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Buckling and Free Vibrations of Sandwich General shells of Revolution with
Composite facings and Viscoelastic core under Thermal Environment using

Semi-analytical Method

Sharnappa1, N. Ganesan2 and Raju Sethuraman3

Abstract: This article presents the study on
buckling and free vibration behavior of sandwich
general shells of revolution under thermal en-
vironment using Wilkins theory. The tempera-
ture assumes to be uniform over the shell struc-
ture. The numerical analysis is based on the
semi-analytical finite element method applicable
to thick shells. The analysis is carried out for
different geometry such as truncated conical and
hemispherical shells with various facing and core
materials under clamped-clamped boundary con-
dition. The parametric study is carried out for dif-
ferent core to facing (tc/t f ) thickness ratio by con-
sidering the temperature dependent and indepen-
dent material properties of the viscoelastic cores.

Keyword: Vibration, Complex modulus, Ther-
mal environment, Buckling analysis.

1 Introduction

The sandwich structures with constrained vis-
coelastic core are being used in various engineer-
ing application, particularly for vibration control
of wide range of frequencies. The dissipation of
energy in core material reduces the vibration of
the structures. The sandwich layered shell (viz.
cylindrical, conical and spherical) constructions
are widely used in aircraft, missile, space vehi-
cle structures and nuclear power plants. In recent
years, few studies have been carried out on free vi-
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brations of sandwich shells with viscoelastic core
under thermal environment, and damping evalua-
tion of the layered shells.

Recently, the studies on buckling and free vibra-
tion of shells under thermal environment are gain-
ing higher research importance. Pradeep, Gane-
san and Padmanabhan (2006) are investigated the
buckling and vibration of a viscoelastic sand-
wich cylindrical shell under thermal environment.
Singh and Subramaniam (2003) presented the vi-
bration of thick circular disks and shells of revolu-
tion for free axisymmetric and asymmetric vibra-
tions problems by using three-dimensional theory
of elasticity. Pei and Issam (1992) presented an
iterative numerical method for the analysis of ax-
isymmetric, isotropic general shells with varying
wall rigidity. Shell elements of special geomet-
ric shapes, e.g., cylindrical, spherical, and conical
shells, are also considered. They have used the
one-dimensional finite difference points to discre-
tise the shell elements into strips along the merid-
ian. Tan (1998) investigated the free vibration
analysis of shells of revolution using first order
shear deformation theory as well as the classical
thin shell theory.

Arthur and Jae (1999, 2004, 2006) presented the
three dimensional analysis for determining the
free vibration frequencies and mode shapes of
hollow shells of revolution with variable thick-
ness. They have extended the study to com-
plete (not truncated) conical shells of revolution
and also to thick conical shell of revolution with
the bottom edge normal to the mid-surface in
circular cylindrical co-ordinate system. Bradell,
Langley, Dunsdon and Aglietti (1998-99) inves-
tigated the study on vibration analysis of a gen-
eral three-layer conical sandwich panel based on
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the h − p version of the finite element method.
They also studied the free vibration behaviour of
thin isotropic conical panels in conjunction with
Love’s thin shell equations. Buchanan and Wong
(2001) studied the vibration of truncated thick
hollow cones employing finite element method in
conical co-ordinate system.

Yuh and Shyh (2000) are derived the general dif-
ferential equations of motion for a three-layer
sandwich structure with viscoelastic core by using
Hamilton’s and Donnell-Mushtari-Vlasov princi-
ples. The proposed theory can be used for an-
alyzing the different geometrical structures such
as cylindrical, conical, spherical shells and plates.
Ramasamy and Ganesan (1999) presented the vi-
bration and damping analysis of fluid filled or-
thotropic cylindrical shells with constrained vis-
coelastic damping by using Wilkin’s theory. Kha-
tri (1996) investigated the antisymmetric vibra-
tion of multilayered conical shells with con-
strained viscoelastic layers. The study has been
extended along with Asnani (1995-96) to the vi-
bration and damping analysis based on individ-
ual layer deformation for axisymmetric vibrations
of laminated composite conical shells. Sivadas
and Ganesan (1992, 1995) analyzed the vibra-
tion behaviour of pre stressed thick circular coni-
cal isotropic and composite shells, by using semi-
analytical isoparametric finite element method.
They are considered three nodes per element with
five degrees of freedom per node. Liyong (1993)
also presented the free vibration of composite
laminated conical shells.

