bi-
nary immiscible fluid systems, Novik et al. (1997)
investigated the domain growth and phase separa-
tion using DPD. Clark et al. (2000) performed
simulations of a pendant drop and a drop in sim-
ple shear flow. Chen et al. (2004) investigated the
steady-state and transient shear flow dynamics of
polymer drops in a microchannel using the DPD
method. Liu et al. (2004) simulated a process
measuring the interfacial tension of polymers by
means of DPD. Jones et al. (1999) studied the dy-

namics of a semi-infinite surface-confined drop in
a simple shear field. A drop exists as a spherical
cap on a planar solid surface when in the absence
of gravity.

However, as for what we know, at present there
is no further research work in DPD considering
the flow behaviors of binary immiscible fluids in
microfluidic channels, especially for plugs. The
plugs, surrounded by immiscible carrier fluid, are
defined as droplets that are large enough to touch
the walls of the channel and do not wet the walls
(Bringer et al. 2004). The surface is said to be
hydrophobic if static contact angle is larger than
90o. In the present study, the DPD method is
used to investigate the binary immiscible fluids
(plugs) flow in a three-dimensional (3D) square
microchannel with hydrophobic surfaces. Firstly,
the velocity distributions in a square microchan-
nel for the simple DPD fluid are compared with
those of CFD solver. The imposed no-slip bound-
ary condition is verified for various fluid/solid re-
pulsive parameters. Then, the interfacial tensions
for fluid/fluid and fluid/solid are computed us-
ing the Irving-Kirkwood equation. The immisci-
ble fluids are achieved by increasing the repulsive
force between species. The static and dynamic
contact angles are simulated and their relation-
ship with repulsive parameters is discussed. The
moving velocities for plugs in square microchan-
nel are analysed for surfaces with various static
contact angles.

2 Numerical Methods

2.1 Dissipative particle dynamics (DPD)

In DPD method, three inter-particle forces, dissi-
pative, random and conservative forces, act upon
the particles. Dissipative and random forces com-
bine to create a continuous “fluid” in which the
particles are suspended and free to interact hy-
drodynamically. Conservative forces reduce the
possibility of overlapping for particles (Elliott and
Windle, 2000). Each particle moves along its new
velocity for a time-step after a possible collision
of two particles. In detail, the DPD system con-
sists of a set of interaction particles, governed by
Newton’s equations of motion - for a simple DPD
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particle i,

dri

dt
= vi,

dvi

dt
= fi +Fe, (1)

where ri and vi are the position and velocity vec-
tors of particle i, fi is the interparticle force on par-
ticle i by all of the other particles (except itself),
and Fe is the external force. The dynamic interac-
tions between the particles are composed of two
parts: dissipative and stochastic. These comple-
ment each other to ensure a constant value for the
mean kinetic energy of the system. The unit of
mass is taken to be the mass of a particle, so that
the force acting on a particle equals its acceler-
ation. The force fi contains three parts, each of
which is pairwise additive:

fi = ∑
j �=i

(FC
i j +FD

i j +FR
i j), (2)

where the sum runs over all other particles within
a certain cut-off radius rC. In the present study rC

is taken as the unit of length.

Since the time average of the dissipative and fluc-
tuation forces is zero, they do not feature in the
equilibrium behaviour of the system, which is
governed solely by conservative forces. The con-
servative force FC

i j is a soft repulsion acting along
the line of centres and is given by

FC
i j =

{
ai j(1− ri j/rC)r̂i j (ri j < rC),
0 (ri j ≥ rC).

(3)

where ai j is a maximum repulsion between par-
ticles i and j, and ri j = ri − r j, ri j =

∣∣ri j
∣∣, r̂i j =

ri j

/∣∣ri j

∣∣.
The dissipative or drag force, FD

i j, on particle i by
particle j, is given by

FD
i j = −γwD(ri j)(r̂i j ·vi j)r̂i j, (4)

where wD is an r-dependent weight function van-
ishing for r > rc, vi j = vi − v j, γ is a coefficient
which controls the extent of dissipation in a sim-
ulation time step. The negative sign in front of γ
indicates that the dissipative force is opposite to
the relative velocity vi j.

