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Numerical Generation of Freak Waves Using MLPG_R and QALE-FEM
Methods

Q.W. Ma1

Abstract: Two methods have been recently
developed by the author and his group: one called
MLPG_R (Meshless Local Petrov-Galerkin
method based on Rankine source solution) and
the other called QALE-FEM (Quasi Arbitrary
Lagrangian-Eulerian Finite Element Method).
The former is a meshless method developed
from a general MLPG (Meshless Local Petrov-
Galerkin) method and is more computationally
efficient than the general one when applied to
modelling nonlinear water waves. The later is
a mesh-based method similar to a conventional
finite element method (FEM) when discretizing
the governing equations but different from the
conventional one in managing the mesh. In this
paper, they are applied to simulate freak waves,
which has yet been done before. Comparison is
made between results from these two methods
and between their results and those from experi-
ments available in literature. Good agreement is
achieved.

Keyword: Freak waves; MLPG_R; QALE-
FEM; nonlinear water waves.

1 Introduction

Freak waves (also called rogue waves) are ex-
traordinarily large water waves in ocean. A lit-
erature survey has revealed that freak waves may
occur in many places (shallow and deep water).
Although their occurrence is considered as rare,
they potentially pose severe hazards for mariners
and man-made structures. Many incidents con-
sidered to be caused by freak waves have been re-
ported, in which a lot of lives (about 542 during
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1969-1994) were lost as given by Lawton (2001).
It has now been recognized that freak waves are
real threat to all human activities in ocean.

The freak wave phenomenon has attracted great
attention. A sufficient summary can be found in
a recent review by Kharif and Pelinovsky (2003).
The main conclusions from this review are (i) that
the physical mechanisms of freak wave genera-
tion include spatio-temporal (dispersive) focus-
ing of transient wave groups with different wave-
lengths, wave-current interaction, geometrical fo-
cusing due to topography of the seabed and modu-
lation instability; and (ii) that mathematical mod-
els based on different physical mechanisms have
been suggested with various levels of approxi-
mation, which consist of linear, weakly nonlin-
ear and fully nonlinear models, such as the en-
ergy balance equation, the wave-action balance
equation, the nonlinear Schrödinger equation, the
nonlinear KdV equation and the fully nonlinear
model based on a potential theory.

A lot of efforts have been made to generate
freak wakes in laboratory wave tanks by using
wavemakers in order to gain the understanding
of freak wave properties under controlled con-
ditions. There are various methods to specify
the motion of a wavemaker. Touboul, Giovanan-
geli, Kharif and Pelinovsky (2006) suggest that
the motion of wavemaker is specified by using
a sine function with linearly variable frequency
with the largest frequency occurring at start. In
fact, the wave train generated in this way consists
of shorter waves in the front and longer waves at
the tail. The shorter waves travel slower and the
longer waves travel faster. At an expected time,
the energy of all waves is focused at one point and
so the freak wave is created. This method is simi-
lar to one proposed by Grigoropoulos, Florios and
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Loukakis (1994) for generating a transient wave,
in which the wavemaker is excited by a succes-
sion of unchanged-period sine wave signals (i.e.
frequency unchanged in whole period but differ-
ent in different periods). The other way to spec-
ify the motion of the wavemaker is based on the
sum of a number of sine (or cosine) wave com-
ponents, each having a different frequency. The
freak wave is formed in the wave tank when all
the wave components have such a phase that their
peaks take place at the same point and at the same
time. Many researchers, such as Graw & Koola
(1997) and Baldock, Swan & Taylor (1996), have
adopted this method. Both these methods gen-
erate a large transient freak wave in water that
is almost quiescent a long time before and after
the freak wave occurs, which is different from re-
ality where freak waves always appear in other
random waves. In order to overcome this prob-
lem, Kriebel (2000) proposes a combined method,
i.e., signals exciting the wavemaker are composed
of two parts (1) for generating the normal ran-
dom waves and (2) for generating the freak waves.
More realistic way has been used by Clauss and
his group (Clauss, 2002), in which the signal for
the motion of the wavemaker is obtained by per-
forming Fourier analysis on the real time record
of sea states containing freak waves.

