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Analyzing Production-Induced Subsidence using Coupled Displacement
Discontinuity and Finite Element Methods
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Abstract: Subsidence problem is of great im-
portance in petroleum engineering and environ-
mental engineering. In this paper, we firstly apply
a hybrid Displacement Discontinuity-FEM mod-
eling to this classic problem: the evaluation of
subsidence over a compacting oil reservoir. We
use displacement discontinuity method to account
for the reservoir surrounding area, and finite ele-
ment methods in the fully coupled simulation of
the reservoir itself. This approach greatly reduces
the number of degrees of freedom compared to an
analyzing fully coupled problem using only a fi-
nite element or finite difference discretization.
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1 Introduction

In petroleum engineering and environmental en-
gineering, evaluation of reservoir compaction and
induced land subsidence is an active research
area related to both offshore problems (Ekofisk,
Valhall, Eldfisk in the North Sea) and on land
(Groeningen, Niigata, Ravenna, etc.). The fluid-
solid coupling during this process makes the nu-
merical simulation much more complicated than,
for example, fully drained or fully undrained pro-
cesses.

1.1 Subsidence Issues in Petroleum Engineer-
ing

In petroleum engineering, large-scale reservoir
compaction due to oil and gas withdrawal (i.e.
Δp → Δσ ′ → ΔV → Δz) can lead to sur-
face damage (Wilmington oil field, California;
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Lago de Maracaibo, Venezuela; Niigata, Japan;
Ravenna, Italy), casing damage, and even well
failure[Bruno (1992)]. The North Sea offshore oil
field Ekofisk, developed in the early 1970’s, ex-
perienced massive subsidence (4.3 m by 1988) so
that all five platforms had to be raised in 1988-
1990 at a cost of US$485,000,000, and fully re-
developed with two new platforms replacing the
original five in the late 1990’s at an additional cost
in excess of US$3,000,000,000. Currently, reser-
voir compaction at Ekofisk appears to be ∼12 m,
and sea floor subsidence has passed 10 m.

During massive subsidence, formation shear of
many centimeters occurs at lithostratigraphic in-
terfaces such as sandstone-shale or limestone-
shale contact surfaces [Dusseault, Bruno and Bar-
rera (2001)]. As an analogy, one may consider
the shearing of the laminated surfaces in a sheet
of plywood as it is sharply bent; delamination oc-
curs because the shear strains are concentrated at
the boundaries of materials of sharply contrasting
stiffness (glue and wood). Sedimentary overbur-
den is a laminated system with stiffness contrasts
that cause shear deformation to be concentrated
on a limited number of slip planes, rather than
distributed uniformly throughout the volume. No
matter how strong, a rigid cemented casing sys-
tem penetrating such an interface at a large angle
(>30˚) cannot resist the shear forces, and will de-
form and rupture. In compacting reservoirs devel-
oped with vertical production wells, it is common
to redrill wells several times to sustain production
because of shearing-induced well losses.

Therefore, the numerical simulation of subsi-
dence processes has attracted considerable in-
terest over the decades, starting with the work
of Geertsma (1966), and of course more recent
work involving fully coupled three-dimensional
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flow-deformation simulations incorporating non-
linear behavior and temperature effects. Further-
more, the advent of high-precision deformation
monitoring and inversion for reservoir processes
[Dusseault and Rothenburg (2002)] is increasing
the need for better models that are not only prop-
erly formulated, but rapid in execution, even for
complex problems.

1.2 General Approaches for Computer Model-
ing in Petroleum Reservoir Engineering

To date, one may identify two types of schemes to
implement flow-deformation coupling:

• A directly coupled FEM formulation in
which displacements and pore pressure are
assembled in into one system equation[e.g.
see Lewis and Schrefler (1998)]; and,

• The staggered solution method, in which two
separate systems (fluid flow and solid de-
formation) are computed separately and it-
eratively, with each providing coupling vari-
ables that the other needs for the solu-
tion[e.g.see Settari and Mourits(1998)].

