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A Solenoidal Initial Condition for the Numerical Solution of the
Navier-Stokes Equations for Two-Phase Incompressible Flow

F. Bierbrauer and S.-P. Zhu1

Abstract: Recently the use of the one-field for-
mulation in the numerical solution of the Navier-
Stokes equations for two-phase incompressible
flow has become a very attractive approach in
CFD (computational fluid dynamics). While the
presence of material discontinuities across fluid
interfaces presents some difficulty, it is their
combination with a non-solenoidal discontinu-
ous initial velocity field, commonly occurring in
the mathematical formulation, that has provided
the greatest hindrance in the numerical solution.
This paper presents three analytical solutions, the
Bounded Creeping Flow, Solenoidal and Con-
served Solenoidal Solutions, which are both con-
tinuous, incompressible, retain as much of the
original mathematical formulation as possible and
provide a physically reasonable initial velocity
field.

Keyword: solenoidal initial condition, one-
field formulation, two-phase flow.

1 Introduction

The solution of free and moving boundary prob-
lems in fluid flow, encountered in the application
of mathematical models in industry and the natu-
ral world, often requires the numerical solution of
the incompressible Navier-Stokes (NS) equations.
Such problems regularly contain multiple fluids
with radically different densities and viscosities
leading to material discontinuities across fluid in-
terfaces. The solution of such problems involve
either the use of multiple sets of NS equations
for each fluid and solve for the fluid interfaces
through application of interfacial conditions, or
more recently, solve only a single NS equation
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which treats the density and viscosity as field vari-
ables that undergo continuous but sharp variations
across the fluid interfaces. The second of these,
the so-called one-field formulation, is the one that
requires a special treatment of the initial condi-
tion because the combination of material discon-
tinuities with non-solenoidal velocity discontinu-
ities present in the problem’s originally proposed
initial condition has led to the greatest difficulty
in the one-field formulation approach. This paper
aims to resolve this issue by constructing a con-
tinuous incompressible initial velocity field valid
in the entire computational domain while retain-
ing as many of the characteristics of the original
formulation as possible.

The flow of a single phase incompressible fluid
within a given subdomain, usually part of the
larger entire flow domain, is described by the un-
steady NS equations in addition to appropriate ini-
tial and boundary conditions. Within this subdo-
main the physical properties of the fluid are char-
acterized by a uniform density and viscosity. A
liquid and gas may be described as continua pos-
sessing constant density and viscosity which are
separated by a sharp interface with surface ten-
sion [Frohn and Roth (2000); Zhu (2001)]. This
is the case in physical processes involving evapo-
ration or condensation, that is, a phase change of
a single fluid, Kothe (1999), which occurs in, for
example, industrial processes such as the water-
jet cooling of hot steel surfaces, Bierbrauer, Soh,
and Yuen (2002), or solidification of metal in cast-
ing processes, Puckett, Almgren, Bell, Marcus,
and Rider (1997). In addition, flows with mul-
tiple distinct, immiscible fluids bounded by dy-
namic topologically complex interfaces are also
often called multiphase flows, Kothe (1999). In
this case, phase refers to each distinct fluid in-
volved, whether it is the impact of a water droplet
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onto a layer of liquid zinc, Bierbrauer (2004), or
the wind generated waves at the air-ocean inter-
face, Scardovelli and Zaleski (1999). The whole
flow domain is separated into any number of sub-
domains filled with the individual phases, Scar-
dovelli and Zaleski (1999). Each phase may then
be described by a single (nonsingular) NS equa-
tion for incompressible single phase flow in addi-
tion to the appropriate conditions at the interface,
Anderson, McFadden, and Wheeler (1998).1 The
material discontinuities, in density and viscos-
ity, are here isolated within the individual phase
subdomains allowing the solution of multiphase
problems of zero density or viscosity within a sin-
gle phase.

However, the use of multiple sets of incompress-
ible single phase NS equations (multi-set NS) in
the solution of such flow problems remains some-
what unwieldy, Frohn and Roth (2000). The vari-
able density, incompressible, NS equations rep-
resent a natural extension of the single phase ap-
proach, described above, to the whole domain; by
treating the individual material properties, density
and viscosity, as field variables which undergo
discontinuous jumps across material interfaces.
This is the so-called one-field or one-fluid formu-
lation, Prosperetti (2000), where each of the sep-
arate fluids move with the local center-of-mass.
The multiple mass and momentum equations are
replaced by a single momentum equation and a
solenoidal condition on the center-of-mass veloc-
ity field, Kothe (1999). In addition to the mo-
mentum equation and the incompressibility con-
straint the NS equations are supplemented by two
equations of state for the transport and discontinu-
ous variation of density and viscosity over the en-
tire domain, Vincent and Caltagirone (2000). The
variable-density model allows for very large rela-
tive density ratios although any single phase den-
sity must be non-zero. The presence of surface
tension at the material interfaces may be included
through an extra discontinuous body force term in

1 These conditions are the stress balance: the jump in stress
for nonzero surface tension or normal and shear stress con-
tinuity if the surface tension is zero; the kinematic: conti-
nuity of the normal velocity, a consequence of mass con-
servation; and for viscous fluids the dynamic: the continu-
ity of tangential velocity across the interface.

the momentum equations. The required interfa-
cial conditions are a natural by-product of such a
formulation, Aleinov and Puckett (1995).

The current paper considers a typical two-phase
moving boundary problem using the variable den-
sity, incompressible NS equations as a suitable
mathematical model. Although this approach is
designed to deal with any number of fluid phases
it is the two-phase case that is met with most of-
ten in the mathematical modeling of interfacial
fluid flows common in industrial, technological
and natural processes. One such problem is the
mathematical modeling of natural or engineering
processes involving the dynamic behavior of sin-
gle droplets and droplet systems, Frohn and Roth
(2000). There is a vast literature in this field deal-
ing with the natural world: raindrop erosion of
soil, the application of agricultural sprays for pest
control, the formation of clouds; and technologi-
cal applications: fuel injection in combustion en-
gines, the delivery of aerosolized drugs for the
treatment of respiratory diseases, ink-jet printing
and the spray cooling of hot steel sheets, Frohn
and Roth (2000).
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Figure 1: The spherical droplet of radius R located
in Ω with initial state u0 = −U0j in Ωd and zero
velocity in Ωa

The mathematical modeling of a typical two-
phase droplet problem involves the dynamic mo-
tion of a droplet of a given constant density and
viscosity suspended in an ambient fluid of dra-
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matically different density and viscosity such as a
water droplet in air, Puckett, Almgren, Bell, Mar-
cus, and Rider (1997). If the domain Ω is large
enough homogeneous wall conditions may be im-
posed at the boundary ∂Ω. The initial conditions
satisfied by this kind of problem really exists as
two different states. The first is what will here
be called the (discontinuous) initial state of the
problem which is usually defined by a given con-
stant, non-zero initial velocity of the droplet (d)
u(x,0) = −U0j in Ωd while surrounded by the
second stationary ambient (a) fluid u(x,0) = 0
in Ωa, see Figure 1. This problem demonstrates
both velocity and material singularities, an unac-
ceptable situation even for the multi-set NS equa-
tions. The second state is the true initial condi-
tion of the problem u0(x) in Ω which must satisfy
the incompressibility constraint globally, Gresho
(1991). Here, Ω ≡ Ωd ∪Ωa and Ω ≡ Ω∪∂Ω. In
summary, for t > 0:

∇ ·u = 0 in Ω (1)

subject to the boundary condition for t > 0:

u = 0 on ∂Ω (2)

and the actual initial condition:

u(x,0) = u0(x) in Ω (3)

where:

∇ ·u0 = 0 in Ω (4)

and, with outward normal n:

n·u0 = 0 on ∂Ω (5)

Note that the normal component of (2) is in fact
(1) on ∂Ω so that with (4) and (5) the equations
(1)-(5) simply read, Gresho (1992):

∇ ·u = 0 in Ω for t ≥ 0 (6)

This is equivalent to stating that the velocity field
is always and everywhere incompressible, Gresho
(1991). Two direct consequences of this are that
there are constraints on the initial data (4) and that

impulsive starts are precluded, Gresho and Sani
(1987). In addition, if (4) and/or (5) are/is violated
the problem becomes ill-posed, Temam (1985). It
is clear that the initial state does not satisfy (4),
see Appendix A:, so that the problem is both ill-
posed and does not satisfy the incompressibility
constraint.2

The consequences of the incompressibility con-
straint also carry over into the numerical solu-
tion of the two-phase, variable density, NS equa-
tions, Gresho (1992). The construction of practi-
cal numerical methods for the solution of multi-
phase interfacial flow problems has veered away
from moving grid Lagrangian methods to fixed
grid Eulerian methods, Kothe (1999). In contrast
to Lagrangian methods, whose solution accuracy
and robustness tend to deteriorate in proportion to
the complexity of the interface topology, Kothe
(1999), the Eulerian approach allows the direct
numerical simulation of multi-phase flows to be
easily coded when the interface is strongly dis-
torted, Vincent and Caltagirone (2000). A prop-
erly constructed Eulerian method has the ability
to be accurate, robust, and of high fidelity, Kothe
and Rider (1995).3 The main difficulty in solv-
ing the time dependent NS equations in primi-
tive variable form is that the velocity and pressure
are intimately coupled, Gresho (1990). Chorin
(1968), noted that for incompressible flows the
pressure is not a true thermodynamic variable and
acts only as a Lagrange multiplier which ensures
solenoidality. An attempt at decoupling the pres-
sure and velocity variables is possible through a
two-step predictor-corrector procedure by select-
ing a non-solenoidal intermediate velocity field,
obtained from the momentum equations, followed
by a projection onto the nearest divergence free
subspace. This is made possible through the
Helmholtz decomposition, Sohr (2000), of a vec-

2 An associated well-posed problem may be constructed by
projecting the nonsolenoidal velocity field onto a nearby
div-free subspace, see equations (7)-(10).

3 accurate: in terms of a reasonable level of measured error
in the solution, robust: or an ability to generate physically
reasonable solutions beyond the point at which accuracy
is expected to be achieved, high fidelity: a method which
produces accurate solutions relative to the computational
resources allocated to it, Kothe and Rider (1995).
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tor field and its associated (elliptic) Neumann
problem, Quartapelle (1993).

Building upon Chorin’s classical exact projection
method, where the discrete projection operator
behaves similarly to the analytic operator, Bell,
Colella, and Glaz (1989), demonstrated the abil-
ity of projection methods to accurately solve the
constant density NS equations. This was extended
to the variable density case by Bell and Mar-
cus (1992), allowing the method to model inter-
facial flow problems with large density jumps.
However, numerical instabilities associated with
local grid decoupling present in (constant den-
sity) exact projection methods motivated the de-
velopment of so-called approximate projection
methods, Almgren, Bell, and Szymczak (1996),
which allowed for small non-solenoidal velocity
fields of the same order of the spatial trunca-
tion error of the numerical method, Kothe (1999).
The extension to the variable density approximate
projection case by Rider and coworkers [Puck-
ett, Almgren, Bell, Marcus, and Rider (1997);
Rider (1994); Rider, Kothe, Mosso, Cerutti, and
Hochstein (1995)] provided a very robust and
accurate numerical method to solve the Navier-
Stokes equations for multiphase flows.

The projection itself is carried out by subtracting
off the non-solenoidal part of the given velocity
field u(x) through the Helmholtz decomposition.
Any vector may be decomposed into the sum of
a divergence free, ud(x), and curl free, ∇ϕ , com-
ponent. This involves the solution of a Poisson
equation for ϕ(x):

∇ ·σ∇ϕ = ∇ ·u0 in Ω (7)

subject to Neumann boundary conditions:

n ·∇ϕ = 0 on ∂Ω (8)

Given a discontinuous, non-solenoidal velocity
field u0 present in the initial state, Appendix A:, a
divergence free initial velocity field ud

0 could be
obtained through the projection (7), (8), where
the boundary conditions of (1)-(5) have been
used, followed by the correction, Bell and Mar-
cus (1992):

ud
0 = u0 −σ∇ϕ in Ω (9)

This also initializes the pressure field

p(x) = ϕ(x) (10)

where σ(x) = 1/ρ(x) is the inverse of the density
field.

Although approximate projection methods are ro-
bust, and often lead to very accurate solutions of
interfacial flow problems, the initial second order
error ∇ ·ud

0 � O(h2) obtained from a discrete ver-
sion of the projection (7)-(9) should both main-
tain the same order of error and, more impor-
tantly, not grow, Rider (1994).4 If these diver-
gent modes are ignored, especially in the pres-
ence of large density jumps, solution quality can
markedly deteriorate, Kothe (1999), and lead to
instability. In order that the numerical solution
of the two-phase, incompressible, variable density
NS equations maintains an (almost) solenoidal ve-
locity field for each time-step we wish to ensure
that any errors carried forward in the calculation
do not arise from the initial condition.

Recent research has shown that the attempt to en-
sure a solenoidal velocity field through the nu-
merical solution of the system (7), (8) with dis-
continuous (inverse) density coefficients often re-
quires highly specialized discretisations of the el-
liptic operator ∇ · σ∇, [Hyman, Shashkov, and
Steinberg (1997); Li (1994); Wang (2004)]. In
addition, numerical calculations show that the so-
lution of the Neumann problem (7), (8) gets pro-
gressively more difficult as the (discontinuous) di-
vergence term on the right hand side deviates from
zero, Bierbrauer (2004).

It is the aim of this paper to construct a diver-
gence free initial velocity field without recourse
to the projection (7)-(9) but rather by an analyti-
cally derived initial velocity field which possesses
the four characteristics: (i) being divergence-free
over the whole domain Ω, (ii) a uniform vertical
velocity u0 =−U0j in Ωd , (iii) homogeneous wall
boundary conditions and (iv) a physically reason-
able representation of the initial condition used
for any subsequent flow calculations.

4 This occurs when the null space of the discrete divergence
D ·u0 is not allowed to grow. These are the spatial modes
that are not solenoidal, ∇ · u �= 0, although the discrete
operator does not ‘see’ them i.e. it obtains D ·u = 0.
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2 Dynamic, Kinematic and Semi-Dynamic
Solutions

Three avenues are open for such an analytic in-
compressible initial velocity field. The first con-
siders a dynamic solution of the NS equations in-
volving as much of the real dynamics of the prob-
lem as possible, i.e. all of the four characteris-
tics (i)-(iv). The second, a purely kinematic solu-
tion, requires a velocity field which satisfies only
the div-free constraint, a uniform vertical droplet
velocity and zero wall boundary conditions i.e.
characteristics (i)-(iii). Finally, the third, a semi-
dynamic solution which, in addition to the char-
acteristics of the kinematic solution involve as-
pects of the dynamics such as mass and momen-
tum conservation without direct use of the mo-
mentum equations.