The dissipative force, acting against the particle
motion, would reduce the kinetic energy of the

system. This is compensated by the random mo-
tion produced by the stochastic force FR

i j, given
by

FR
i j = σwR(ri j)ξi j r̂i j, (5)

where wR is also an r-dependent weight function
vanishing for r > rc, and ξi j is a Gaussian variable
with zero mean and variance equal to Δt−1, where
Δt is the time step, and σ is a coefficient charac-
terizing the strength of the random forces. These
forces also act along the line of centres.

Español and Warren (1995) showed that either of
the two weight functions appearing in Eq. (4) and
Eq. (5) can be chosen arbitrarily; the other weight
function is determined by

wD(r) = [wR(r)]2, (6)

σ2 = 2γkBT, (7)

where kBT is the Boltzmann temperature of the
system. This is analogous to the fluctuation-
dissipation theorem for the system (Huilgol and
Phan-Thien, 1997) and ensures that the kinetic en-
ergy of the system is stabilized . Taking kBT as
the unit of energy, we have

σ2 = 2γ . (8)

We use the following weight function to improve
on the Schmidt number for the system (Fan et al.,
2006), instead of quadratic function, (1− r/rc)2

which is usually adopted,

wD(r) = [wR(r)]2 =

{√
1− r/rC (r < rC),

0 (r ≥ rC).
(9)

This weight function yields a stronger dissipa-
tive force between particles than the standard
quadratic force, for a given configuration of parti-
cles and interaction strength.

The updated velocities and positions of the parti-
cle can be calculated once the forces on the par-
ticle have been calculated. A modified velocity-
Verlet (Groot and Warren, 1997) scheme was
adopted in the present study, in which the force
is still updated once per iteration with virtually no
increase in computational cost. The computation
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is carried out for each particle for a large num-
ber of time steps, sufficient to get convergence for
the system properties, such as viscosity, pressure,
and interfacial tension; they are obtained by tak-
ing relevant statistical averages of the positions,
velocities or forces for each particle at each time
step.

2.2 Binary immiscible fluids

Immiscible fluid mixtures exist because individ-
ual molecules attract similar and repel dissimilar
molecules (Novik and Coveney, 1997). The mis-
cibility of the two fluids is controlled mainly by
the repulsive parameter a between fluids A and
B. The immiscible fluids are achieved by increas-
ing the repulsive force between species. In the
present study, a new variable is introduced, called
the “colour” according to Rothman-Keller (Novik
and Coveney, 1997). Here, for example, red rep-
resents fluid A and blue represents fluid B. When
two particles of different colours interact, we in-
crease the conservative force, thereby increasing
the repulsion, that is,

ai j =

{
a0 if particles i and j are the same color,

a1 if particles i and j are different colors.

(10)

The two phases would be completely miscible if
a1 ≈ a0 and almost entirely immiscible if a1 ex-
ceeds a0 significantly.

Groot and Warren (1997) have made a link be-
tween the repulsive parameter a and χ-parameters
in Flory-Huggins-type models. They pointed out
that DPD model can simulate liquid-liquid and
liquid-solid interfaces, and in this way the method
is similar to the Flory-Huggins theory, and can in
fact be viewed as a continuous version of this lat-
tice model.

The parameter χ is positive when A and B are two
immiscible components; when they are miscible
over AA or BB contacts, then it is negative. If χ
is very small and positive, no segregation will take
place, but when it exceeds a critical value, A-rich
and B-rich domains will occur. The critical point
of χ-parameters could be calculated by Eq. (19)
of Groot and Warren (1997). In the present study

the parameters will be chosen where segregation
takes place, i.e., χ > χcrit. The Flory-Huggins
parameter for monomers is obtained by Groot and
Warren (1997). The calculated χ-parameter for
two densities (ρ = 3 and 5) is expressed as a func-
tion of the excess repulsion parameter Δa, where
Δa = a1 − a0 . It is shown that for χ > 3 there
is a very good linear relation between χ and Δa.
Explicitly, it is

χ = (0.286±0.002)Δa (ρ = 3),
χ = (0.689±0.002)Δa (ρ = 5).

(11)

We fix the density at 4 for our DPD system, and
use Eq. (11) as an effective mean for extrapolation
to estimate the Flory-Huggins parameterχ .