Wilkins, Bert and Egle (1970) have studied the
free vibration analysis of orthotropic conical shell
with honeycomb core sandwich structures. The
effect of shear deformation is accounted for the
facings. Ravikiran and Ganesan (2005) investi-
gated a theoretical analysis of linear thermo elas-
tic buckling of composite hemispherical shells
with a cut out at the apex. They have used the
semi-analytical finite element method applicable
to moderately thick shells. Okazaki, Urata and
Tatemichi (1990) investigated damping properties
of three layered shallow spherical shells with a
constrained viscoelastic layer. Natural frequen-
cies and loss factors of shallow spherical shells

are evaluated for axially and nonaxially symmet-
ric modes.

Gautham and Ganesan (1994) presented the free
vibration analysis of thick spherical shells. They
developed the thick shell finite element for the
analysis of general shells of revolution and used
for the spherical shells. Chen and Ding (2001) are
carried out three-dimensional analysis for the free
vibrations of a multi layered spherically isotropic
hollow sphere using a state space method based
on Taylor’s expansion theorem. De Souza and
Croll (1980-81) investigated the free vibrations of
isotropic spherical shells using a variational de-
velopment of the equations of motion based upon
classical shell theory and extended to study the
composite spherical shell. Recently Jones (2005)
investigated the thermal buckling of uniformly
heated fiber reinforced composite plates. The
analysis is restricted to linear elastic stress-strain
behavior and constant orthotropic lamina material
properties at a specific temperature. The paramet-
ric study is considered for various composite ma-
terials in different boundary conditions.

Recently some of the buckling study has been car-
ried out on sandwich structure such as, Pahr and
Rammerstorfer (2006) presented the buckling of
honeycomb sandwiches structures using finite el-
ement method, the influence of core thickness,
core material and facings thickness on buckling
load is investigated. Li, Xiang and Xue (2005)
presented the buckling analysis of honeycomb
sandwich composite shells with cutouts under ax-
ial compression, using the Wilson’s incompatible
solid Finite Element. Baiz and Aliabadi (2006)
studied the linear buckling analysis of shear de-
formable shallow shells by the boundary element
method. Jihan, Yong and Sung (2004) are an-
alyzed the asymptotic postbuackling of compos-
ite sandwich structures using the assumed strain
solid shell element formulation. Ching and Chen
(2006) investigated the thermomechanical anal-
ysis of functionally graded composites structure
using Meshless Local Pstrov-Galerkin method.
Chih, Jyh and Jyh (2005) investigated an asymp-
totic theory of doubly curved laminated piezo-
electric shells is developed on the basis of three-
dimensional (3D) linear piezoelectricity. Shiah,
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Lin and Tan (2006) presented the stress analysis
of thin-layered anisotropic bodies using boundary
element method and also validated with finite el-
ement method.

The buckling and free vibration analysis of sand-
wich general shells of revolution under thermal
environment by considering the pre-stresses is
not found in the literature. The present study
investigates the buckling temperature, frequency
and loss factor of sandwich truncated conical
shell and hemispherical shell with composite fac-
ings and viscoelastic core material. There are
three types of composite facing materials and two
types viscoelastic materials such as EC2216 and
DYAD606 by considering the temperature depen-
dent and independent properties core are used in
the present study, which are reported by Jones
(2005) and Nashif, Jones and Henderson (1985).
The detail study has been carried out for sandwich
truncated conical shell, and some of the typical re-
sults of hemispherical shell with cut out at a apex
also discussed.