Although the first of these provides the most phys-
ically realistic initial condition it is also the most
difficult to solve of all of them. Unless the ge-
ometry of the problem is simple enough its solu-
tion must rely on a numerical solution which pos-
sesses its own serious difficulties including dis-
continuous velocity, viscosity and density fields.
The kinematic solution on the other hand only
considers a solution to the divergence free con-
straint equation (6) and is consequently far easier
to solve, even in more complicated geometries.
The semi-dynamic solution combines aspects of
both of the first two without making use of the
momentum equations themselves although requir-
ing extra integral constraint equations. Although
it appears more analytically tractable than the dy-
namic solution it also possesses certain disadvan-
tages as will be seen in Section 2.4. These so-
lution types are here called droplet initialization
problems.

2.1 The Droplet Initialization Problem

The problem, with x − y coordinate system as
shown in Figure 1, is first simplified so that the
original domain Ω is restricted to a two dimen-
sional spherical droplet of inner radius ri, constant
density ρi, constant viscosity μi and uniform inner
velocity u(i)(x,y) = −U0j such that the velocity
boundary condition is given by u(i)(ri,θ ) =−U0j.

This, inner droplet, is surrounded by a stationary
ring of outer fluid of constant density ρo < ρi,
constant viscosity μo < μi, for ri ≤ r ≤ ro and
outer boundary condition u(o)(ro,θ ) = 0. The ex-
tension of the inner droplet including the outer
ring will also be called the outer droplet. The
choice of outer ring rather than an unbounded do-
main is essential as any asymptotic solution gen-
erally does not decay to zero within only a few
droplet radii which, in many situations, as well
as the present one, remains the case. A non-
zero velocity at the domain boundary ∂Ω, which
is a direct consequence of an asymptotic solu-
tion in a bounded domain, merely shifts the ve-
locity discontinuity present in the initial state (at
the droplet-ambient interface) and does not com-
pletely remove it. Although there exists a sharp
density and viscosity jump between the two me-
dia at r = ri the outer ring serves as a matching
domain for the inner and outer velocity bound-
ary conditions. Note that this outer ring of width
ro − ri should be reasonably narrow so as to re-
tain as much of the initial state characteristics as
possible. The initial state described above will be
called the original droplet (OD) problem and is
shown in Figure 2(a).

On the other hand it is also possible to overcome
the sharp density discontinuity by postulating
a modified droplet problem with a gradually
varying density and a continuous velocity field
extending from the center of the droplet to the
outer radius ro while retaining the zero outer
boundary condition u(ro,θ ) = 0. This takes place
over an extra ring of fluid interspersed between
the original inner and outer fluids such that the
original droplet of density ρi is now reduced
in radius i.e. 0 ≤ r ≤ α while the middle ring
ranges from α < r ≤ β and possesses a varying
density ρ(r). This middle ring is of width β −α
and provides a transition length, which upon
discretization of the mathematical model, may be
several integer multiples of the (computational)
cell width h. The outer ring of fluid of density ρo

now covers the range β < r ≤ ro. The geometry
of the modified droplet problem is shown in
Figure 2(b).
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Figure 2: The two droplet problems in a droplet-centered frame: (a) the original droplet of radius ri, density
ρi and velocity u(i)(r,θ ) = −U0j surrounded by an outer fluid ring, ri < r ≤ ro, of density ρo and zero
velocity, u(o)(r,θ ) = 0 (b) a modification of the original droplet now of varying velocity u(r,θ ) for all
0 ≤ r ≤ ro, density ρi in 0 ≤ r ≤ α followed by a ring, α ≤ r ≤ β , with varying density ρ = ρ(r) and an
outer ring, β ≤ r ≤ ro, of density ρo with boundary condition u(ro,θ ) = 0.

The spherical character of the droplet configu-
ration suggests the use of polar coordinates as
the most natural way to analyze the initialization
problem. Consider the droplet centered in an x−y
frame with radial coordinate r and angular co-
ordinate θ with all fluid dynamical variables ex-
pressed in polar coordinates such that u = u(r,θ ),
p = p(r,θ ). The uniformity of the droplet veloc-
ity suggests the simplification, Leal (1992):

ur(r,θ ) = U(r) sinθ ,

uθ (r,θ ) = Θ(r)cosθ ,

p(r,θ ) = P0 +P(r) sinθ
(11)

for P0 an arbitrary constant pressure.

2.2 The Bounded Creeping Flow Solution

An example of a relatively simple and analyt-
ically tractable dynamic solution is the well-
known Creeping Flow Solution for the steady
motion of a solid translating sphere through an
unbounded quiescent fluid, Happel and Brenner
(1991). This is particularly useful for the present
case as the solid sphere approximates a droplet
of uniform initial velocity. Although the creep-

ing flow limit assumes that the inertial motion of
the sphere is insignificant compared to the viscous
forces acting it still provides a convenient analyt-
ical solution for the current problem.

The use of the creeping flow reduction is here
modified to deal with a translating fluid sphere
of uniform vertical velocity surrounded by a
bounded domain. The asymptotic nature of the
original creeping flow solution no longer applies
and is replaced by two sets of creeping flow equa-
tions for the inside of the droplet and the outer
ring of ambient fluid with appropriate velocity
boundary conditions at the inner and the outer ra-
dius, see Figure 2(a). It is important to retain
as much of the original droplet problem charac-
teristics as possible including the concentration
of mass and momentum as close as possible to
the central droplet with its uniform vertical veloc-
ity. This is also the reason why a translated solid,
rather than, fluid sphere has been chosen as the
representation of the creeping flow solution. Note
that this approach is somewhat unphysical given
that the solid sphere is now a droplet and that the
asymptotic aspects are replaced by a finite radial
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boundary condition. Nevertheless, the aim is to
obtain a divergence-free velocity field as an ini-
tial condition for which this method is both simple
and ideally suited.

This method, the first of the initialization prob-
lems, will henceforth be called the Bounded
Creeping Flow Solution (BCFS). The problem to
be solved involves the flow both inside (i) and
outside (o) the droplet so that there exist two
problems defined by

μ(i)∇2u(i) = ∇p(i), ∇ ·u(i) = 0 in Ωi (12)

μ(o)∇2u(o) = ∇p(o), ∇ ·u(o) = 0 in Ωo (13)

2.2.1 Inside the Droplet

The simplest approach makes use of polar coordi-
nates defined in Appendix B:. Inside the droplet
the solution to the NS equations (12) is a constant
velocity, such that in polar coordinates:

u(i)
r (r,θ ) = −U0 sinθ , u(i)

θ (r,θ ) = −U0 cosθ ,
(14)

p(i)(r,θ ) = 0 (15)

where U(r) = −U0, Θ(r) =−U0 and P0 = P(r) =
0 for 0 ≤ r < ri. Or equivalently in x− y coordi-
nates:

u(i)
x (x,y) = 0, u(i)

y (x,y) = −U0, p(i)(x,y) = 0

(16)

with its associated stream function:

Ψ(i)(x,y) = U0x = U0r cosθ (17)

2.2.2 Outside the Droplet

Solve the NS equations (13) in polar coordinates,
for ri ≤ r ≤ ro:

μ(o)

[
1
r

∂
∂ r

(
r

∂u(o)
r

∂ r

)
+

1
r2

∂ 2u(o)
r

∂θ 2 − 2
r2

∂u(o)
θ

∂θ

−u(o)
r

r2

]
=

∂ p(o)

∂ r

μ(o)

[
1
r

∂
∂ r

(
r

∂u(o)
θ

∂ r

)
+

1
r2

∂ 2u(o)
θ

∂θ 2 +
2
r2

∂u(o)
r

∂θ

−u(o)
θ
r2

]
=

1
r

∂ p(o)

∂θ

∂
∂ r

(ru(o)
r )+

∂u(o)
θ

∂θ
= 0

subject to the boundary conditions at r = ri and
r = ro:

u(o)
r (ri,θ ) = −U0 sinθ , u(o)

θ (ri,θ ) = −U0 cosθ

u(o)
r (ro,θ ) = 0, u(o)

θ (ro,θ ) = 0

substituting (11) we obtain a set of three ODE’s
for U (o), Θ(o) and P(o):

μ(o) sinθ

[
d2U (o)

dr2 +
1
r

dU (o)

dr
− 2U (o)

r2 +
2Θ(o)

r2

]

= sinθ dP(o)

dr
(18)

μ(o) cosθ

[
d2Θ(o)

dr2 +
1
r

dΘ(o)

dr
− 2Θ(o)

r2 +
2U (o)

r2

]

= cosθ
P(o)

r
(19)

dU (o)

dr
=

Θ(o)−U (o)

r
(20)

canceling sinθ in (18) and cosθ in (19), differen-
tiating (19) with respect to r to eliminate P(o)(r)
and using (20) we get:

U (o)(r) = c1 +c2 lnr +c3r2 +
c4

r2 (21)

Θ(o)(r) = c1 +c2 +c2 lnr +3c3r2 − c4

r2
(22)

P(o)(r) = −2μ(o)

r
(c2 −4c3r2) (23)

subject to:

U (o)(ri) = −U0, Θ(o)(ri) = −U0

U (o)(ro) = 0, Θ(o)(ro) = 0
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a set of four equations in four unknown constants:
c1,c2,c3,c4. The solutions for U (o), Θ(o) and P(o)

are, (a = lnro − lnr, b = lnro − lnri):

U (o)(r) =

−{r4 +[(2a−1)r2
o +(2a+1)r2

i ]r
2− r2

i r2
o}U0

2r2[(b−1)r2
o +(b+1)r2

i ]

Θ(o)(r) =

−{3r4 +[(2a−3)r2
o +(2a−1)r2

i ]r
2 + r2

i r2
o}U0

2r2[(b−1)r2
o +(b+1)r2

i ]

P(o)(r) =
−2μ(o)(r2

o + r2
i +2r2)U0

r[(b−1)r2
o +(b+1)r2

i ]

so that:

u(o)
r (r,θ ) = U (o)(r) sinθ ,

u(o)
θ (r,θ ) = Θ(o)(r)cosθ ,

p(o)(r,θ ) = P0 +P(o)(r) sinθ

and that at the surface of the droplet u(o)
r (ri,θ ) =

−U0, u(o)
θ (ri,θ ) = −U0 with a non-zero pressure

given by

p(o)(ri,θ ) = P0 − 2μ(o)(r2
o +3r2

i )U0 sinθ
ri[(b−1)r2

o +(b+1)r2
i ]

which decreases, at r = ro, to:

p(o)(ro,θ ) = P0 − 2μ(o)(3r2
o + r2

i )U0 sinθ
ro[(b−1)r2

o +(b+1)r2
i ]

The solutions in x−y coordinates read:

u(o)
x (x,y) =

xy[r4 − (r2
i + r2

o)r2 + r2
i r2

o]U0

[(b−1)r2
o +(b+1)r2

i ]r4

u(o)
y (x,y) ={
r6 +

[
2x2 +2r2

s a+ r2
i − r2

o

]
r4−[r2

i r2
o +2x2r2

s

]
r2

+2x2r2
i r2

o

}
U0

/
2
[
(b−1)r2

o +(b+1)r2
i

]
r4

p(o)(x,y) = P0 − 2μ(o)y(r2
o + r2

i +2r2)U0

r2[(b−1)r2
o +(b+1)r2

i ]

with r =
√

x2 +y2 and r2
s = r2

i + r2
o. The associ-

ated stream function is calculated from:

Ψ(o)(r,θ ) = −
∫ r

ri

u(o)
θ (ξ ,θ ) dξ +U0ri cosθ

using the fact that Ψ(o)(ri,θ ) = Ψ(i)(ri,θ ) =
U0ri cosθ , from (17). That is:

Ψ(o)(x,y) =

x{r4 +[2(r2
i + r2

o)a+ r2
i − r2

o]r
2 − r2

i r2
o}U0

2[(b−1)r2
o +(b+1)r2

i ]r2
(24)

2.2.3 Restriction on ro

Given that the velocity at r = ro is artificially trun-
cated to zero it is advisable to ensure that at no
point does the velocity field outside the droplet
exceed that of the droplet itself. That is, it is re-
quired that:

max
ri≤r≤ro
0≤θ≤2π

|u(o)(r,θ )| ≤ U0

where |u(o)| =
√

U (o)2 sin2 θ +Θ(o)2 cos2 θ . In
the case of U (o)(r) it is straightforward to show
that for ro > ri the only turning points are a
minimum at r = ri and a maximum at r = ro.
So the slope dU (o)(r)/dr > 0 in ri < r < ro.
The function U (o)(r) is always increasing in
this range. However, Θ(o)(r) possesses a sin-
gle turning point in this range given by r =√

6(r2
o + r2

i )+6
√

(r2
o + r2

i )+12r2
or2

i /6 as well as

a local minimum at r = ri and Θ(o)(ro) = 0. This
is a maximum in the range ri < r < ro. To en-
sure that the maximum magnitude of the velocity
does not exceed U0 in this range it is found that
ro ≥ 2.868ri approximately.