For the former scheme, finite element methods
are most commonly adopted and have proven ro-
bust; for the latter scheme, the fluid flow system
is solved using finite difference methods based on
four decades of petroleum industry simulation de-
velopment, and the solid field solution generally
employs finite element methods derived from me-
chanical engineering principles and modified for
geomechanics applications.

In the conventional reservoir engineering treat-
ment of this problem, only the transport problem
in the reservoir is solved. This is analogous to as-
suming that the overburden has no stiffness and
the total vertical stress on the upper surface of
the reservoir is unaffected by pressure changes in
the reservoir; i.e., it is assumed that Δp = Δσ ′v.
This is clearly inadequate, as any change in pres-
sure must be accompanied by a change in volume
(ΔV/V = C · Δσ ′, where C is compressibility);
therefore, for any non-uniform pressure change
in the reservoir, Δp �= Δσ ′v, because of the stiff-
ness of the overburden. An analytical solution

presented by Rothenburg, Bratli and Dusseault
(1994) for transient two-dimensional radial flow
of a compressible fluid into a vertical penetrating
well shows clearly that the stiffness of the strata,
both reservoir and overburden, is an essential cou-
pling element which must be taken into account.
In the limit, for full coupling of flow and stress
in the reservoir zone, the complete mechanical re-
sponse of the overburden must be accounted for,
even factors such as stratification and anisotropic
properties.

In this paper, to achieve coupling in an efficient
manner, we attempt to exploit the advantages
of the displacement discontinuity boundary ele-
ment method in solving the stress-strain problem
in infinite and semi-infinite domains, combined
with finite element methods for solving the flow-
deformation system in the reservoir.

2 Half-Space Simulation and the Displace-
ment Discontinuity Method

2.1 Surface Deformation Problems in a Half
Space

Researchers [e.g. Gambolati and Freeze(1973),
Schrefler, Lewis and Norris (1977),
Sandhu(1983)] have successfully used the
finite element method to analyze subsidence
associated with fluid withdrawal from a under-
ground petroleum reservoir or aquifer in the
recent several decades. For the true half-space
problem, most researchers have used analytical
or semi-analytical techniques. Geertsma(1966)
developed a semi-analytical solution for the pre-
diction of subsidence by using the displacement
solution for a thermoelastic nucleus-of-strain in
a half space with a traction free surface [Mindlin
and Cheng (1950)]. Segall(1992) presented a
more systematic approach to calculate the dis-
placements and stresses caused by fluid extraction
in a axisymetric reservoir within the framework
of linear poroelasticity . Rothenburg, Obah
and El Baruni (1995) presented a solution for
horizontal ground movements and the formation
of earth fissures due to water table decline based
on a nucleus-of-strain solution for a poroelastic
half space.
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Some researchers have tried numerical methods
for this problem. For example, Gambolati, Sar-
toretto, Rinaldo and Ricceri(1987) proposed a
linear boundary element model (BEM) for the
uncoupled simulation of land subsidence due to
gas, oil and hot water production over three-
dimensional reservoirs. Their model allows for
arbitrary reservoir geometry and for non-uniform
pore pressure changes. Suzuki and Morita (2004)
used a 3D BEM to analyze surface subsidence and
lateral movement due to uniform pore pressure
decline during oil and gas production.

Comparing the shape and size of a typical reser-
voir to the whole domain, we can consider the
reservoir as a displacement discontinuity [Charlez
(1997), Rothenburg, Bratli and Dusseault (1994)],
and therefore use a different indirect boundary el-
ement method (IBEM), the displacement discon-
tinuity method (DDM), to replace the boundary
element method (BEM).

2.2 Displacement Discontinuity Boundary El-
ement Method (DDM)

Boundary element method (BEM) is a numeri-
cal analysis technique for boundary value prob-
lems based on integral equation formulations, as
opposed to the differential equation formulations
which underpin the finite element (FEM) and fi-
nite difference (FDM) methods. One advantage of
BEM is that it reduces the dimension of the prob-
lem by one with only the boundaries discretized.
The other advantage is that BEM is able to satisfy
far field boundary conditions implicitly, and this
make it very powerful dealing with infinite and
semi infinite media. There are two basic BEM ap-
proaches, the indirect BEM which use fictitious
quantities as source densities and the direct BEM
which is formulated in terms of physical quanti-
ties such as displacements and tractions.