2.3 Implementation of the boundary condition

It is well known that, at a macroscopic level, the
boundary condition for a viscous fluid at a solid
wall is so-called “no slip”. The liquid veloc-
ity field vanishes at a fixed solid boundary. For
most applications the no-slip condition may be
accepted uncritically as a phenomenological rule.
However, this condition is an assumption that can-
not be derived from first principles and could, in
theory, be violated. As shown in Lauge et al.
(2005), the small-scale interactions between a liq-
uid and a solid leads to extremely rich possibili-
ties for slip behavior, with dependence on factors
such as wetting conditions, etc. Using Molecu-
lar Dynamics (MD), Koplik et al. (1989) pointed
out the no-slip boundary condition appears to be a
natural property of a dense liquid interacting with
a solid wall with molecular structure and inter-
actions. But we know a serious problem arises
when a contact line separating two immiscible flu-
ids moves along a solid surface. The straightfor-
ward hydrodynamic analysis of this situation pre-
dicts a divergent energy dissipation rate. In fact,
Barrat et al. (1999) used MD to consider the spe-
cial case of a liquid that partially wets the solid
(i.e., a drop of liquid, in equilibrium with its va-
por on the solid substrate, has a finite contact an-
gle). They showed that when the contact angle is
large enough, the boundary condition can drasti-
cally differ (at a microscopic level) from a no-slip
condition.
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The no-slip condition is a statement about the
continuum velocity and the time and space av-
erage of fluid molecules occupying a sampling
region at the wall. When the fluid reacts with
the wall, the (continuum, Eulerian) no-slip as-
sumption provides no molecular information. A
kind of mechanism, kinematically, is a rolling or
caterpillar like motion of the molecules. This is
analogous to a ball rolling on a plane, where the
part of the ball touching the plane is instanta-
neously at rest but has nonzero acceleration and
rolls off (Koplik et al., 1989). Because of the soft
potentials employed in DPD, the simple no-slip
boundary conditions are difficult to impose. Un-
like the MD method, the soft repulsion between
DPD particles cannot prevent fluid particles from
penetration solid boundaries, and thus extra effort
is required to impose accurately the no-slip wall
boundary condition (Visser et al. 2005; Pivkin et
al. 2005; Revenga et al. 1999; Duong-Hong et
al. 2004; Willemsen et al. 2000; and Revenga
et al. 1998). In the present study, we imple-
ment the boundary condition according to Fan et
al. (2003). The solid wall is represented by us-
ing frozen particles. As near-wall particles may
not be slowed down enough and slip may then
occur, higher-density wall particles are used to
strengthen the wall effects. The density of wall
particles is increased to 6. Near the wall a thin
layer is assumed where the no-slip boundary con-
dition holds. We enforce a random velocity distri-
bution in this layer with zero mean corresponding
to a given temperature. Similar to the reflection
law of Revenga et al. (1998), we further require
that particles in this layer always leave the wall.
The velocity of particle i in the layer is

vi = vR +n(
√

(n ·vR)2 −n ·vR), (12)

where vR is the random vector and n the unit vec-
tor normal to the wall and pointing to the flow do-
main. The thickness of this layer between wall
and fluid particles is chosen to be the minimum
between 0.5% of channel width and 0.5 of the
cutoff radius. The thin layer is necessary to pre-
vent the frozen wall to cool down the fluid and this
method is more flexible when dealing with a com-
plex geometry. In details, if i and j both denote

fluid particles we choose ai j = afluid = 18.75 to
satisfy the compressibility of water suggested by
Groot and Waren (1997). When calculating the
interaction between fluid and wall particles, we
change the ai j to obtain different wettabilities of
the fluids on surface.