2.3 The Solenoidal Solution

This, the second of the initialization problems, is
a purely kinematic solution to the div-free prob-
lem, or a purely Solenoidal Solution (SS), with
identical boundary conditions to the BCFS and
the same solution inside the droplet. It is purely
kinematic and so only involves the solution of the
div-free constraint without use of the momentum
equations.
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Reducing the original div-free constraint in polar
coordinates (50) with the simplification (11) the
ordinary differential equation reads:

d
dr

(
rU (o)(r)

)
= Θ(o)(r)

subject to

U (o)(ri) = −U0, Θ(o)(ri) = −U0

U (o)(ro) = 0, Θ(o)(ro) = 0

from the above ODE and the given boundary con-
ditions the problem reduces to the solution of the
integral:

U (o)(r) =
1
r

∫ r

ri

Θ(o)(ξ )dξ − U0ri

r
(25)

for a given Θ(o)(r), U (o)(ro) = 0, Θ(o)(ri) = −Uo

and Θ(o)(ro) = 0. Proposing a polynomial solu-
tion of the type Θ(o)(r) = −(ro− r)(a0 +a1r) for
some constants ai, applying the boundary condi-
tions the solutions are:

U (o)(r) =
−(ro− r)2[(ri + ro)r−2r2

i ]U0

(ro − ri)3r
,

Θ(o)(r) =

−(ro − r)[(ro− ri)2 −3(ri + ro)(r− ri)]U0

(ro− ri)3

The equivalent components in x − y coordinates
are, using (49):

u(o)
x (x,y) =
−2xy(ro − r)(r− ri)[(ri + ro)r + riro]U0

(ro− ri)3r3 (26)

u(o)
y (x,y) = (ro− r)

[
ar4−br3 +2(r2

i ro +ax2)r2

−2r2
i x2r−2ror2

i x2
]
U0

/
(ro− ri)3r3 (27)

where the constants a,b are given by:

a = ri + ro, b = r2
o + riro +2r2

i

with the associated stream function:

Ψ(o)(x,y) =
x(ro − r)2[(ri + ro)r−2r2

i ]U0

(ro − ri)3r
(28)

Note that a pressure field may be found through
the use of the steady NS equations. The option of
solving (7), (8) exists although the solution will be
a constant pressure since the solenoidal solution
(26), (27) is exactly div-free.

2.3.1 Restriction on ro

Again, dU (o)(r)/dr > 0 in the range ri < r < ro

so that it is always an increasing function of r.
On the other hand dΘ(o)(r)/dr is positive in the
range ri < r < rtp and negative over rtp < r <
ro, where rtp is a turning point located at rtp =
2(r2

o + riro + r2
i )/3(ri + ro) so that Θ(o)(rtp) =

(ro + 2r2
i )U0/3(r2

o − r2
i ). The maximum size of

Θ(o)(rtp) stays below U0 provided:

ro >

(
1+

3√
2

)
ri

2.4 The Conserved Solenoidal Solution

This third type of initialization problem solution,
the semi-dynamic solution, is one of the most gen-
eral taking into account continuous density varia-
tion from an inner droplet of constant density ρi

and radius α out to r = β followed by an outer
ring of density ρo and outer radius ro. The veloc-
ity field is allowed to vary from the center of the
droplet out to the outer radius, this allows conti-
nuity in both density and velocity fields as well
as incompressibility. This implies that this third
problem type solves for the velocity in the entire
domain so that the inner and outer problem are
now one problem with u = u(r,θ ) in 0 ≤ r ≤ ro.
The degree of freedom possible in these problems
is such that these attempts remain three of a whole
family of solutions possible with the given condi-
tions.

2.4.1 Conservation Equations

Although the modified droplet problem as stated
in the previous paragraph is an artificial one, it
is advantageous to try to maintain as many phys-
ical characteristics as possible. Certainly, total
mass must be conserved over the inner droplet and
outer ring. In addition, it is advantageous to con-
serve momentum both as a realistic physical prop-
erty as well as enforcing the correct velocity di-
rection in the outer ring, this would not be the case
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if kinetic energy were used instead. Here, conser-
vation of momentum, does not refer to a conserva-
tion over time, rather it refers to an equality of the
total momentum in the modified droplet problem
and the original droplet problem over the entire
domain Ω. As such, this problem will be called
the Conserved Solenoidal Solution (CSS).

1. The Original droplet: We have from Figure
2(a) (original droplet) in regions Ωi and Ωo:

total mass

ρiπr2
i +ρoπ(r2

o − r2
i )

total x-momentum

0

total y-momentum

−ρiπr2
i U0

Given that both velocity and density may
vary throughout the domain Ω = Ωi∪Ωi−o∪
Ωo, the problem may be further simplified
by noting that dimensionally speaking most
of the mass and momentum of the original
droplet is confined to the inner region Ωi. For
example: for a water droplet in air the mass
in Ωi is mi = 1000 πr2

i kg and in Ωo is mo = 1
π(r2

o − r2
i ) kg, a ratio of 1000/[(ro/ri)2−1].

This ratio only approaches unity for large
ro ∼ 30ri. Similarly, the momentum in Ωi

is 10000πr2
i kg m/s whereas in Ωo it is zero.

This implies that it is best to confine most
of the momentum and mass within a droplet
of roughly the same size, density and veloc-
ity which still allows both density and veloc-
ity continuity throughout the whole domain.
Thus a structure such as that shown in Figure
2(b) probably provides the optimum geome-
try for these requirements.5

5 N.B. since the current method deals with the impact of
immiscible fluids sharp density interfaces are maintained
throughout, this implies that any density variation defined
over a region is carried forward in the calculation and is
maintained. A density variation which attempts to main-
tain an approximately sharp interface best suits the current
problem. Therefore the region Ωi−o = {(r,θ) : α ≤ r ≤
β ,0 ≤ θ ≤ 2π} should be kept relatively thin.

2. The Modified droplet: The domain of the
modified droplet consists of a central droplet,
Ωi, of density ρi, radius α , surrounded by
a concentric ring, Ωi−o, of density ρi−o =
ρ(r), width β −α , varying velocity ui−o =
u(r,θ ) also enclosed within a second ring,
Ωo, of density ρo, width ro − β and veloc-
ity approaching zero at the boundary of the
domain i.e. u(ro,θ ) = 0.

Therefore:

total mass

ρiπα2 +
∫

Ωi−o

ρ(x,y)dA+ρoπ(r2
o −β 2)

total x-momentum

ρi

∫
Ωi

ux(x,y)dA

+
∫

Ωi−o

ρ(x,y)ux(x,y)dA

+ρo

∫
Ωo

ux(x,y)dA

total y-momentum

ρi

∫
Ωi

uy(x,y)dA

+
∫

Ωi−o

ρ(x,y)uy(x,y)dA

+ρo

∫
Ωo

uy(x,y)dA

Using the simplifications (11), in polar coor-
dinates we have:

total mass

ρiπα2 +
∫ 2π

0

∫ β

α
ρ(r) rdrdθ

+ρoπ(r2
o −β 2)

total x-momentum

ρi

2

∫ 2π

0

∫ α

0
[U −Θ] sin2θ rdrdθ

+
1
2

∫ 2π

0

∫ β

α
ρ [U −Θ] sin2θ rdrdθ

+
ρo

2

∫ 2π

0

∫ ro

β
[U −Θ] sin2θ rdrdθ



Numerical Solution of the Navier-Stokes Equations 11

total y-momentum

ρi

∫ 2π

0

∫ α

0
[U sin2 θ +Θcos2 θ ] rdrdθ

+
∫ 2π

0

∫ β

α
ρ [U sin2 θ +Θcos2 θ ] rdrdθ

+ρo

∫ 2π

0

∫ ro

β
[U sin2 θ +Θcos2 θ ] rdrdθ

using the fact that
∫ 2π

0 sinθ cosθ dθ = 0 and∫ 2π
0 sin2 θ dθ =

∫ 2π
0 cos2 θ dθ = π we have:

total mass

ρiπα2 +2π
∫ β

α
ρ(r) rdr +ρoπ(r2

o −β 2)

total x-momentum

0

total y-momentum

ρiπ
∫ α

0
[U +Θ] rdr

+π
∫ β

α
ρ(r)[U +Θ] rdr

+ρoπ
∫ ro

β
[U +Θ] rdr

3. Conservation Equations: Applying the in-
compressibility constraint d(rU(r))/dr =
Θ(r) the integral

∫ b
a [U(r) + Θ(r)] rdr =∫ b

a [r2U(r)]′dr = b2U(b)− a2U(a), the fi-
nal conservation equations for the original
(LHS) and modified droplet (RHS) are:

mass conservation

ρir
2
i +ρo(r2

o − r2
i ) =

ρiα2 +2
∫ β

α
ρ(r) rdr +ρo(r2

o −β 2)