Applications of BEM in geomechanics have been
extensively in the areas as follows: mining, ex-
cavation, tunneling, consolidation, ground water
flow, soil-fluid-structure interaction, and fracture
propagations.

The displacement discontinuity method is an indi-
rect boundary element method for solving prob-
lems in solid mechanics. In geomechanics, it is

usually used for analyzing large scale mining lay-
outs [Salamon (1963)] in infinite or semi-infinite
media, and it is useful in cases involving displace-
ments along faults or joints, in fracture mechan-
ics, and for simulating mining in tabular ore bod-
ies (which extend at most a few meters in one di-
rection and hundreds or thousands of meters in
the other two). An advantage of the displacement
discontinuity method for problems in geomechan-
ics, like any boundary method, is that boundary
conditions at infinity are automatically satisfied.
Hence, full domain discretization and stipulation
of boundary conditions on non-infinite boundaries
can be avoided. Inspired by the similarities be-
tween a tabular ore body and the typical tabular
reservoir in an oil field, we may consider applying
this highly efficient method to the area outside the
reservoir.

2.3 DD Mathematical Equations

In mining problems, the displacement disconti-
nuity has been defined as the relative displace-
ment between the roof and floor of a small area
of a seam-like deposit. Similarly, for the behavior
of a producing petroleum reservoir, the displace-
ment discontinuity components can be defined as
the relative displacement components between the
top and bottom of a small area of a tabular reser-
voir. Consider a displacement discontinuity as
a plane crack with a normal in the x3 direction;
its two faces can be distinguished by specifying
one in the positive side (x3 = 0+) and the other is
in the negative side (x3 = 0−). In crossing from
one side to the other, the displacements undergo a
specified change in value Di = (D1,D2,D3) given
by

D1 (x1,x2,0) = u1
(
x1,x2,0−

)−u1
(
x1,x2,0+)

D2 (x1,x2,0) = u2
(
x1,x2,0−

)−u2
(
x1,x2,0+)

D3 (x1,x2,0) = u3
(
x1,x2,0−

)−u3
(
x1,x2,0+)

(1)

The general form solution for a displacement dis-
continuity element can be expressed as below
[Salamon (1963), Crouch and Starfield (1983)]:
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u1 =[2(1−v)φ1,2−x3φ1,13]−x3φ2,12

− [(1−2v)φ3,1 +x3φ1,13]
u2 =[2(1−v)φ2,3−x3φ2,22]−x3φ1,12

− [(1−2v)φ3,2 +x3φ3,23]
u3 =[2(1−v)φ3,3−x3φ3,33]

+ [(1−2v)φ1,1−x3φ1,13]
− [(1−2v)φ2,2−x3φ2,23]

σ11 =2G{[2φ1,13−x3φ1,111]
+ [2vφ2,23−x3φ2,112]
+ [φ3,33 +(1−2v)φ3,22−x3φ3,113]}

σ22 =2G{[2vφ1,13−x3φ1,122]
+ [2φ2,23−x3φ2,222]
+ [φ3,33 +(1−2v)φ3,11−x3φ3,223]}

σ33 =2G{−x3φ1,133−x3φ2,233

+ [φ2,33−x3φ2,333]}
σ12 =2G{[(1−v)φ1,23−x3φ1,112]

+ [(1−v)φ2,13−x3φ2,122]
− [(1−2v)φ3,12 +x3φ3,123]}

σ23 =2G{[−vφ1,12 −x3φ1,123]
+ [φ2,23 +vφ2,11 −x3φ2,223]−x3φ3,123}

σ13 =2G{[φ1,33 +vφ1,22 −x3φ1,113]
+ [−vφ2,12−x3φ2,123]−x3φ3,133}

(2)

where φi, j,φi, jk,φi, jkl ( j,k, l = 1,2,3), are the
derivatives of the kernel function

