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Structural Arrangement Effects of Mineral Platelets on the Nature of Stress
Distribution in Bio-Composites
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Abstract: Bone is a hierarchical bio-composite,
and has a staggered arrangement of soft protein
molecules interspaced with hard mineral platelets
at the fine ultrastructure level. The investigation
into reasons for high fracture toughness of bio-
composites such as bone requires consideration
of properties at the different levels of hierarchy.
In this work, the analysis is done at the contin-
uum level, but the properties used are appropriate
to that of the level considered. In this way, the
properties at the fine ultrastructure level of bone
is considered in the stress distribution analysis of
a platelet adjacent to the broken platelet. Results
show the influence of overlapping in determining
the nature of stress distribution. This could play
an important part in the fracture toughness of bio-
composites.
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1 Introduction

Bone, Nacre and Dentin are some examples of
natural composites that achieve their high frac-
ture toughness due to their hierarchical struc-
ture (Menig, Meyers, Meyers, and Vecchio,
2000). Bone has got a hierarchical structure,
with about seven levels of hierarchy (Rho, Kuhn-
Spearing, and Zioupos, 1998). It is a composite of
protein (collagen) and mineral. At the fine ultra-
structure level, bone is composed of mineralized
collagen fibrils made up of collagen molecules in-
terspaced with mineral crystals.

1 Department of Applied Mechanics, Indian Institute of
Technology Madras, Chennai-600036, India.

2 Department of Applied Mechanics, Indian Institute of
Technology Madras, Chennai-600036, India.

3 Department of Biotechnology, Indian Institute of Technol-
ogy Madras, Chennai-600036, India.

It has been observed that the collagen molecules
have a staggered arrangement and the miner-
als occupying the gaps between the collagen
molecules also have a staggered or overlap-
ping arrangement (Fratzl, Gupta, Paschalis, and
Roschger, 2004). An idealised arrangement
would consist of staggered mineral platelets in a
collagen matrix as shown in Fig. 1. This type of
idealised models were used by other researchers
also, which were supported by the above men-
tioned experimental observations (Fratzl, Gupta,
Paschalis, and Roschger, 2004; Ji and Gao, 2004).

COLLAGEN (MATRIX) MINERAL

Figure 1: Idealised Arrangements of Mineral
Platelets

The study of bone fracture is important from a
clinical point of view. Many studies have been
conducted on modeling of bone and bone frac-
ture (Muller-Karger, Gonzalez, Aliabadi, and Cer-
rolaza, 2001; Ji and Gao, 2004). The influence of
structural arrangement on stress distribution in a
platelet adjacent to a broken platelet is the focus
of this paper since this can have an effect on the
fracture toughness of bone. It has been shown
by Vashishth, Behiri, and Bonfield (1997) that
when a crack propagates in bone, microcracks are
produced ahead of the crack tip as well as in the
crack wake. These microcracks are believed to
be beneficial in dissipating the energy available
at the crack tip, there by toughening the material.
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Another school of thought believes that they also
weaken the material under certain conditions, es-
pecially, when there are increased levels of mi-
crocracking (Nalla, Kruzic, and Ritchie, 2004;
Yeni and Fyhrie, 2002). Also, other researchers
have observed that bone samples from older hu-
mans show an increase in microcracking (Schaf-
fler, Choi, and Milgrom, 1995). This results in
a decrease in the initiation and propagation frac-
ture toughness (Nalla, Kruzic, Kinney, Balooch,
Ager III, and Ritchie, 2006) in such samples. This
implies that microcracks may reduce the ability
of bone to resist fracture. On the other hand,
Wang and Qian (2006) argue that if the cracks are
formed as diffuse damage, it is beneficial from a
fracture mechanics point of view since it will dis-
sipate more energy than microcracks. This will
starve the crack tip of energy available for macro-
crack propagation. Also, diffuse damage may be
the preferred option of energy dissipation given
the detrimental nature of microcracks.