(29)

y-momentum conservation

−ρir
2
i U0 =

ρiα2U(α)+
∫ β

α
ρ(r)[r2U(r)]′dr

+ρo[r2
oU(ro)−β 2U(β )] (30)

2.4.2 Density Variation in α ≤ r ≤ β

In the original droplet the density undergoes an
abrupt change from ρi in the inner droplet to ρo in
the outer ring. We propose to vary density gradu-
ally over the small radial distance β −α such that
ρi−o = ρ(r) only (∂ρ/∂θ = 0) and is also inde-
pendent of velocity.6 The conditions the density
must satisfy in this region are given by:

ρ(α) = ρi, ρ(β ) = ρo (31)

with the additional requirement of extra smooth-
ness, i.e.:

ρ ′(α) = 0, ρ ′(β ) = 0 (32)

Proposing a polynomial density function with
four unknown constant coefficients to satisfy the
above four equations (31), (32) we have:

ρ(r) = a0 +a1r +a2r2 +a3r3 (33)

solving for the ai’s and noting that the density
ρ(r) depends on the parameters α ,β , we obtain:

ραβ (r) =

β 2(β −3α)ρi +α2(3β −α)ρo

(β −α)3 +
6αβ (ρi−ρo)r

(β −α)3

− 3(β +α)(ρi −ρo)r2

(β −α)3 +
2(ρi−ρo)r3

(β −α)3 (34)

where we must ensure β �= α since ρ(α) = ρi

whereas ρ(β ) = ρo.

2.4.3 Solution for U(r) and Θ(r) in 0 ≤ r ≤ ro

At the edge of the outer ring the velocities must
vanish we have: U(ro) = 0, Θ(ro) = 0 along with
the incompressibility constraint:

U(r) =
1
r

∫ r

0
Θ(ξ )dξ (35)

with the integration constant being zero to ensure
a finite central velocity. Note that the condition

6 N.B. this problem remains an artificial one since the effect
of viscosity, surface tension and convection are ignored.
The current simplification could be expanded on through
an extra coefficient in the density polynomial thereby in-
cluding the effects of velocity implicitly although the ve-
locity field, in this case, is purely a product of the incom-
pressibility constraint.
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U(ri) = −U0 has not been enforced and is only
possible if the last term in (30) were to be iden-
tically zero. It is straightforward to include the
zero boundary velocities into a polynomial ap-
proximation for Θ as well as a variation to take
into account the two extra mass and momentum
conservation equations (29) and (30). That is, let
Θ(r) = (ro − r)(b0 + b1r). In addition to (35) the
final three equations to solve for the unknown co-
efficients b0,b1 and the unknown radii α ,β are
respectively, upon simplification of (35) at r = ro

as well as (29) and (30):∫ ro

0
b0(r− ro)+b1r(r− ro)dr = 0 (36)

∫ β

α
ραβ (r) rdr =

ρi

2
(r2

i −α2)+
ρo

2
(β 2−r2

i ) (37)

∫ β

α
ραβ (r)[r2U(r)]′dr

= ρoβ 2U(β )−ρi(r2
i U0 +α2U(α)) (38)

note that the mass conservation equation (37) is
independent of velocity and as such is an equation
for β in terms of α (or vice versa) so that both α
and β cannot be chosen arbitrarily. Integrating we
get:

[3β 2 +4αβ − (10r2
i −3α2)](ρi −ρo) = 0

giving :

β = −2α
3

±
√

30r2
i −5α2

3
(39)

solving for the remaining coefficients b0,b1 we
obtain for U(r) and Θ(r):

U(r) = −γαβ (r− ro)2 ρiU0

ρi −ρo
(40)

Θ(r) = −γαβ (3r− ro)(r− ro)
ρiU0

ρi −ρo
(41)

where γαβ is a constant with respect to r although
a function of ri and ro and is dependent upon the
parameters α and β :

γαβ (ri, ro) =
70r2

i

ar2
o +bro +c

and

a = 7(3β 2 +4αβ +3α2),

b = −7(4β 3 +6α(β +α)β +4α3),
(42)

c = 10(β 4 +α4)+2αβ (8β 2 +9αβ +8α2) (43)

then for any given 0 < α ≤ ri and ri ≤ β we
choose the positive solution from (39), substitute
into (40) and (41) to obtain computed values for
U(r),Θ(r), where ρi,ρo,U0 are all given before-
hand. A pressure field may be found through
the projection approach outlined in equations (7)-
(10).

2.4.4 Aspects of U(r) and Θ(r)

1. Velocity at Droplet Center: Although the
velocity at the center of the droplet for the
OD case was U(0) = Θ(0) = −U0 we notice
that at the center of the modified droplet the
velocity is given by:

U(0) = Θ(0) = −γαβ r2
o

ρiU0

ρi −ρo

so that the modified droplet velocity is de-
termined by a ratio of ρi and ρo, as well as
the radii α , ro, ri, and generally exceeds the
original droplet velocity when the fraction
γαβ r2

oρi/(ρi −ρo) > 1.

2. Minimum and Maximum α and β : For the
smallest possible value of α = 0,β =√

10/3ri so that:

γαβ =
63

63r2
o −28

√
30riro +100r2

i

with:

U(r) =

−
(

63(r− ro)2

63r2
o −28

√
30riro +100r2

i

)
ρiU0

ρi −ρo
,

Θ(r) =

−
(

(3r− ro)(r− ro)
63r2

o −28
√

30riro +100r2
i

)
ρiU0

ρi −ρo
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For the largest possible α = β = ri we have:

γαβ =
1

(ro − ri)2

and the corresponding:

U(r) = −
(

r− ro

ro − ri

)2 ρiU0

ρi −ρo
,

Θ(r) = −
(

(3r− ro)(r− ro)
(ro− ri)2

)
ρiU0

ρi −ρo

Note that the original droplet cannot be re-
trieved from the CSS solution when α = β =
ri.

3. Restriction on ro: Note that in the range 0 <
r < ro the minimum for both U and Θ is
reached at r = 0 whereas the maximum for U
is zero the maximum for Θ is obtained at r =
rtp and Θ′(rtp) = 0, (where rtp refers to the
turning point) which occurs at rtp = 2ro/3 so
that

Θ(2ro/3) =

(
γαβ r2

o

3

)
ρiU0

ρi −ρo

this peak is always less than or equal to U0

when (ρio = ρi −ρo):

ro ≥
3(ρio)b−

√
9ρ2

iob2 +12ρio[70ρir2
i −3ρioa]c

2[70ρir2
i −3ρioa]

(44)

Using the previously defined values of a,b
and c in (42) and (43). This ensures that
ro− ri �= 0 and also spreads the velocity over
a larger range than the original droplet. It is
this requirement that allows momentum con-
servation to be upheld.