2.4 Stress tensor

Stress tensor components are calculated by the
Irving-Kirkwood method (Fan et al. 2002; Irv-
ing and Kirkwood 1950). Here, the contribution
of each particle to the stress tensor consists of two
parts, a configuration part and a kinetic part:

Sαβ = − 1
V

〈
Np

∑
i

miuiα uiβ +
Np

∑
i

Np

∑
j>i

ri jαFi jβ

〉
, (13)

where mi is the particle mass (mi = 1unit), Np
the number of particle, uiα and uiβ the peculiar
velocity components of particle i , for example,
uiα = viα − vα(x), with v(x) being the stream ve-
locity at position x, and 〈. . .〉 denotes the ensem-
ble average. Fi jβ is the β -component of the force
exerted on particle i by particle j. The first sum in
the right hand side of Eq. (13) denotes the contri-
bution to the stress from the momentum transfer
of DPD particles. The second sum represents the
contribution from the inter-particle forces. The
constitutive pressure can be determined from the
trace of the stress tensor:

p = −1
3

trS (14)

In the present study, the stress tensor is calculated
according to Eq. (13) and this stress tensor has the
geometric interpretation of being a measure for
the momentum change in a fixed spatial region. It
is noted that this stress formulation is strictly valid
only when a homogeneous stress state exists in the
entire volume. Recently Shen and Atluri (2004)
proposed an atomistic level stress tensor which is
in a nonvoume-average form, thus does not in-
volve ad hoc specification of a relevant volume.
This stress tensor is validated for both homoge-
neous and inhomogeneous deformations, and may
have more extensive applications (Shen and Atluri
2005, Ma et al. 2005 and 2006, Matsumoto et al.
2005a and 2005b).



186 Copyright c© 2007 Tech Science Press CMES, vol.19, no.3, pp.181-196, 2007

2.5 Calculation of interfacial tension

The interfacial tension ΓAB between fluid A and
fluid B could be computed using the Irving-
Kirkwood equation (1950),

ΓAB =
∫ [

pzz − 1
2
(pxx + pyy)

]
dz, (15)

where pxx, pyy, pzz are the three diagonal compo-
nents of the pressure tensor (−S). The interface is
parallel to the x− y plane. The interfacial tension
can be further expressed as,

ΓAB = Q

[
〈pzz〉− 1

2
(〈pxx〉+ 〈pyy〉)

]
, (16)

where Q is the height of the simulation channel.
Eq. (16) will be applied to flat interface geometry
shown in Fig. 1(a). The angular brackets denote
the average over the simulation run. Groot and
Warren (1997) gave the best fit of the surface ten-
sion as a function of χ-parameter and N:

ΓAB = (0.75±0.02)ρkBTrcχ0.26±0.01

· [1− (2.36±0.02)/χ ]3/2 (for N = 1) (17)

where N is the number of segments per molecule.
For monomers, N = 1.

Jones et al. (1999) calculated the liquid/solid in-
terfacial tension. The interface is modelled by us-
ing particles to represent the liquid and these are
acted on by an external potential, which repre-
sents the effect of the solid, as shown in Fig. 1(b).
The interfacial tension is given by the expression,

ΓAB = Q[〈pzz〉− 1
2
(〈pxx〉+ 〈pyy〉)]

+1/A∑
α

∑
i

Fiα zriα z +1/A∑
β

∑
i

Fiβ zriβ z. (18)

Here the variable α runs over all immobile parti-
cles in interface 1, and β over interface 2. In the
simulations on the fluid/fluid and the fluid/solid
systems forming planar interfaces, ensemble aver-
ages of the various summations appearing in eqns.
(16) and (18) were computed to obtain the respec-
tive interfacial tensions.

2.6 Simulation procedure

In the present study, the initial configurations of
fluid and wall particles are generated separately
by a pre-processing program and read in as input
data. All fluid particles are initially located at the
sites of a face-centered cubic (fcc) lattice. The to-
tal number of particles depends on the size and
geometry of the flow domain and the densities of
the fluid and wall materials. All of the fluid phases
are assumed to be of the same density, equal to 4
units. The initial velocities of fluid particles are
set randomly according to the given temperature
but the wall particles are frozen. At the begin-
ning of the simulation the particles are allowed
to move without applying the external force un-
til a thermodynamic equilibrium state is reached.
Then the external force field is applied to fluid
particles and the nonequilibrium simulation starts.
The sketch diagram of the square microchannl is
shown in Fig. 2. Periodic boundary conditions are
applied in the X-direction. The value of kBT is set
at 1.0.

3 Results and discussion

In DPD simulations all of the parameters are
scaled by DPD units. The DPD units are not
defined explicitly as in MD simulation. In the
present study, the scaling is much larger than that
in MD. For more details, one can refer to Fan et
al. (2003). The parameters adopted in the present
study are shown in Table 1.