The fracture toughness of bio-composites is in-
fluenced by the macroscopic constitutive re-
sponse of the constituent materials. For example,
the viscoelasticity of protein can dissipate large
amount of fracture energy thereby making the
bio-composites tougher (Ji and Gao, 2004). The
high fracture toughness of nacre is also attributed
to the modular damage evolution of the organic
matrix (Nukala and Simunovic, 2005). The na-
ture of stress distribution in a platelet adjacent to
the broken platelet, may also play a role in the
nature of cracks that are formed (microcracks or
diffuse damage) as given in Fig. 2, following the
work of Wang and Qian (2006). This also may
be expected to influence the fracture toughness of
bone.
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Figure 2: (a) Simplified model of fine ultrastruc-
ture of bone and (b) Nature of Stress distribution

The way in which bio-composites like bone re-
sist fracture, specifically the contribution of the
fine ultrastructure had been looked into by many
researchers (Ji and Gao, 2004; Wang and Qian,
2006) employing various methodologies. One of
the methods used was the virtual internal bond
method (VIB) (Ji and Gao, 2004; Zhang, Klein,
Huang, Gao, and Wu, 2002). Though Ji and Gao
(2004), have considered a staggered arrangement
as seen in experimental observations, they assume
that the platelets are intact. In a diffuse damage
situation, the fracture toughness may be related
to the post-breakage of platelets. Wang and Qian
(2006) and Kotha, Kotha, and Guzelsu (2000)
have shown that a simple shear lag theory is a
good candidate for analysis of the stress distribu-
tion and fracture at the nanolevel.

The stress distribution in a fiber adjacent to a bro-
ken fiber was investigated by many researchers
using shear lag theory (Hedgepeth, 1961; Goree
and Gross, 1980). Wang and Qian (2006) ex-
tended this idea for the case of mineral platelets
in bone. They used a simplified model of aligned
mineral platelets and found the effect of stress
distribution in mineral platelets on the fracture
toughness of bone. The stress distribution in over-
lapping mineral platelets were found by Kotha,
Kotha, and Guzelsu (2000). Also, Ji and Gao
(2004) concluded that the staggered or overlap-
ping arrangement and high aspect ratio of min-
eral platelets are the reasons for the high modu-
lus of bio-composites. These studies point to the
importance of overlapping arrangement of min-
eral platelets in providing bone with desired prop-
erties. Therefore, a better and critical structural
model for assessing fracture toughness would be
to consider the stress distribution on an adjacent
platelet on account of breakage in a platelet within
an overlapped arrangement. This study is ex-
pected to provide more insight into the fracture
process in bone.

In the present work, the objective of the analysis is
thus, aimed at finding out the effect of overlapping
on stress distribution on a platelet adjacent to the
broken platelet in a bio-composite.
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2 Formulation of the problem

A simple idealised model is employed in which
structural arrangement of overlapping platelets of
mineral is bound together by collagen molecules,
since this model retains the physical features of
the bone at the nanoscale, like the overlapping ar-
rangement of mineral platelets. Also, this model
is easily amenable to analysis. In this work shear
lag theory is used for analysis. The method be-
ing simple and computationally inexpensive ren-
ders the advantages necessary for a parametric
study that is cost effective and at the same time
reasonably accurate. Shear-lag analysis has been
shown to be accurate, when compared with FE
analysis (Reedy, 1984). FE analysis for certain
cases is done for comparison. In this work, we
assume that the mineral platelets are perfectly
bonded to the matrix. It is assumed that the only
failure mode is by breakage of mineral platelets,
since this is a significant way of failure of mineral
platelets as shown by experiments (Sahar, Hong,
and Kohn, 2005). The load applied is assumed
to act along the direction of alignment of mineral
platelets, due to the fact that this could be criti-
cal. The region around broken fibers show a rise
in stress (Hedgepeth, 1961), causing failure in ad-
jacent platelets. Hence, the objective is to find out
the stress distribution in a platelet adjacent to a
broken platelet.

2.1 Shear Lag Model

The formulation of the shear lag model used in
this work is similar to that has been reported ear-
lier (Kotha, Kotha, and Guzelsu, 2000). The ide-
alised unit cell model used is shown in Fig. 3.
The vertical distance between platelets is d and
the thickness of platelets is 2t. w is the width
of the platelet in the transverse direction. The
platelets are in staggered arrangement, with the
length of platelets given as 2L and length from
the centre of one platelet to the beginning of next
platelet is given as L1. G is the shear modulus of
the collagen matrix. The portion of the collagen
matrix in between the platelets (horizontal) is con-
sidered to be an imaginary platelet with the same
properties as that of the matrix. This is shown
hatched in the figure. The real platelets are shown
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Figure 3: Idealised unit cell model

shaded. For the purpose of analysis, the unit cell
is divided into the real zone (where both platelets
are real) and imaginary zone (where at least one
of the platelets is imaginary). x and y are the co-
ordinates placed at the origin of the real zone and
x∗ and y∗ are the co-ordinates placed at the origin
of the imaginary zone. In all the equations a ∗

denotes the imaginary zone. The shear stress is
assumed to be constant in the matrix between the
platelets. The platelet 1 is considered to be bro-
ken at its centre (see Fig. 3). The load is relieved
by one platelet while it is taken up by the other
platelet. The total load carried by the two platelets
is 2P. At the beginning of real zone of platelet 1, if
the load carried is P2, then 2P−P2 is the load car-
ried by platelet 2 at the same section. At the end
of real zone of platelet 2, if the load carried is P1,
then the load carried by the platelet 1 is 2P−P1.