2 Finite element formulation

In the present study, the FORTRAN code is de-
veloped for viscoelastic general shells of revolu-
tion under thermal environment. Since the struc-
ture is axisymmetric, semi analytical finite ele-
ment method is used. Displacement distributions
are expressed in terms of Fourier series expansion
in the circumferential direction. The displacement
assumption in the thickness direction is based on
Wilkins theory. Figure 1 shows the schematic di-
agram of sandwich general shells of revolution.
The displacement field used in the analysis is
proposed by Wilkins, Bert and Egle (1970), the
displacements u, v, w are along s, θ and z co-
ordinate directions respectively. The above dis-
placements are defined in terms of middle surface
displacements (u0, v0, w0) and the angles of rota-
tion normal to the middle surface in the meridian
(s) and circumferential (θ ) directions, for the fac-
ings and core angles are denoted by φs, φθ and ψs,
ψθ respectively. Assumptions made by Wilkins,
Bert and Egle (1970) and Ramasamy and Gane-
san (1999) are applicable in the present study in
addition to that, there is no slip between the core

and facings, the interface between the core and
facings are firmly bounded.

The displacement relations for the core is given
by

uc = u0 + zψs

vc = v0 + zψθ

wc = w0

(1)

The displacement relations for the outer and inner
facings respectively are given by

uo,ui = u0±hψs +(z∓h)φs

vo,vi = v0 ±hψθ +(z∓h)φθ

wo,wi = w0

(2)

Here z denotes the distance from the middle sur-
face of the shell and h is half the core thickness.

The strain displacement relations for the core,
outer and inner facings are same as referred by
Ramasamy and Ganesan (1999). Since the struc-
ture is axisymmetric, semi analytical finite ele-
ment method is used in meridional direction and
Fourier expansion is used in the circumferential
direction. Three nodded isoparametric element
with seven degrees of freedom per node is used
for the structure. There are 20 elements used
along the meridional direction. The displacement
parameters associated with the elements are

{δ e}=
{u0,1 v0,1 w0,1 ψs,1 ψθ ,1 φs,1 φθ ,1 . . . . . .φs,3 φθ ,3}

(3)

Where, the subscripts 1, 2 and 3 denotes the node
number.

The assumed displacement distributions are as
follows. Fourier expansion is used in the circum-
ferential direction.

u0 =
i=3

∑
i=1

Niu0,i cosnθ ψθ =
3

∑
i=1

Niψθ ,i sinnθ

v0 =
3

∑
i=1

Niv0,i sinnθ φs =
3

∑
i=1

Niφs,i cosnθ

w0 =
3

∑
i=1

Niw0,i cosnθ φθ =
3

∑
i=1

Niφθ ,i sinnθ

ψs =
3

∑
i=1

Niψs,i cosnθ
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Figure 1: Schematic diagram of general shell with constrained viscoelastic core

(4)

where , Ni is the shape functions given by

N1 = (ξ 2−ξ )/2 N2 = 1−ξ 2 N3 = (ξ 2+ξ )/2

(5)

Here ξ = s/l is the isoparametric axial co-
ordinate (l is the length of the element), n is the
circumferential mode number. By using equations
(1), (2), (4) and (5) the displacement vector can be
written in matrix form as

{u1} = [N]{δ e} (6)

Where {u1}T = {uvw}, [N] is shape function
matrix and {δ e} is the vector of nodal displace-
ments. Substituting (4) in strain-displacement re-
lation the array of strains {ε} can be written as

{ε}T = {εss εθθ γsθ γθz γsz} = [Bθ ]{δ e
n} (7)

where [Bθ ] = [B](cosθ or sinθ ) and here [B] is
the strain displacement matrix. {δ e

n} is the vector
of nodal displacements for the nth harmonic.

The stress strain relations, accounting the thermal
effects in the shell coordinate for a jth layer can

be expressed as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σss

σθθ
τsθ
τsz

τθz

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

j

=

⎡
⎢⎢⎢⎢⎣

Q11 Q12 Q16 0 0
Q12 Q22 Q26 0 0
Q16 Q26 Q66 0 0

0 0 0 Q44 0
0 0 0 0 Q55

⎤
⎥⎥⎥⎥⎦

j

·

⎛
⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

εss

εθθ
γsθ
γsz

γθz

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

−

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αssΔT
αθθ ΔT

0
0
0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎠

j

(8)