φi (x1,x2,x3) =
1

8π (1−v)

·
∫∫
ℜ

Di

[
(x1 −ξ )2 +(x2 −η)2 +x2

3

]−1/2
dξdη

(3)

in which ℜ is the area of the element, Di

(I = 1,2,3) are the displacement discontinuities,
(x1,x2,x3) is the coordinate system originated at
the element, and (ξ ,η,0) are the coordinates of
the loading point. For the constant strength el-
ement, the displacement discontinuities can be
taken out of the integration formula. Last equa-

tion is in terms of the basic kernel function

I (x1,x2,x3) =∫∫
ℜ

[
(x1 −ξ )2 +(x2 −η)2 +x2

3

]−1/2
dξdη (4)

which depends on the geometry of the element.
The kernel functions were derived for the rectan-
gular element by Salamon (1963).

3 Compaction-Subsidence Problems and the
Finite Element Method

3.1 Theory of Poroelasticity

The theory of poroelasticity is the basis for devel-
oping the numerical formulation that will be used
to study reservoir compaction and induced sur-
face subsidence. The term poroelasticity was first
coined by Geertsma (1966), referring to Biot’s
theory [Biot (1941)] of three dimensional consol-
idation. The earliest attempt to account for the in-
fluence of pore fluid on the quasi-static deforma-
tion of soils is the one-dimensional consolidation
model of Terzaghi (1923), shown by Biot (1941)
to be a special case of his more general theory.
However, because of the complexity of the cou-
pled set of partial differential equations, most an-
alytical solutions of Biot’s model are limited to
simple geometries and boundary conditions.

Numerical techniques are required for more com-
plex situations. Sandhu and Wilson (1969)
first applied the finite element method to poroe-
lasticity, and over the years many refinements
and extensions have been made [Gambolati and
Freeze(1973), Zienkiewicz and Talor (1991)].
Cheng and Detournay (1988) presented a direct
boundary element method for plane strain poroe-
lasticity.

In the following sections, we present a poroelastic
finite element formulation for the reservoir zone
and show how we treat the surrounding strata us-
ing the displacement discontinuity method.

3.2 Governing Equations of Poroelasticity

Based on the Biot’s theory of poroelasticity
and Darcy’s law[Biot (1941)], simply, with the
compressible fluid flowing through the saturated
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porous medium considered, the governing equa-
tions for the problem of oil flow in deforming
reservoir rock can be described as ( the body force
is ignored):

G∇2u+(G+λ )∇ divu−α∇p = 0

α divut +
(

1−φ
Km

+
φ
Kf

− 1
(3Km)2 iT Di

)
pt

− k
μ

∇2 p = 0

(5)

where G and λ are Lame constants. k is the per-
meability of porous media, μ is the viscosity of
fluid, u and p denote the displacement of porous
medium and the pore pressure respectively, the
subscript t denotes time derivative, φ is the poros-
ity of the porous medium(i.e. percentage of pore
volume within rock that can contain fluids), Kf

and Km is the bulk modulus of the fluid and ma-
trix, respectively. IT = [1, 1, 1, 0, 0, 0].

3.3 Finite Element Solutions

Galerkin finite element method is chosen
here to approximate the governing equations
[Zienkiewicz and Talor (1991)]. The final form
of the FE solution to the poroelastic equations is
as follows:[

M −C
0 H

]{
u
p

}
+

[
0 0

CT S

]{
ut

pt

}
=

{
f u

f p

}
(6)

where M, H, S and C are the elastic stiffness, the
flow stiffness, the flow capacity and coupling ma-
trices, respectively.

{u
p} and {ut

pt } are the vectors of unknown vari-
ables u and p and corresponding time derivatives.
f u and f p are the vector for the nodal loads and
flow sources.

The explicit expressions of the above matrices are
as follows.