The governing differential equations for real
platelet 1 (real zone of platelet 1) is given by
following equation (equation 1). This is derived
based on the assumption that total load is shared
by the two platelets.

d2σc1x

dx2 − G
td

(
1

E1
+

1
E2

)
σc1x = − 2PG

wtE2td
(1)

where E1 and E2 are the Young’s modulus of
platelet 1 and 2 respectively (both are equal in this
case). The governing differential equation for the
imaginary zone of platelet 1 is given by the fol-
lowing equation (equation 2).
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d2σ∗
c1x

dx2 − G
td

(
1

E1
+

1
E3

)
σ∗

c1x = − 2PG
wtE3td

(2)

where E3 is the young’s modulus of the ma-
trix. Here σc1x and σ∗

c1x denote the axial stress
in platelet 1 in the real and imaginary zones re-
spectively.

The solution for the differential equations 1 and 2
are given by the following equations for the real
zone and imaginary zone (equations 3 and 5). The
subscript c denotes the variables and constants for
the broken case.

σc1x =
2P

wtE2

(
1

E1
+ 1

E2

)

+Accosh(αx)+Bcsinh(αx) (3)

where α is given by expression 4

α =

√
G
td

((1/E1)+(1/E2)) (4)

σ∗
c1x =

2P

wtE3

(
1

E1
+ 1

E3

)
+A∗

ccosh(α∗x∗)+B∗
c sinh(α∗x∗) (5)

where α∗ is given by the expression 6

α∗ =

√
G
td

((1/E1)+(1/E3)) (6)

The formulation and solution obtained above
are similar to that given by Kotha, Kotha, and
Guzelsu (2000), for the case when there is no
break in the platelet. The analysis described in
this paper is for the case of a break at the center of
platelet 1. The boundary conditions for the bro-
ken case, are different from that for the unbroken
case and is given as follows.

1. Normal stress at break (centre of real
platelet 1) is zero (see equation 7)

σ∗
c1x (x∗ = 0) = 0 (7)

2. Continuity of normal stress and shear stress
at the end of imaginary zone and beginning
of real zone of platelet 1. (see equations 8
and 9)

σ∗
c1x (x∗ = L1) = σc1x (x = 0) (8)

τ∗
c1x (x∗ = L1) = τc1x (x = 0) (9)

where τc1x and τ∗
c1x are the shear stresses in

the real and imaginary zones of platelet 1.

3. The fourth boundary condition assumed is
that normal stress at the end of real platelet
1 is the same for broken and unbroken case
(refer equation 10).

σc1x (x = L−L1) = σ1xend (10)

where σ1xend is defined as the axial stress at the
end of real platelet 1 for the case when there is no
break at the centre of platelet 1 (Kotha, Kotha, and
Guzelsu, 2000). The effect of break on the stress
distribution in platelet 2 (and hence on platelet 1,
since sum of axial stresses in the two platelets is a
constant), will decrease as we move away from
the break. The end of platelet 1 is sufficiently
away from the break, which implies that the axial
stress at this point for broken and unbroken cases
would be equal, justifying our use of this assump-
tion.

The application of the above boundary conditions
yield the four constants Ac, Bc, A∗

c , B∗
c

A∗
c = −2P/wtE3(1/E1 +1/E3) (11)

Bc
∗ = k3/k4 (12)

where

k3 = σ1xend −k1

− [(α∗/α)A∗
c sinh(α∗L1) sinh(α(L−L1))]

− [k2 −k1 +A∗
c cosh(α∗L1)]cosh(α(L−L1))

(13)

k4 = sinh(α∗L1)coshα(L−L1)
+(α∗/α)cosh(α∗L1) sinh(α(L−L1)) (14)
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Ac = k2 −k1 +A∗
c cosh(α∗L1)+B∗

c sinh(α∗L1)
(15)

Bc = (α∗/α)[A∗
c sinh(α∗L1)+B∗

c cosh(α∗L1)]
(16)

where k1 and k2 are given by

k1 = P/(wt) (17)

k2 = 2P/wtE3(1/E1 +1/E3) (18)

The values of these constants are used in equa-
tions 3 and 5 to find the axial stress in real and
imaginary zones of broken platelet 1. The axial
stresses in the platelet 2 is found out invoking the
assumption that the total load is carried by the two
platelets together, as given by equation 19.