Where

Q11 = Q11C4 +2(Q12 +2Q66)S2C2 +Q22S4

Q12 = (Q11 +Q22 −4Q66)S2C2 +Q12(S4 +C4)

Q22 = Q11S4 +2(Q12 +2Q66)S2C2 +Q22C4

Q16 = (Q11−Q12 −2Q66)SC3

+(Q12−Q22 + 2Q66)S3C

Q26 = (Q11−Q12 −2Q66)S3C

+(Q12−Q22 + 2Q66)SC3

Q66 = (Q11 +Q22 −2Q12−2Q66)S2C2

+ Q66(S4 +C4)

Q44 = Q44C
2 +Q55S2
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Q55 = Q44S2 +Q55C2

where C = cosθ and S = sinθ ; θ is Fiber angle

αss and αθθ are co-efficient of thermal expan-
sion in ‘s’ direction (meridional direction) and ‘θ ’
direction (Circumferential direction) respectively.
ΔT = (T −T0) =Change in Temperature, here T
is actual system temperature and T0 is reference
or atmospheric temperature. [Q] is the elasticity
matrix in the material co-ordinates, the elements
of the [Q] are

Q11 = EL/(1−υLT υT L),
Q22 = ET /(1−υLT υT L),
Q12 = υT LQ11, Q44 = GTZ;
Q55 = GT L; Q66 = GLT ,

For Viscoelastic core G∗ = GR(1+iη) = GR+GI .

Where EL is Young’s modulus in longitudinal di-
rection, ET is Young’s modulus in transverse di-
rection, G* is Complex shear modulus, GR is Stor-
age modulus, η is loss factor and GI Loss modu-
lus given by Nashif, Jones and Henderson (1985)
shown in the Figure 2, νLT and νTL are Poisson’s
ratio. In equation (8) subscript j = o,c, i denotes
the outer facing, core and inner facings respec-
tively. The equation (8) can be written in simpli-
fied version as

{σ} = [D j]
(
{ε j}−{ε jth}

)
(9)

where [D j] is material properties matrix {ε j},
{ε jth} are the arrays of generalized mechanical
and thermal strains in the jth layer.

Under thermal environment the total potential U1

for the sandwich shell element can be written as

U1 =
1
2 ∑

j=o,c,i

∫∫∫
v

{ε j}T [D j]
(
{ε j}−{ε jth}

)

· r jdθdsdz (10)

Where super script j = o, c, i denotes the outer
facing, core and inner facings respectively, r j is
the mean radius of the jth layer. Using equation
(7) in equation (10) and carrying out explicit in-
tegration in the θ direction (there by minimizing
U1 with respect to {δ e}) leads to the following

equation.

C

(∫
[B]T [D][B]{δ e}rds−

∫
[B]T [D]{ε th}rds

)
= 0 (11)

After decoupling each harmonic n, the following
equation for the nth harmonic can be arrived at

[Ke
n]{δ e

n}−{Fthe
n } = 0 (12)

Where [Ke
n ] is element stiffness matrix given by

[Ke
n] = C

∫
[Bn]T [D][Bn]rds (13){

Fthe
n

}
is a element thermal load vector given by

{Fthe
n } = C

∫
[Bn]T [D]{ε th}rds for nth harmonic

(14)

In the above equations C = 2π and π for n = 0
and n > 0 respectively. The superscript e over the
matrix indicates that it is an elemental matrix and
subscript n indicates the harmonic number. Since
the properties of the core and also some of the
composite facing materials are complex, so the
stiffness matrix is a complex. It can be written
as

[Ke
n] = [Ke

nR]+ i[Ke
nI] (15)

[Ke
nR] is the real part and [Ke

nI] is the imaginary
part.