Numerical modelling can be performed in the
similar way to the physical experiments using nu-
merical wave tank. Nevertheless, different numer-
ical methods and procedures may be employed.
Only some of relevant publications are cited here.
More references may be found in the cited papers.
Touboul, Giovanangeli, Kharif and Pelinovsky
(2006) use a boundary integral equation method
(BIEM) and a mixed Euler Lagrange (MEL) time
marching scheme. Brandini & Grilli (2001) per-
form the simulation of freak waves based on
higher-order boundary element method. Grue, J.
(2002) describe a method of successive approx-
imations to the solution of the Laplace equation
governing the fluid flow. All these methods have
given very impressive numerical results.

In this paper, two newly developed methods by
the author will be employed to simulate freak
wave: one called MLPG_R method and the other

called QALE-FEM. The former is a meshless
method developed from a general MLPG method
proposed by Prof. Atluri and his research group
(e.g., Atluri & Zhu 1998; Lin & Atluri, 2001 and
Atluri and Shen, 2002; Han, Rajendran & Atluri,
2005; Atluri, Liu & Han, 2006) and is more com-
putationally efficient than the general one when
applied to modelling nonlinear water waves. The
later is a mesh-based method similar to a finite el-
ement method (FEM) when discretizing the gov-
erning equations but different from the conven-
tional FEM in managing the mesh. The successes
of the conventional FEM rely on a good mesh.
The mesh may be generated with high quality
but may become over-distorted during simulation
since the fluid domain is continuously changing
with oscillation of the free surface. To over-
come the over-distortion, they must be regener-
ated frequently or even every time step but re-
meshing may take a major proportion of compu-
tational costs if an unstructured mesh are used.
In the QALE-FEM, the complex mesh is gener-
ated only once at the beginning and is moved at
all other time steps in order to conform to mo-
tions of the free surface and structures by using
a spring analogy method specially developed for
nonlinear waters waves and their interaction with
fixed and floating bodies. Extensive numerical in-
stigations have shown that the QALE-FEM can
be more than 6 times faster than the conventional
one. The potential of these two methods is ex-
plored in this paper by applying them to simulate
freak waves, which have yet done before.

2 Generation of Freak Waves

The numerical wave tank is as shown in Fig.1.
The piston-like wavemaker is mounted at the left
end and a damping zone with a Sommerfeld con-
dition (see Ma, Wu, & Eatock Taylor (2001) for
details) is applied at the right end of the tank in
order to suppress the reflection. A Cartesian coor-
dinate system is used with the oxy (y-axis pointing
toward the paper) plane on the mean free surface
and with the z-axis being positive upwards. Un-
less mentioned otherwise, its origin is located at
the mean position of the wavemaker. This is sim-
ilar to the physical wave tank in laboratory.
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Figure 1: Sketch of numerical wave tank

The method to generate freak waves is similar to
one of methods in physical experiments discussed
above, i.e., by using a sum of a number of sine
(cosine) wave components. The displacement of
the wavemaker (e.g., Baldock, Swan & Taylor,
1996) is given by:

S(t) =
N

∑
n=1

an

Fn
cos(ωnt +εn). (1a)

The corresponding velocity is

dS(t)
dt

= −
N

∑
n=1

an

Fn
ωn sin(ωnt +εn). (1b)

In the above equations, N is the total number of
components. εn is the phase of the n-th compo-
nent. kn and ωn are the wave number and fre-
quency of the n-th component, respectively, and
are related by ω2

n = gkn tanh(knd), where d is
the mean water depth. The frequencies of the
wave components are equally spaced over the
band [ω1,ωN ] with ω1 being the smallest and ωN

being the largest frequencies, respectively. an is
the amplitude of n-th component, which is taken
as the same for all components in this paper to
simplify the relationship between the target am-
plitude (A) of the freak wave and the amplitudes
of the components, leading to an = a = A/N or
Nan = Na = A. Fn is the theoretical transfer func-
tion of the wavemaker given by (Dean and Dal-
rymple, 1991):

Fn =
2[cosh(2knd)−1]
sinh(2knd)+2knd

(2)