σc1x +σc2x = 2P/(wt) (19)

The Matlab package (MathWorks, 2006) is used
to calculate and plot the numerical results. In this
work, parametric studies are conducted to find out
the effect of change in overlapping ratio (OR =
L1/t), moduli ratio (E1/E3) and half the thickness
of platelets (t).

2.2 Finite Element Analysis

Due to the simplified fiber and matrix represen-
tations, the shear lag analysis is computationally
more efficient than detailed FE models. In spite
of this simplification, shear lag analysis is able to
capture many of the key features of deformation
around broken fibers (Xia, Okabe, and Curtin,
2002). FE analysis for two cases of high and low
OR are done using commercial finite element pro-
gram ABAQUS (Hibbitt, Karlsson, and Sorensen,
2004) for comparison with shear lag analysis.
Correlation of results from shear lag analysis with
FEA for these two cases establishes the accuracy
of the shear lag model used in this work as far as
the axial stress distribution in platelet 2 is con-
cerned. In view of this, studies are conducted
employing shear lag theory for other geometrical
values and the results obtained are expected to be
accurate.

3 Results

Properties are selected for constituents of bone.
Mineral platelets as well as collagen molecule

are assumed to be linear elastic and isotropic.
The material properties of collagen and mineral at
the fine ultrastructure level is different from their
macrolevel properties (Akkus, 2005). Hence, the
numerical values of properties are selected so that
they are close to the properties at that length scale.
The Young’s modulus of mineral platelets are
taken to be 120 GPa and Poisson’s ratio to be 0.27,
which are similar to that obtained from powdered
synthetic apatite and hence could be assumed to
be values close to that of nano sized apatite crys-
tal (Gilmore and Katz, 1982; Wagner and Weiner,
1992). The Young’s modulus of collagen is taken
to be 1.2 or 12 GPa , which are similar to values
obtained for collagen molecule (Sasaki and Oda-
jima, 1996). The Poisson’s ratio of collagen is
taken to be 0.35 (Doty, Robinson, and Schofield,
1976). These properties are similar to that used
by other researchers (Wagner and Weiner, 1992;
Kotha, Kotha, and Guzelsu, 2000; Akkus, 2005).
In that sense, to a certain extent, the nanolevel
characteristics are included in this model. Thus
the arrangement is expected to take care of the ef-
fects which may be more likely at the nanolevel.
However, the interface scale properties are not in-
cluded in the analysis. Such effects that may de-
pend on this may not be reflected in the analy-
sis. The other constants are given the values, L =
25nm, t = 2.5/1.25nm, d = 1.25nm, w = 1nm

Fig. 4− Fig. 6 show the axial stress distribution in
platelet 2 along the axial direction from a section
immediately below the break, which is at the cen-
tre of platelet 1, to the end of the unit cell. Graphs
for three typical cases of overlapping ratios of 3.2,
1.4 and 0.04 (L1 = 8, 3.5 and 0.1 nm respectively)
are shown, which highlight the change in nature
of stress distribution in platelet 2. The value of t is
taken to be 2.5 nm and d as 1.25 nm. The mineral
volume fraction, V F gets varied from about 60%
to 80% upon variation of OR. The axial stresses
are normalised with respect to the average remote
stress acting on the edge of the unit cell. The
distance from the centre of platelet 1 along the
axial direction is normalised with respect to the
length of unit cell. Fig. 7 and Fig. 8 show the
results of the FE analysis conducted for two dif-
ferent overlapping ratios (3.2 and 0.04). For each
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Figure 4: Axial stress distribution in platelet 2 us-
ing shear lag theory for an overlapping ratio of 3.2
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Figure 5: Axial stress distribution in platelet 2 us-
ing shear lag theory for an overlapping ratio of 1.4

case, graphs are drawn for two moduli ratios of
100 and 10.

Another study was conducted by using shear lag
theory for a t value of 1.25 nm (d = 1.25 nm,
L1 = 8 nm , OR = 6.4, VF = 50.51%). This
value of VF is near the mineral volume fraction
in bone. Fig. 9 shows the axial stress distribution
in platelet 2 along the x direction from a point im-
mediately below the break, which is at the centre
of platelet 1, for this case. The figure also shows
the results of the parametric study conducted by
changing the value of L1 to 0.1 nm (OR = .08,
VF= 66.40%), while keeping all the other dimen-
sions constant. In all results employing shear lag
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Figure 6: Axial stress distribution in platelet 2 us-
ing shear lag theory for an overlapping ratio of
0.04
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Figure 7: FE results of axial stress distribution in
platelet 2 for an overlapping ratio of 3.2

theory, the stress distribution for unbroken case
is also shown for comparison (Kotha, Kotha, and
Guzelsu, 2000).