3.1 Square microchannel flows of a single
fluid

In DPD method, the interfacial tension and wetta-
bility between the solid walls (W) and fluids (fluid
A or fluid B) interfaces are governed entirely by
the unlike parameters aAB, aAW and aBW (Jones et
al. 1999). In the present study, we first simulate
flows of a single fluid in a square microchannel
in order to identify the influence of repulsive pa-
rameter in imposing no-slip boundary conditions.
The size of the microchannel is −15 ≤ x < 15,
−10≤ y < 10 and −10≤ z < 10. A total of 63120
simple DPD particles are used, in which 48000
fluid particles are placed in the channel and 15120
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Figure 1: Calculation of interfacial tension for (a) fluid/fluid (b) fluid/solid.
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Figure 2: Sketch diagram of the square microchannel.

Table 1: Parameters adopted in the present simulation

Density ρ 4.0
Repulsive coefficient between the same fluid aAA or aBB 18.75

Dissipative coefficient γ 4.5
Random coefficient σ 3.0
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wall particles are located in three layers of the mi-
crochannel walls. The computational domain is
divided into 1×50×50 bin in the x, y and z di-
rection. All local flow properties are obtained by
averaging the sampled data in each bin over10000
time steps. The time step is set at 0.01. The grav-
ity of g = 0.1 is applied to each of the fluid parti-
cle.

Fig. 3 shows the fully developed velocity profile
of x-velocity component in the square microchan-
nel, in which y = 0 is the mid-plane of the square
channel. When g = 0.1, the DPD simulated mass
flowrate is 3416.29. Equivalently, the Reynolds
number Re(= ṁ/(D ·μ)) is 71.11. At y =−6, the
computational results are compared well with the
CFD solver Fluent solutions. At y = 0, the dif-
ference between the DPD simulation results and
Fluent solution is within 2.5%.

Fig. 4 shows the influence of various fluid/wall
repulsive parameters on the velocity profile in the
microchannel. We can see that the no-slip bound-
ary condition could be well held when the repul-
sive parameter is increased from 9.68 to 18, in
which the value of aAW = 9.68 is adopted in Fan
et al. (2003) and Chen et al. (2006). In fact, var-
ious wettabilities could be obtained by changing
the repulsive parameter in this range for binary
immiscible flow, which will be discussed later in
this paper. As shown in Fan et al. (2003), when
aAW = 9.68, the density profiles for a simple DPD
fluid in Poiseuille flow is almost uniform across
the channel except in the region near the wall,
where a fluctuation in density still exists but is not
as severe as that predicted by MD simulation. The
temperature is almost uniform across the channel.
The fluctuation may be further reduced if smaller
repulsion strength of the wall particles is used.

In the present study, we can see increasing the re-
pulsive parameter from 9.68 to 18.0 cause larger
density fluctuation across the channel. The den-
sity level of the fluid in the middle of the channel
is elevated and the density near the wall region is
decreased, as shown in Fig 5. The temperature
is almost uniform across the channel for both of
these two values. Fig. 6 shows the density in-
creasing gives rise to pressure increasing in the
central part of the channel, which is what we ex-

pect.

Then we study the particle motion. We trace two
kinds of fluid particles: one starts from the near-
wall region and the other starts from the central
part of the channel. As shown in Fig. 7, the typ-
ical motion might be described as Brownian and
there is no significant difference between particles
that are initially near the wall and those initially
in the middle of the channel. The thermal mo-
tion eventually obliterates the initial bias. This is
similar to what Koplik el al’s work (1989) in MD
study. In the mean time, it is also consistent with
the rolling mechanism when imposing the no-slip
boundary condition.

3.2 Interfacial tension

In order to compute the interfacial tension be-
tween fluid A and fluid B, the channel of 40×
10×30 units is divided into two layers of thick-
ness of 15 units each, as shown in Fig. 1(a). The
upper layer is filled with fluid A and the lower
layer is filled with fluid B. Each layer consists of
24000 DPD particles, totalling 48000 particles in
the system. Similarly, the interfacial tension be-
tween fluid and wall could be calculated with up-
per and lower interfaces between fluid and walls,
as shown in Fig. 1(b), in which including 48000
fluid particles and 15000 wall particles.