As indicated by Dean and Dalrymple (1991), each
component of the waves generated by using Eqs.
(1)-(2) consists of two parts: one is the progres-
sive wave and the other is the standing or lo-
cal wave. The local wave decays with the in-
crease in the distance from the wavemaker and

becomes negligible after a point that is 3 or more
water depths away from the wavemaker. The pro-
gressive wave consists of a transient wave profile
in the front part of a harmonic wave train even
though the motion of the wavemaker is purely
harmonic. Therefore, the wave at a certain point
downstream of the wavemaker become harmonic
only after the transient wave has passed this point.
Based on a linear theory (e.g., Baldock, Swan &
Taylor, 1996) and choosing εn = knx f −ωnt f with
x f and t f being the focusing point and the focus-
ing time, the wave in the tank generated by using
Eqs. (1)-(2) may be expressed as

ζ (x, t) =
N

∑
n=1

an cos [kn (x−x f )−ωn (t− t f )]

(x,x f > xl and t, t f > tl) (3)

where xl represents the nearest point to the wave-
maker, where the local wave is negligible and
should be larger than 3 or 4 water depth; and
tl represents the time when the transient wave
fronts corresponding to all the components just
pass points x and x f . Eq. (3) shows that all the
wave components reach their peaks at the focus-
ing point (x f ) and the focusing time (t f ) and so the

freak wave occurs with amplitude equal to
N
∑

n=1
an.

It should be noted that this is true for the linear
wave. When the nonlinearity is considered, the
amplitude of the freak wave as well as the focus-
ing time and position may not be the same as the
ones from the linear theory.

3 Outline of numerical methods

The two methods to be used for simulating the
freak waves are similar to those described in pre-
vious publications. For completeness, a brief
about each of these methods will be given here.
For details, readers are referred to Ma (2005) and
Ma & Yan (2006).

3.1 MLPG_R method

The MLPG_R method is based on general Euler
equations for fluids, which is governed by the fol-
lowing equations and conditions:

∇ ·�u = 0 in fluid domain (4a)
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D�u
Dt

= − 1
ρ

∇p+�g in fluid domain (4b)

D�x
Dt

=�u and p = patm on the free surface (5a)

�u.�n = �U.�n on rigid boundaries (5b)

and

�n.∇p = ρ
(
�n ·�g−�n · �̇U

)
on rigid boundaries (5c)

where, ρ is the density of fluids,�u the velocity of
fluids, �U the velocity of rigid boundaries, �g the
gravitational acceleration, p the pressure and patm

the atmospheric pressure that can be taken as zero
without loss of generality.

The problem defined by above equations is solved
using a time-step marching procedure. In this pro-
cedure, intermediate velocities and positions are
first estimated by

�u(∗) =�u(n) +�gΔt (6)

�r(∗) =�r(n) +�u(∗)Δt (7)

where �r is the position vector of a point; Δt is
the time step; and the superscripts (n) indicate the
quantities at time t = tn. The velocities at time
t = tn+1 = tn +Δt is then expressed by

�u(n+1) =�u(∗) +�u(∗∗). (8)

Integrating Eq. (4b) over the time interval
(tn, tn+1) results in

�u(n+1) =�u(n) +�gΔt −
tn+1∫
tn

(
1
ρ

∇p

)
dt. (9)

With use of the well-known approximation to the
time integration, we have

tn+1∫
tn

(
1
ρ

∇p

)
dt = Δt

[
θ
ρ

∇p(n+1) +
1−θ

ρ
∇p(n)

]

(10)

The velocity in Eq. (9) becomes

�u(n+1) =�u(∗)−Δt

[
θ
ρ

∇p(n+1) +
1−θ

ρ
∇p(n)

]

(11)

The velocity in Eqs. (8) and (11) must also satisfy
the continuity equation (4a), yielding

∇2 p(n+1) =
ρ

θΔt
∇ ·�u(∗)−

(
1
θ
−1

)
∇2 p(n). (12)
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Figure 2: Illustration of nodes, integration domain
and support domain

It is clear that this formulation is not suitable for
θ=0, though it could be any value in the range of
0 < θ ≤ 1. In this paper, the fully implicit method
(θ=1) is employed, leading to

�u(n+1) =�u(∗)− Δt
ρ

∇p(n+1) (13)

and

∇2 p(n+1) =
ρ
Δt

∇ ·�u(∗). (14)

Eq. (14) governs the pressure at the new time
level, from which the solution for it can be found.
After finding the solution for p(n+1), one may es-
timate the velocities by using Eq. (13). The po-
sitions of fluid particles can then be updated by
numerically integrating the velocities.