4 Discussion

The results show that there is a change in the
the nature of stress distribution when overlapping
ratio is varied (see Fig. 4−Fig. 6). As shown
in Fig. 4, when overlapping ratio is high, there
is a decrease in the axial stress followed by an
increase. In the real zone of platelet 2 (real
platelet 2), the stress increases toward the center
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Figure 8: FE results of axial stress distribution in
platelet 2 for an overlapping ratio of 0.04
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Figure 9: Stress distribution in platelet 2 employ-
ing shear lag theory for moduli ratio = 100: t = d
= 1.25 nm

of platelet 2. For very small overlapping ratio, the
stress decreases from the point near the break to
a point away from the break along the horizon-
tal direction in platelet 2. This is the same nature
of stress distribution that is observed in aligned
platelets when one of them breaks (Wang and
Qian, 2006). A transition stage between high and
low overlapping ratios is shown in Fig. 5. This
means that the nature of axial stress distribution
in real platelet 2 depends on the overlapping ra-
tio.

The shear lag results and FE results are in agree-
ment as far as the axial stresses over the real
platelet 2 is concerned. In the imaginary zone

of platelet 2, the shear lag theory predicts much
higher stresses than that obtained by FE analy-
sis. This might be due to the assumption that sum
of axial stresses in the two platelets is a constant.
Hence when there is a break in platelet 1, all the
stresses had to be carried by the imaginary zone
of platelet 2, causing very high stresses here.

The Fig. 9 shows the stress distribution in platelet
2 for the case where t is equal to 1.25 nm. For
large overlap, (OR = 6.4), the volume fraction
of mineral in this case is 50.51%, which is close
to volume fraction of mineral in bone. Also,
mineral platelets in bone are arranged in a stag-
gered manner, with a large overlap (Fratzl, Gupta,
Paschalis, and Roschger, 2004). Here the thick-
ness of platelets, 2t = 2.5 nm and distance be-
tween platelets, d = 1.25 nm, which are very close
to actual values of the nanostructure of bone (Rho,
Kuhn-Spearing, and Zioupos, 1998). Hence this
configuration could be assumed to be that which
would represent structure of bone accurately at
the nanolevel. The transition in the nature of
stress distribution could be observed in this case
also.

The analysis has been done for two different di-
mensions, yielding similar results about the in-
fluence of overlapping on the stress distribution
in a platelet adjacent to a broken platelet. This
suggests the importance of structural arrangement
in two different areas, in design of composites as
well as in the analysis bio-composites.

The mechanical properties of the material at lower
length scales is different from that of the bulk ma-
terial. This size effect has not been addressed
in this paper directly. Also, the effect of inter-
face scale properties has not been analysed. The
effects that depend on interface scale properties
may not get reflected in the analysis. However,
since the properties that have been used are that at
the scale of the fine ultrastructure, the results ob-
tained are expected to be accurate to that extent.
Further, the analysis has been done for two dif-
ferent moduli ratios, yielding similar results. This
implies that the results obtained hold good even
when there are some differences in the numerical
values of properties.

The overlapping ratio may be expected to influ-
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ence the fracture toughness of bio-composites.
However, the formation and propagation of cracks
depend on the constitutive behavior of materi-
als, as well on other modes of failure like matrix
cracking and debonding. Systematic considera-
tion of all these factors is required to bring out
the reasons for high fracture toughness of bio-
composites.

In the present work, the shear stress in the ma-
trix between platelets is assumed to be a constant.
The volume fractions that we have considered are
always greater than or equal to 50%. Hence the
distance between the mineral platelets is smaller
than that of the thickness of the platelets. This
means that the constant shear stress assumption
would provide sufficiently accurate results with-
out making the analysis too complicated.

5 Conclusion

In this work, it is shown that the structural ar-
rangement of mineral platelets influences the na-
ture of stress distribution in the platelet adjacent
to a broken platelet. The influence of overlap-
ping ratio on the nature of stress distribution is
elucidated. The way in which change in moduli
ratio affect the stress distribution is also shown.
However, together with determining the way in
which overlapping affects fracture toughness of
bio-composites, consideration of the effects of
other parameters like constitutive behavior and
other failure modes is important in a realistic un-
derstanding of the fracture toughness. Such an
effort is ongoing, which would throw more light
on the innate fracture resistant strategies of bio-
composites.
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