M =
∫

V
BT DBdV

H =
k
μ

∫
V

(∇Np)(∇Np)
T dV

S =
∫

V
Np

[
1−φ
Km

+
φ
Kf

− 1

(3Km)2 IT DI

]
NT

p dV

C =
∫

V
BT INpdV (7)

4 Poroelastic Half-Space Subsidence Using
Coupled DD–FEM

4.1 Coupling of Displacement Discontinuity
and Finite Element Methods

Combining the advantages from both BEM and
FEM has led to the hybrid BEM/FEM method,
and its applications exist in many engineering sci-
ences fields[Lie, Yu and Zhao(2001), Forth and
Staroselsky(2005)].

In this section, we try to combine a FEM method
for the reservoir with a DD formulation for the
surrounding strata, to address the compaction in-
duced surface subsidence problem numerically in
a half-space domain. As far as we know, this
is the first time for this hybrid approach to be
applied addressing the production-induced subsi-
dence problem in petroleum engineering and en-
vironmental engineering.

We employ the 20 node brick finite element and
rectangular displacement discontinuity element in
the implementation. Correlation between the DD
element and FE element is shown in Figure 1.

The exchange of the information between the
reservoir model and the DD model is performed.
The information that the FEM model provides is
the deformation of the reservoir, which is then
converted into displacement discontinuity pro-
vided to the DD model; the information that the
DD model provides is the stress state of the reser-
voir, which is then converted into overburdens
provided to the FEM model.

The process of coupling between the reservoir
model and the DD model is repeated until the con-
vergence is achieved.

4.2 Implementation

We use the iteration method to implement data
exchange between the DD and FEM models; the
procedure is as follows. (The flowchart is shown
in Figure 2.)

1. Start with the FEM (reservoir) model to cal-
culate the displacement and pressure under
prescribed external loads and fluid discharge
conditions within a specified time period.
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Finite Element Discretization 
(Brick Element) 
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z

Normal DD  

Shear DD

Rectangular DD Element

Top Surface  

Bottom Surface  

Top Surface

Bottom Surface  

Figure 1: Sketch of relationship between Finite Element and Displacement Discontinuity Element

n = 0

k = 0

FE Model 
       u,p

DD Model 

Update Overburden

Convergence

k = k + 1

tn >=tmax

Yes No

No

Yes

Stop

k  >=kmax

n = n + 1

Update DD

No

Yes

Figure 2: Flowchart of the iteration calculation
between DD and FE Model

2. Convert displacements obtained from the
FEM model into the displacement disconti-
nuity which is needed to apply to the DD el-
ements defining surrounding strata.

3. Execute the DD model, from which the local
stresses can be computed.

4. Apply the induced stresses calculated from
the DD model, along with the difference be-
tween the stresses in FEM and DDM, into
the external loadings to be applied to the
FEM model in the next iteration. The pur-
pose of doing this is to make sure the stresses
retain continuity.

Based on our experiences, to accelerate the
convergence, we introduce a constant, χ , to
multiply the stresses difference between the
two model

χ =
Er

Er +Eo
(8)

where Er represents the elastic modulus of
the reservoir, Eo represents the elastic modu-
lus of the surroundings.

5. The first iteration in the first time step ends,
and this iteration is now repeated until the
difference of the displacement discontinuity
between successive iterations is less than the
error tolerance. (There is also a criterion for
maximum number of iterations.)

6. Now, the first time step is complete, and
we return to step (1) above to undertake the
second timestep, repeating the process un-
til the desired time is reached. Intermedi-
ate stresses and displacements are stored for
examination of time-dependent, diffusion-
controlled factors.

4.3 Verification

Now, consider a 20 m × 20 m × 3 m reservoir
at depth of 300 m(note that in reality it could be
much deeper) with the following basic parameters
(see Figure 3): E = 10 MPa, ν = 0.3, φ = 0.28,
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Kf = 1×106 kPa, Km = 1×106 kPa, k = 1 D, and
μ = 1 cP.