In order to solve Eq. (14), the MLPG_R method
may be employed. This method is based on a set
of nodes (Fig. 2), which discretise the fluid do-
main, as in the general MLPG (e.g., Atluri, Han &
Shen, 2003; Sladek, Sladek, Atluri, 2001; Sladek,
Sladek, Zhang, Garcia-Sanche, Munsche 2006;
Han, Rajendran & Atluri, 2005; Atluri, Liu &
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Han, 2006). The weak form for this method on
each integration domain can be expressed as fol-
lows:∫

∂ΩI

�n · (p∇ϕ)dS− p =
∫
ΩI

ρ
Δt

�u(∗) ·∇ϕ dΩ (15)

where φ is the test function, satisfying that ∇2ϕ =
0, in ΩI except for its centre and ϕ = 0, on ∂ΩI ,
the boundary of ΩI , which may be given by:

ϕ =

1
4π

{
2ln(r/RI) for a two dimensional case

(1−RI/r) for a three dimensional case

(16)

where r is the distance between a concerned point
and the centre of ΩI; and RI is the radius of ΩI.

The domain integral on the right hand side of Eq.
(15) may be further expressed as

∫
ΩI

ρ
Δt

�u(∗) ·∇ϕ dΩ =
ρ

2πΔt

2π∫
0

RI∫
0

u(∗)
r (r,θ)drdθ

(17)

for 2D cases (similarly for 3D cases but not given
here, see Ma, 2005), where u(∗)

r is the radial com-
ponent of �u(∗). The integral may be numerically
evaluated by using the Gaussian quadrature. To
do so, more than 16 Gaussian points for 2D case
(and 64 Gaussian points for 3D cases) may be
required to obtain satisfactory results for the in-
termediate velocities. Evaluation of them at so
many points is time-consuming. In order to make
the method more efficient, a semi-analytical tech-
nique is developed which is based on the follow-
ing methodology:

1) Dividing an integration domain into several
sub-domains (Fig. 3);

2) Assuming intermediate velocities to linearly
vary over each subdomain;

3) Performing the integration over each subdo-
main analytically.

�

�

�

�

Figure 3: Illustration of division of an integration
domain.

Using this methodology, the integral in Eq. (17)
for 2D cases is expressed by

2π∫
0

RI∫
0

u(∗)
r (r,θ )drdθ

=
NI

∑
i=1

RI

4

[
(cuxi +cwzi) (ϑi+1 −ϑi)

+(cuxi −cwzi) (sinϑi+1 cosϑi+1− sinϑi cosϑi)

+(cuzi +cwxi)
(
sin2 ϑi+1 − sin2 ϑi

)]
(18)

where ϑi (i=1,2,...) is the polar angle of a divid-
ing point (such as 1 or 2 in Fig. 3); and the co-
efficients cuxi and cuyi are evaluated, respectively,
by

cuxi =

(
u(∗)

i −u(∗)
0

)
(zi+1−z0)−

(
u(∗)

i+1−u(∗)
0

)
(zi−z0)

(xi−x0)(zi+1−z0)−(xi+1−x0)(zi−z0)
RI (19a)

cuyi =
(xi−x0)

(
u(∗)

i+1−u(∗)
0

)
−(xi+1−x0)

(
u(∗)

i −u(∗)
0

)
(xi−x0)(zi+1−z0)−(xi+1−x0)(zi−z0)

RI (19b)

where u(∗)
0 and u(∗)

i are the velocity compo-
nents in x- directions at the center of the sub-
domain and the dividing point (i) respectively.
The coefficients cwxi and cwzi can be found

similarly or obtained by replacing
(

u(∗)
i ,u(∗)

i+1

)
with

(
w(∗)

i ,w(∗)
i+1

)
, the velocity components in z-

direction.

It should be noted that with this semi-analytical
technique, the velocities at only five points for a
2D case with four divisions, instead of at more
than 16 points if the Gaussian quadrature would
be used, need to be evaluated. In 3D cases, the
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spherical domain may be divided in to 8 subdo-
mains as indicated above and the velocities at only
7 points need to be evaluated, instead of at least 64
points when using the Gaussian quadrature. As
a result, the reduction in CPU time spent on the
evaluation of the domain integral is considerable.
This technique was employed to simulate vari-
ous water waves, such as the propagating steep
wave and the sloshing wave in Ma (2005). Nu-
merical tests showed that dividing each integra-
tion domain into four subdomains can achieve the
relative accuracy of less than 1% (in term of mean
error) for 2D cases.