2.4.5 Solution for ux(x,y), uy(x,y)

Using the transformation equations (52) on the so-
lutions (40) and (41) we get:

ux(x,y) =
(

2γαβ xy(r− ro)
r

)
ρiU0

ρi −ρo
(45)

uy(x,y) =

−
[

γαβ
(
3x4 +y4 −2(2x2 +y2)ror +4x2y2 + r2

or2)
/

r2
]
× ρiU0

ρi −ρo
(46)

with

Ψ(x,y) = γαβ x(r− ro)2

3 Comparison of the Three Solutions

The three solutions, BCFS, SS and CSS, possess
their own characteristics, these are summarized in
Table 1 for a simple case of: inner droplet size
α , transition region thickness β −α , whether the
method conserves mass and momentum, the per-
centage of the total momentum carried by the in-
ner droplet and the minimum allowable size of the
outer radius in order to ensure all velocities in Ωo

are less than or equal to U0. The original droplet
problem is used in Table 1 to act as a comparison.

Table 1: Properties of the example considered in
Section 3.1.

Method Type Method Characteristics
mass mom. % mom. min.
cons. cons. in Ωi ro

OD yes no 100 0.1
BCFS yes no � 99.9 � 0.29

SS yes no � 99.9 � 0.31
CSS yes yes � 80 � 0.24

3.1 A Typical Case

The following example studies these properties by
allocating specific values for the various parame-
ters ri, ro, α and U0 = 1 in a domain: −1 ≤ x,y ≤
1 and a 100×100 grid (h = Δx = Δy = 0.01). The
parameters for the OD, BCFS and SS cases are
given by: ri = 0.1, ro = 3.5ri, U0 = 1; whereas
for the CSS: α = 0.8ri and the transition length
β −α = 0.04 = 4h, four integer multiples of the
cell width. Note that for the OD, BCFS and
SS cases α and β have been chosen as constant,
α = β = ri, and it is in the CSS case, where the
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velocity is radially dependent, that a gradual den-
sity variation is considered most relevant.

From Table 1 several clear conclusions can be
drawn: firstly, only the CSS conserves both mass
and momentum, whereas mass must be conserved
as a matter of course, momentum is an associated
physical property which we would like to have
conserved as part of the problem solution. Sec-
ondly, in all cases, except the CSS, virtually all
of the momentum is carried by the inner droplet.
Thirdly, the minimal allowable outer radius for
the CSS is the smallest of all whereas both the
BCFS and SS have larger requirements.

3.1.1 U(r), Θ(r) Characteristics

Figure 3, shows, in addition, that the velocity
at the center of the droplet for the CSS case,
|uCSS(0,θ )| � 2, exceeds the original droplet ve-
locity, |uOD(0,θ )| = U0 = 1, although remain-
ing within the same order of magnitude as the
original. Whereas all of the U(r) curves show
much the same general form, except for the fact
that UCSS(α) < UBCFS(α),USS(α) = −U0, those
for Θ(r) vary significantly with the CSS case be-
ing lower in maximum magnitude than either of
the other two cases and SS being larger than ei-
ther of the other two. Similarly, the velocity for
the CSS case is spread out over the whole range,
0 ≤ r ≤ ro, allowing the lowering of the maxi-
mum size but also increasing the vertical velocity
at the center of the droplet and creating a change
in velocity from the center outwards. Note that
computational experiments also show that more
of the momentum for the BCFS case is confined
near the original droplet than in either of the other
two cases which progressively spread the veloci-
ties further out.

3.1.2 Stream Functions

U and Θ as function of radius measured from the
center of the droplet for all three solution types for
the given parameters ri = 0.1, ro = 3.5ri, U0 = 1,
α = 0.8ri with its associated β = 1.2ri.

Further characteristics of the solutions are shown
in Figures 4 and 5 where the stream function for
each of the solution types is compared with the
original droplet. Clearly, the qualitative charac-

teristics of the stream function for each of the
solutions is similar showing vertical streamlines
within the inner droplet for the BCFS and SS
cases, although diverging from the vertical for
the CSS case, surrounded by recirculating stream-
lines in the outer ring which match at r = ri. This
recirculation pattern in the outer ring is a prod-
uct of the creation of a flow field which ensures
the div-free condition is satisfied within the whole
domain. This is also justified in a physical sense
since boundary layer theory requires that outside
of the inner droplet the velocity should not be im-
mediately zero.

3.1.3 Method Divergence

Table 2 shows the maximum discrete divergence
calculated using the second order central dif-
ference operator Di, j ·u = (ui+1, j − ui−1, j)/2h +
(vi, j+1−vi, j−1)/2h which, given a finite grid spac-
ing, calculates both a large finite divergence for
the OD case, rather than an infinite result, and a
non-zero divergence for the analytically exact div-
free BCF, S and CS Solutions. In this sense all
solution types vastly improve the calculated max-
imum discrete divergence, ||Di, j ·u||∞, when com-
pared to the very large result of the OD.

Table 2: The maximum divergences of each
method.

Method Type ||Di, j ·u||∞
OD 50
BCFS 5.5×10−16

SS 6.6×10−16

CSS (α = 0.8) 6.9×10−16

This can also be seen graphically in Figures 6
and 7 which shows contour plots of the numeri-
cally calculated divergence field, Di, j · u in each
case. The reason that no contour lines, other than
a cloud of the darker region for ri < r < ro, are
clearly visible in Figures 6(b), 7(a) and 0 < r < ro

for 7(b), is that the values of the calculated diver-
gence are extremely small. But, they are never-
theless non-zero throughout and larger within the
outer ring, whereas the values of the calculated
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(a) U(r) (b) Θ(r)

Figure 3: U and Θ as function of radius measured from the center of the droplet for all three solution types
for the given parameters ri = 0.1, ro = 3.5ri, U0 = 1, α = 0.8ri with its associated β = 1.2ri.

(a) original droplet (b) BCF solution

Figure 4: Stream function Ψ(x,y) indicating the flow within the inner and outer droplet for each problem
type: (a) the Original Droplet, (b) the Bounded Creeping Flow Solution
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(a) solenoidal solution (b) CS solution

Figure 5: Stream function Ψ(x,y) indicating the flow within the inner and outer droplet for each problem
type: (c) The Solenoidal Solution and (d) The Conserved Solenoidal Solution.

(a) original droplet (b) BCF solution

Figure 6: Contour plots of the numerically calculated divergence Di, j · u for each solution type: (a) the
Original Droplet, (b) the Bounded Creeping Flow Solution



Numerical Solution of the Navier-Stokes Equations 17

(a) solenoidal solution (b) CS solution

Figure 7: Contour plots of the numerically calculated divergence Di, j ·u for each solution type: (c) The
Solenoidal Solution and (d) The Conserved Solenoidal Solution

divergence in Figure 6(a) is clearly zero. Further-
more, we have noticed that both the BCFS and
SS cases have divergences of the same average
size confined within the ring ri < r < ro whereas
the CSS case has a larger divergence by a factor
of about 2 and spreads non-zero divergences over
0 < r < ro with much of the larger values within
the inner droplet.

3.1.4 Advantages and Disadvantages

Tables 3 and 4 lists some of the clear advantages
and disadvantages of the various solution types.