Figure 3: FEM Mesh of the reservoir model

The reservoir has a specified non-permeable
boundary, and is supposed to be under a produc-
tion rate of Q = 0.5 m3/min with uniform pump-
ing so that we can obtain a uniform pressure de-
cline within the reservoir. This will allow us to
compare results to Geertsma’s analytical solution
[Geertsma(1966)] for uniform drawdown. In the
present problem, the time step is set as Δt = 120
minutes.

In the FEM mesh, the domain is discretized into
50 elements with 360 nodes; in the DD mesh, the
domain is discretized into 25 DD elements. Con-
vergence is shown in Figure 4.
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Figure 4: Convergence of the Displacement Dis-
continuity

Continuity of stress is demonstrated by the con-
sistency of the stresses from both the FEM model
and DD model (Figure 5).

The subsidence profiles at different time steps are
shown in Figure 6, in which the series number 1,
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Figure 5: Continuity of Stresses between FEM
and DDM models
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Figure 6: Subsidence profiles at different time

2, 3, 4, and 5 represent 0, 2, 4, 6, and 8 hours
respectively.

We will now compare the result of the DD-FEM
model with Geertsma’s analytical solution. He
developed his analytical solution to predict sub-
sidence caused by a uniform pressure decline in a
fluid-saturated reservoir as follows: for r = 0 and
a Δp which is constant throughout the reservoir,
the vertical displacement can be expressed as:

uz(0, z) =

− cmh
2

[
C(Z −1)

[1+C2(Z −1)2]
1
2

− (3−4v)C(Z +1)

[1+C2(Z +1)2]
1
2

+
2CZ

[1+C2(Z +1)2]3/2
+(3−4v+ε)

]
Δp (9)

where Z = z/c, C = c/R and ε = −1 for z > c,
and ε = +1 for z < c, respectively. Thus the elas-
tic surface subsidence above the centre of a disc-
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Table 1: Comparison between the Geertsma’s Solution and FEM-DDM model
subsidence at the centre

Time E(kPa) v Thick(h) ∼Radius(m) Depth(m) Drawdown(kPa) Ratio(D/R) Geertsma(m) DDFEM(m) Rel. Err.
2hrs 10000 0.3 4 11.283 300 -314.103 26.586808 -9.23E-05 -9.30E-05 0.68%
4hrs 10000 0.3 4 11.283 300 -635.232 26.586808 -1.87E-04 -1.86E-04 -0.35%
6hrs 10000 0.3 4 11.283 300 -957.137 26.586808 -2.81E-04 -2.79E-04 -0.77%
8hrs 10000 0.3 4 11.283 300 -1278.716 26.586808 -3.76E-04 -3.72E-04 -0.97%

shaped depleted reservoir amounts to

uz (0,0) = −2(1−v)cmhΔp

(
1− C√

1+C2

)
(10)

Calculations based on the FEM-DD model and
Geertsma’s solution are compared in Figure 7; re-
sults from this hybrid method shows a high con-
sistency with those of Geertsma.
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Figure 7: Comparisons between the Geertsma’s
Solution and FEM-DDM model

5 Conclusions

We presented a hybrid method that combined the
advantages of both boundary element and finite
element models to develop a coupled numeri-
cal simulation of a compacting reservoir within
a semi-infinite half-space. Some of these advan-
tages are:

1. It has advantages over analytical methods
which are restricted to simple geometries,
linear elastic rock behavior in the reservoir,
uniform drawdown, etc.

2. It has advantages over the FEM method
alone which must introduce proximal bound-
aries (not a true half-space) and leads to
a much larger number of degrees of free-
dom for the discretization of the surrounding
strata.

3. It has the advantage over the DD method
alone, which cannot account for the flow-
deformation coupling within the reservoir
zone.

4. It has the advantage of higher accuracy
with a reduced number of degrees of free-
dom through considering the reservoir com-
paction as one part of the problem, and its
influence on the surrounding impermeable
half-space domain as the second part of the
problem. This seems to be a relatively natu-
ral way of addressing a large number of real-
istic problems.

Finally, through comparison with other methods
and analytical solutions, we have shown that the
DDFEM method leads to correct solutions.
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