3.2 QALE-FEM method

The QALE-FEM method is based on a fully non-
linear potential theory (FNPT) for water waves. In
this model the velocity is computed from a veloc-
ity potential (φ ) that satisfies the following gov-
erning equations and boundary conditions:

∇2φ = 0 in fluid domain (20)

Dx
dt

=
∂φ
∂x

on the free surface z = ζ (x,y, t) (21a)

Dy
dt

=
∂φ
∂y

on the free surface z = ζ (x,y, t) (21b)

Dz
dt

=
∂φ
∂ z

on the free surface z = ζ (x,y, t) (21c)

Dφ
Dt

= −gz+
1
2
|∇φ |2

on the free surface z = ζ (x,y, t) (22)

∂φ
∂n

=�n ·�U(t) on rigid boundary (23)

where �U (t) and�n is the velocity and the unit nor-
mal vector of the rigid boundaries, respectively.

As has been known, the FEM may require less
memory and, therefore, may be computationally
more efficient than the BEM for solving fully non-
linear wave problems, as indicated by Ma, Wu
& Eatock Taylor (2001). The disadvantage of
the FEM, however, is that a complex unstructured
mesh is generally required and may need to be
remeshed at every time step to follow the motion

of waves and/or structures. To overcome the diffi-
culty, the QALE-FEM has been recently invented
(Ma & Yan, 2006) to solve Eqs. (20) to (23). In
this method the complex mesh is generated only
once at the beginning and is moved at all other
time steps in order to conform to the motion of
the free surface and/or structures. Based on nu-
merical tests so far, the QALE-FEM requires less
than 15% of the CPU time required by the con-
ventional FEM at the same accuracy level.

There are three key elements in this method, in-
cluding the mesh moving, velocity calculation
and implicit iteration procedure to solve fully cou-
pled problems about the interaction between wa-
ter waves and floating structures. The third el-
ement is not concerned here because the floating
structures are not considered in this paper. Details
about it can be found in Yan & Ma (2006). Other
two elements are outlined as follows.

The novel methodology for moving mesh is that
interior nodes and boundary nodes are considered
separately; the nodes on the free surface and on
rigid boundaries are considered separately; nodes
on the free surface are split into two groups: those
on waterlines and those not on waterlines (inner-
free-surface nodes); and different methods are
employed for moving different nodes. To move
the interior nodes which do not lie on boundaries,
a spring analogy method is used. In this method,
nodes are considered to be connected by springs
and the whole mesh is then deformed like a spring
system. Specifically, the nodal displacement is
determined by

Δ�ri =
Ni

∑
j=1

ki jΔ�r j

/ Ni

∑
j=1

ki j (24)

where Δ�ri is the displacement at Node I; ki j is the
spring stiffness and Ni is the number of nodes that
are connected to Node I. For problems about non-
linear water waves, it is crucial to maintain the
quality (good element shapes and reasonable node
distribution) of mesh near the free surface. To do
so, the spring stiffness in the QALE-FEM for the
case without floating structures is suggested as

ki j =
1

l2
i j

eγ[1+(zi+z j)/2d] (25)
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where ki j is the spring stiffness, li j is the distance
between Nodes I and J; zi and z j are the vertical
coordinates of Nodes I and J; dis the water depth;
and γ is an coefficient that should be assigned a
larger value if the springs are required to be stiffer
at the free surface. The term 1 + (zi + z j)/2d
represents the distance between the element con-
cerned and the surface, measured in its normal di-
rection in calm water, which may be updated but
it is not necessary to do so unless the overturning
wave are considered. The spring analogy method
is also used for moving nodes on rigid boundaries.