It would appear that the least successful case is
CSS, the best is BCFS with SS in between. How-
ever, it must be emphasized that some of these as-
pects are more important than others. The fact
that momentum is conserved in the CSS case and
that it possesses the smallest minimum ro count
strongly in its favor. The actual usefulness of each
has been tested conclusively by running dynami-
cal tests of the full NS free-surface problem and
the detailed results are to be presented in a forth-
coming paper.

Table 3: Advantages of the three solutions con-
sidered.

Method Advantages
1. small divergence in outer ring

BCFS 2. zero divergence in inner droplet
3. inner vertical velocity −U0

4. most momentum in inner droplet
5. remaining momentum near ri

1. small divergence in outer ring
SS 2. zero divergence in inner droplet

3. inner vertical velocity −U0

4. most momentum in inner droplet
1. lowest minimum ro

CSS 2. conserves momentum

4 Discussion and Conclusions

All of the analytical solutions studied in this pa-
per, the BCFS, SS and the CSS, provide accept-
able approximations to the initial state of the orig-
inal droplet with uniform vertical velocity. In ad-
dition, they all conserve mass by strictly obeying
the incompressibility constraint and satisfy the re-
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Table 4: Disadvantages of the three solutions con-
sidered.

Method Disadvantages
1. larger minimum ro

BCFS 2. doesn’t conserve momentum

1. largest minimum ro

SS 2. doesn’t conserve momentum
3. remaining momentum spread out

1. larger divergence in inner &
outer ring

CSS 2. non-zero divergence in inner
droplet
3. inner non-vertical velocity <

−U0

4. some momentum in outer ring
5. remaining momentum spread out

quirement of no slip at the domain boundary by
attaining zero velocity within a small number of
droplet radii beyond the original droplet edge. In
each case it was found that the ring-droplet width,
ro − ri, could not be reduced below a certain size
based on the criterion of Section 2.2.3 that the
largest possible velocity could not exceed the ver-
tical velocity of the initial state U0. This is a prod-
uct of the restriction on the size of the velocity
field at the domain boundary as well as an attempt
to maintain, as much as possible, the characteris-
tics of the original droplet. Such a requirement
is not satisfied by the original creeping flow solu-
tion for the translating solid sphere which allows
an asymptotic decay of the radial velocity compo-
nent. These constraints on the solution gave rise
to an outer ring of fluid which allowed a smooth
transition from a finite inner droplet of uniform
vertical velocity to zero velocity beyond the ring
in order to satisfy the div-free constraint. Al-
though this constraint appears, at first, to allow
the creation of unphysical solutions this was not
found to be the case. All of the solution types
maintain a velocity field of the order of the orig-
inal droplet, carry almost all of the momentum

and mass within a radius equivalent to the original
droplet and in the case of CSS also conserve mo-
mentum exactly. A consequence of this method of
solution is the fact that for all of the solution types
the stream functions obtained resemble the inner
circulation present in a translating fluid sphere of
radius ro (rather than ri) with the mass and mo-
mentum mostly confined within the smaller radius
ri.

While the BCF Solution actually obeys the NS
equations it is the most difficult to obtain of all
of the solution types. On the other hand the
Solenoidal Solution is both simple to obtain and
provides at least a practical initial condition for
the solution of two-phase interfacial flow prob-
lems. Finally, the Conserved Solenoidal Solu-
tion attempts to alleviate the weaknesses of both
the BCFS and SS cases by being easier to solve
than the BCFS case and also retaining more of the
physical properties than the SS case. Based on the
preliminary results of this paper the Solenoidal
Solution provides the simplest and most cost ef-
fective solution to the problem of an initial con-
dition for the numerical solution of the NS equa-
tions in two-phase flow. A better recommendation
would be possible upon numerical testing of all
solution types in an interfacial flow problem.
The approach used in this paper to obtain a re-
alistic initial condition for interfacial flow prob-
lems may be extended further by considering two-
phase flows with more general geometries as well
as a study of three dimensional flows. As well, the
projection of non-solenoidal, discontinuous ve-
locity fields situated within a discontinuous den-
sity field warrants further research, even in one
dimension. There also remains the possibility of
including the conservation of energy within the
CS Solution through extra constraint equations in
Section 2.4.1 and the addition of an extra coeffi-
cient in the polynomial approximation of Θ(r).
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Appendix A: The Non-Solenoidality of the
Initial State

The fact that the initial state is not divergence free
can be demonstrated with the use of distribution
theory Reddy (1998). Consider the unit domain
Ω = {(x,y) : 0≤ x,y ≤ 1}, containing two distinct
subdomains such that Ω = Ωa ∪ Ωd, where Ωa

corresponds to the ambient (a) fluid surrounding
the droplet (d) which is located in Ωd as shown in
Figure 1.

The initial state may be defined, for u0 ∈ L2(Ω),
as u0(x) = −χΩd (x)U0j, where

χΩd(x) =
{

1 if x ∈ Ωd

0 if x /∈ Ωd
(47)

is the characteristic function. To show that the
initial state is not solenoidal, consider the di-
vergence in the sense of distributions. Now
the velocity is purely vertical so that ∇ · u0 =
−U0∂ (χΩd (x))/∂y. Then consider a set of test
functions φ (x) that are C∞

0 (Ω) i.e. the set of in-
finitely differentiable functions with compact sup-
port. Then:

〈∇ ·u0,φ 〉= −U0

∫
Ω

∂ χ(x)
∂y

φ dx = U0

∫
Ωd

∂φ
∂y

dx

using a coordinate system centered at the origin of
the spherical droplet of given radius R, we obtain:

〈∇ ·u0,φ 〉= U0

∫ R

−R

∫ √
R2−x2

−
√

R2−x2

∂φ
∂y

dydx

= U0

∫ R

−R
φ (x,

√
R2 −x2)−φ (x,−

√
R2 −x2) dx

�= 0

(48)

so ∇ ·u0 �= 0 since there exists φ such that (48) is
not equal to zero, Reddy (1998).

Appendix B: Polar Coordinates in the Initial-
ization Problem

Let the origin of the coordinate system lie at the
center of the droplet, of radius ri, in a stationary
frame such that:

x = r cosθ , y = r sinθ

for 0 ≤ θ ≤ 2π , 0 ≤ r ≤ ro, where ro is the maxi-
mum radius, then the velocity vector may be writ-
ten as:

u(r,θ ) = ur(r,θ )r+uθ(r,θ )θ

for unit vectors r and θ in the radial and azimuthal
directions. Note the transformation from and to
x−y coordinates as:

ux = ur cosθ −uθ sinθ ,

uy = ur sinθ +uθ cosθ
ur = ux cosθ +uy sinθ ,

uθ = −ux sinθ +uy cosθ

(49)
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for components ur = ur(r,θ ), uθ = uθ (r,θ ),
ux = ux(x,y) and uy = uy(x,y). Similarly, the
divergence-free constraint reads:

∇ ·u =
∂ (rur)

∂ r
+

∂uθ

∂θ
= 0 (50)

Since the original droplet possesses a constant
vertical velocity expressible in polar coordinates
as:

u = −U0j = −U0 sinθr−U0 cosθθ

this suggests the simplification:

ur = U(r) sinθ , uθ = Θ(r)cosθ (51)

so that:

ux = [U(r)−Θ(r)] sinθ cosθ ,

uy = U(r) sin2 θ +Θ(r)cos2 θ
(52)

and the div-free equation becomes

d(rU(r))
dr

= Θ(r) (53)