From Groot and Warren’s theoretical formula, Eq.
(17), we obtain the following interfacial tension
between fluid A and fluid B for monomers with
Δa = 37.5 (Δa = aAB−aAA or aAB−aBB for fluid-
fluid interface and aAA = aBB): (1) ΓAB = 3.81
for ρ = 3 and (2) ΓAB = 6.06 for ρ = 5. The
extrapolation value for our case (ρ = 4) is 4.94,
which is close to our simulation result, Fig. 8,
of 5.25 for a monomer with Δa = 37.5, aAB =
56.25, aAA = aBB = 18.75 and ρ = 4. The inter-
facial tension increases with increasing aAB be-
tween the two fluids, as shown in Fig. 8. It
also shows the interfacial tension between the
solid and fluid. The fluid/solid interfacial ten-
sion is always greater than the fluid/fluid inter-
facial tension for the same repulsive parameters.
Jones et al. (1999) calculated the interfacial ten-
sions between two immiscible fluids and between
fluid and solid surfaces with different interaction
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Figure 3: Comparison between current DPD calculation and Fluent simulation for fully developed velocity
profile along Z direction.
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Figure 4: Fully developed velocity profile under various fluid/solid repulsive parameters.
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Figure 5: The density and temperature profiles of a single DPD fluid in a square microchannel (Y=0).
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Figure 6: The pressure profiles of a simple DPD fluid in a square microchannel (Y=0).
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Figure 7: Particle trajectories in a square microchannel.
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parameters, same conclusions could be found in
their work.

3.3 Immiscible fluids

3.3.1 Static contact angle

Groot and Warren (1997) suggested that the repul-
sive coefficient should be calculated as followings
in order to satisfy the compressibility of water,

ai j = 75kBT /ρ (19)

They also recommend σ = 3, with λ = 0.65 in the
velocity-Verlet algorithm. In the present study, we
choose the fluid density ρ = 4 and set kBT = 1.
From Eq. (19), the repulsive coefficient between
the same type of fluid particles is 18.75. Further-
more, the repulsive coefficient between fluid A
and fluid B is increased to 56.25 to obtain binary
immiscible fluids. Then we fix the repulsive coef-
ficient awall-fluid B between wall and fluid B at 10.0,
while changing the repulsive parameter awall-fluid A

between wall and fluid A from 10.0 to 20.0. Un-
der equilibrium conditions, the fluids retain their
initial segregation, and have their corresponding
contact angles, as shown in Fig. 9(a). Con-
sider Young’s equation relating the solid-liquid
and liquid-liquid interfacial free energies per unit
area for the configuration shown in Fig 9(b), we
have

ΓAW +ΓAB cosθ = ΓBW, (20)

where the interfacial tension between fluids and
between fluid and solid surface is obtained from
Fig 8. Table 2 shows the comparison between
the DPD simulated results and Young’s equa-
tion. The maximal difference is 6.39%. It shows
the DPD simulated static contact angles are in
good agreement with the theoretical prediction al-
though some differences exit due to thermal fluc-
tuation. The higher accuracy could be achieved by
increasing the size of the computational domain
or increasing the sampling times in the ensemble
averaging.

3.3.2 Dynamic contact angle

In the present study, the motion of a contact line
is investigated by applying acceleration to each

fluid particle with two kinds of g (=0.02 or 0.08,
respectively). Figs. 10(b) and (c) show that the
advancing and receding contact angles are differ-
ent from each other when the contact line moves.
In the mean time, they differ from the static angle.
Similar to MD simulation (Koplic et al. 1989), the
advancing angle increases and the receding angle
decreases with increasing acceleration, but with
large fluctuation in the simulation.

Furthermore, it is found that the fluid A is elon-
gated more when the acceleration is larger in flow
direction. As shown in Fig. 10(b) and (c), fluid
A is about 16.5 long in x direction when g = 0.02,
while it is about 19.5 long when g = 0.08. In or-
der to investigate the flow behaviour, we plot the
figure of fluid A seen from the cross-section of
y− z plane. When the contact line starts to move,
the corner of the square microchannel is gradu-
ally occupied by fluid B. It shows that the cross-
section area of fluid A reduces with increasing of
acceleration g and its shape retracts towards the
central part of the y-z plane and forms a circle.
The retraction extent of the fluid A is dependant
on the velocity of itself. Actually in this case, for
the interaction with the solid wall, fluid A is hy-
drophobic and fluid B is hydrophilic. In koplic et
al.’s study (1989), they noted a thin film of fluid
A left behind along the parallel plate channel, in
which the fluid A is hydrophilic, the film contains
the fluid more strongly attracted to the wall. In the
present study, we found that the effect is also very
dominant when there are corners.