The positions of nodes on the free surface are de-
termined by physical boundary conditions, i.e.,
following the fluid particles at most time steps.
The nodes moved in this way may become too
close to or too far from each other. To pre-
vent this from happening, these nodes are relo-
cated at a certain frequency, e.g. every 40 time
steps. When doing so, the nodes on the water-
lines is re-distributed according to a principle for a
self-adaptive mesh, i.e., the weighted arc-segment
lengths satisfies

ϖiΔsi = Cs (26)

where ϖ is a weighted function, Δsi the arc-
segment length between two successive nodes and
Cs a constant. In order to relocate the inner-
free-surface nodes, they are first moved using the
spring analogy system in the projected plane of
the free surface, resulting in new coordinates in
the horizontal plane; and then the elevations of
the free surface corresponding to the new coordi-
nates are evaluated by an interpolating method. In
order to take into account of the local gradient of
the free surface, however, the spring stiffness for
moving the nodes in x- and y- directions is deter-
mined, respectively, by:

k(x)
i j =

1
l2
i j

√
1+

(
∂ζ
∂x

)2

(27a)

and

k(y)
i j =

1
l2
i j

√
1+

(
∂ζ
∂y

)2

, (27b)

where k(x)
i j and k(y)

i j are the spring stiffness; ∂ζ
∂x

and ∂ζ
∂y the local slopes of the free surface in

the x- and y-directions, respectively. This tech-
nique for moving free surface nodes may be re-
placed by one based on a local coordinate system
as discussed in Yan and Ma (2006), which may
deal with multi-valued surfaces such as in cases
of overturning waves. The resulting mesh at each
time step is arbitrarily unstructured in general and
changing from one time step to another.

�
�

�
�

�
� �

	�

�
	�

Figure 4: Nodes around Node I

In order to calculate the fluid velocity on the
free surface under such a condition, an effec-
tive method is developed. In this method, the
velocity at a node I with neighbours Jk (k =
1,2,3, . . .. . .,m) on the free surface is split into
normal and tangential components (see Fig. 4).
To estimate the normal component of the veloc-
ity, two points on the normal line at Node I are
selected firstly and the velocity potentials at these
two points are then approximated by using a mov-
ing least square method. The normal component
(�un) of the velocity is determined by a three-point
finite difference scheme:

�un =

[
2

3hI1

(
2hI1 +hI2

hI1 +hI2
+

1
2

)
φI

−
(

2
3hI2

+
1

hI1

)
φI1+

2
3hI2

(
hI1

hI1 +hI2

)
φI2

]
�n,

(28)

where I1 and I2 represent the two points selected;
hI1 and hI2 are the distances between I and I1
and between I1 and I2, respectively; and φI, φI1

and φI2 denote the velocity potentials at the node
and the two points; the later two, φI1 and φI2, are
found by a moving least square method. After the
normal component of the velocity is determined,
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the tangential components of the velocity is cal-
culated using a least square method based on the
following equation

�uτx ·�lIJk +�uτy ·�lIJk =�lIJk ·∇φ −�un ·�lIJk

(k = 1,2,3, . . .. . .,m) (29)

where�lIJk is the unit vector from Node I to Node
Jk; �uτx and �uτy represent the velocity components
in�τx and �τy directions, respectively. These direc-
tions are determined by �τx⊥�n, �τx//�ex, �τy⊥�n and
�τy//�ey, where�ex and�ey are the unit vectors in the
x- and y-directions, respectively.

4 Numerical examples

Numerical results for two cases will be presented
in this section. In the following presentation, all
parameters with a length scale are nondimension-
alised by the water depth d; the time and fre-
quency are nondimensionalised as t → t

√
d/g

and ω → ω
√

g/d.

In the first case, comparison with experimental re-
sults is made to valid these numerical methods de-
scribed above for the applications to freak waves.
For this purpose, the exact same motion of the
wavemaker as in Nestegard (1999) is used, whose
time history is plotted in Fig.5. A scaling fac-
tor may multiply the time history to obtain differ-
ent amplitude of waves. Two factors (0.612 and
0.749, respectively) are considered here. In order
to simulate this case, the tank length is chosen as
20. Fig. 6 shows the wave time histories recorded
at x = 13.436 (where the largest wave amplitude is
expected to occur) computed by two methods to-
gether with the experimental data given in Neste-
gard (1999) for the scaling factors equal to 0.612
and 0.749. In these figures, the relative error of
both numerical results to those from experiments
at the peak is less than 8%. The agreement of the
numerical results from the two methods with the
experimental data is satisfactory.

The second case is to model the freak waves gen-
erated by using Eqs. (1) - (2). In order to do
so, the parameters N, Na , ωn, x f and must be
selected. The minimum and maximum frequen-
cies represent the band width and the centre of
the wave spectrum of the targeted freak waves. In
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Figure 5: Time history of wavemaker motion
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Figure 6: Time histories at x=13.436 with dif-
ferent scaling factors (Solid line: QALE-FEM;
Dashed line: MLPG_R; Star: experimental data)
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this work, they are selected as ω1 = 0.8683 and
ωn = 1.8865. The number (N) of wave compo-
nents affects the continuity of the wave spectrum
and depends on the band with (ωn −ω1) of spec-
trum. If it is not large enough, the wave spec-
trum is not smooth and the properties of gener-
ated waves depend on the number. Based on our
numerical tests, the waves are almost the same
when N >20 for the above frequencies specified.
It is taken as 32 in this paper. The total amplitude
(Na) reflects the height of freak waves. Two val-
ues of amplitudes (Na=0.074 and 0.1488) are con-
sidered to look at the influence of different ampli-
tudes. and t f mainly affect the focusing point and
time. According to the discussions in Section 2,
must be large enough so that the local wave gener-
ated by the wavemaker should become negligible
in the region where the target freak wave occurs.
This requires that the nearest point of the wave
pack to the wavemaker should be 3 or more wa-
ter depths away from the wavemaker. t f must also
be large enough so that the shortest wave compo-
nents have passed point x f when the freak wave
occurs. For the conservative reason, the nondi-
mensional focusing point coordinate and the fo-
cusing time in Eqs. (1) - (2) are taken as x f =14.65
and t f =83.68 respectively. The tank length for this
case is selected as 38, much longer than the dis-
tance from the wavemaker to the theoretical fo-
cusing point, and thus the focusing wave is hardly
affected by the reflection even without the artifi-
cial damping zone. The wave elevations in the
part of the tank (from x=5 to x=25; waves in other
parts are very small and not interesting) measured
from the mean free surface at two instants calcu-
lated by the two numerical methods are depicted
in Fig. 7. In these two figures, the relative error
between the numerical results at the peaks from
both the methods is about 3%. The agreement be-
tween them in this case can be considered as good.

To look at the influence of the amplitude, the re-
sults corresponding to two amplitudes obtained by
the MLPG_R method are presented in Fig. 8, for
which other parameters are the same as for Fig.
7. In order to show the influence of the ampli-
tude, the wave elevations in Fig. 8 have been di-
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Figure 7: Wave profiles obtained by two methods
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Figure 8: Wave profiles for different amplitudes
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Figure 9: Node configuration from the MLPG_R method (dots) and the frees surface from the QALE-FEM
(solid line) for the case with Na = 0.1488 . The right column is the enlargement of area around the largest
waves in left column.
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vided by the value of Na. One may see from Fig.
8 that the wave corresponding to the larger am-
plitude tends to travel faster, which implies that
the focusing point takes place further downstream
than those to the smaller amplitude, being con-
sistent with that observed in physical experiments
(see e.g. Baldock, Swan & Taylor, 1996). The
results from QALE-FEM are almost the same but
not presented in Fig. 8 for clarity.

More results for the larger amplitude Na = 0.1488
are depicted in Fig. 9 showing that the wave
packet is evolving into a large wave event at about
t=78. In the figure, the dots represent the posi-
tions of nodes at the time shown on the upper-
right corner of the left column obtained by the
MLPG_R method. The free surface resulting
from the QALE-FEM method is denoted by solid
lines. The right column is the enlargement of the
area around the largest wave in the left column.
As can be seen, the results from the two methods
are very close, though the small difference (less
than about 4% at peak points) is visible in the en-
larged figures. One of possible reasons for the dif-
ference may be due to the fact that the mathemat-
ical formulations in the two methods are different
as described in Section 3.

5 Conclusions

This paper presents the application of the two
newly-developed methods, MLPG_R and QALE-
FEM, to the simulation of the freak waves. The
freak waves are generated by using a piston wave-
maker based on the energy focusing mechanism.
The studies on two cases show that both meth-
ods can effectively model the freak waves and can
give similar results and also that their results are
in satisfactory agreement with experimental data
as indicated by comparison with a set of published
experimental data in one case.
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