Fig. 12 shows moving velocity of fluid A with
the repulsive coefficients, in which the accelera-
tion is set at 0.02. The triangle in Fig. 12 rep-
resents the case of repulsive coefficient between
solid wall and fluid A is varying, while the repul-
sive coefficient between solid wall and surround-
ing fluid (i.e. fluid B) is kept at 10.0. The corre-
sponding static angle could be found in Table 2.
The circle in Fig. 12 represents the case of repul-
sive coefficients between solid wall and both of
the two kinds of fluids (fluid A and fluid B) are
varying, but with the static contact kept constant
at 90o, i.e. awall-fluid A = awall-fluid B. It is found
that for these two cases, the moving velocity in-
creases with the increasing repulsive coefficients.
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Figure 9: Static contact angle.

Table 2: Comparison between the DPD simulation and Young’s equation

awall-fluid A awall-fluid B Contact angle (DPD) Contact angle (Young)
10 10 89o 90o

12 10 116o 109.03o

14 10 125o 123.73o

16 10 135o 136.2o

18 10 149o 153.28o

20 10 164o 167.98o
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Figure 10: The advancing and receding angle with moving contact line.
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Figure 11: Flow shape of fluid A in y− z plane. (a) g = 0.02, (b) g = 0.08.
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Figure 12: Moving velocity of fluid A with the repulsive coefficient.
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Figure 13: Escaping of some particles from fluid A.

In closer scrutiny, we have found that the no-slip
boundary condition could be well held for single
fluid in the square microchannel when the repul-
sive coefficient varies between 9.68 and 18.0. Un-
der this condition, it is observed for immiscible
binary fluids that the flow velocity of the fluid A in
the microchannel could be increased by increas-
ing the repulsive coefficient while its static con-
tact angle is unchanged. Due to the thermal fluc-
tuation, we can see some particles escape from
fluid A and enter into fluid B, as shown in Fig. 13.

It is also noted in Fig. 12 that at the lower value of
repulsive coefficient, the moving velocity of fluid
A for the above two mentioned cases has no sig-
nificant difference from each other, the little dif-
ference could be attributed to the limit statistical
resolution. When the repulsive coefficient is in-
creased to 20, where the triangle representing the
static contact angle is at 164o (i.e. hydrophobic)
and the circle still representing the static contact
angle at90o, it could be seen that the hydropho-
bic fluid entails faster motion. Larger static angle
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may produce larger moving velocity.

4 Conclusions

In the present study, we investigated the fluids
flow in a square microchannel using the dissipa-
tive particle dynamics method. It is found that
the DPD simulated velocity distribution of single
fluid in square microchannel is in good agreement
with the Fluent solutions. The no-slip boundary
condition could be well held when the repulsive
coefficient is varied from 9.68 to 18, while var-
ious wettabilities could be obtained by changing
the repulsive parameters in this range for binary
immiscible flow. The typical motion of the par-
ticle might be described as Brownian. The in-
terfacial tension is calculated and it shows that
the simulated interfacial tension is in accord with
Groot et al’s theoretical prediction. With the same
repulsive coefficient, the interfacial tension be-
tween the solid and fluid is always greater than the
fluid/fluid interfacial tension, which is similar to
Jones et al.’s conclusions (1999). The calculated
static contact angle with present DPD method is in
agreement with Young’s equation. It is found un-
der the condition of moving contact line, not only
the advancing and receding contact angle are dif-
ferent from each other, but also the cross-section
area of hydrophobic fluid is retracted toward the
central part of the square microchannel and forms
a circle. The retraction extent of the hydrophobic
is dependant on the velocity itself. For immiscible
fluid, the moving velocities of hydrophobic fluid
A in the microchannel could be increased by in-
creasing the repulsive coefficient, and larger static
angle may produce larger moving velocity.
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