The expression for the mass matrix can be ob-
tained from the expression of kinetic energy as
follows

KE =
1
2

∫
v

{u̇1}T [ρ ]{u̇1}rdθdsdz (16)

where {u1}T = {uvw} and the dot over vector in-
dicates variable derivative with respect to time. ρ
is density of the structure. Making use of equation
(4) in the expression for {u̇1} and carrying out ex-
plicit integration in the θ direction, equation (16)
can be written as

KE =
C
2
{δ̇ e}T

∫∫
[N]T [ρ ][N]{δ̇ e}rdsdz (17)

The element mass matrix for the nth harmonic can
be written as

[Me
n] = C

∫
[N]T [ρ ][N]rds (18)



126 Copyright c© 2007 Tech Science Press CMES, vol.18, no.2, pp.121-144, 2007

2.1 Geometric Stiffness Matrix

The present study deals with linear bifurcation
buckling analysis of sandwich shells. The geo-
metric stiffness matrix can be obtained from the
expression of work done by the initial stresses
considering nonlinear strains.

The strain energy due to nonlinear strains and ini-
tial stresses is given by

Ug =
1
2

∫
v

((
(εss)g

)2
σ+

ss 2(γsθ )g τ+
sθ

(
(εθθ )g

)2
σθθ

)

· r dsdθ dz (19)

where

(γsθ)g = (εss)g (εθθ )g

The non-linear strains are given by

(εss)g = k1

(
∂w
∂ s

− u
Rφ

)
;

(εθθ )g = k2

(
1
r

∂w
∂θ

− v
r

sinφ
) (20)

where

k1 =
1(

1+ z
Rφ

) and k2 =
1(

1+ z
Rθ

)
The equation (19) can be written in matrix form
as follows

Ug =

1
2 ∑

j=o,i

∫
v

{
(εss)

j
g

(εθθ ) j
g

}T [
σ j

ss τ j
sθ

τ j
sθ σ j

θθ

]{
(εss)

j
g

(εθθ ) j
g

}
dv

(21)

Where the super script j = o, i indicates the outer
and inner stiff (facing) layers.

The equation (21) can be re written in simplified
manner as follows

Ug =
1
2 ∑

j=o, i

∫
v

(
{Bg} j

)T
[σg]

j {Bg} j r dsdθ dz

(22)

Carrying out explicit integration in θ direction,
equation (22) can be written as

U2 =
C
2
{δ e}T

∫∫
[Bg]T [σ0][Bg]{δ e}rdsdz (23)

After decoupling each harmonic n, the following
expression can be expressed for evaluating the ge-
ometric stiffness matrix at nth harmonics as.

[Ke
gn] = C

∫∫
[Bgn]T [σ0]Bgn]rdsdz (24)

The element matrices are assembled to get the
global stiffness [K] (which is complex), mass [M]
matrices and geometric stiffness matrix [Kg] for
each circumferential mode.

2.2 Buckling analysis

The buckling temperatures of a sandwich shell
can be found by solving the following eigenvalue
problem

[KnR]+λn [Kgn] = 0 (25)

Where [KnR] and [Kgn] are global real part of
the stiffness matrix and global geometric stiffness
matrix obtained after assembly (refer to equations
(15) and (24)). [Kgn], is formulated at a reference
temperature Tre f and the eigenvalue problem of
equation (25) is solved. The approximate critical
buckling temperature for the nth circumferential
mode and mth axial mode of the shell is given by
Tb = (λn)m Tre f where (λn)m is the buckling pa-
rameter for nth circumferential mode and mth ax-
ial mode. In general viscoelastic material prop-
erties are strongly temperature dependant, but the
properties of facing materials assumed to be con-
stant in the operating range considered in this pa-
per (Typically less than 300˚C).

2.3 Evaluation of Frequency and Loss factor

The following eigen value problem has to be
solved to get the natural frequencies for each har-
monics under thermal environment.

[KnR +Kgn]−ω2 [Mn] = 0 (26)

Where ω is the natural frequency and [Kgn] is the
geometric stiffness matrix for nth harmonic.
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The viscoelastic and composite loss factor for nth

mode can be calculated by

ηm =
φ T

m [KnI ]φm

φ T
m [KnR +Kgn]φm

(27)

Where [KnR] and [KnI] are the real and imaginary
parts of the stiffness matrices for nth harmonics
respectively and φm is mth axial mode eigenvector.

3 Results and discussion

Buckling and free vibration analysis of sandwich
general shells of revolution under thermal envi-
ronment for different geometry and also for differ-
ent composite facings, viscoelastic core (EC2216
and DYAD606) materials is investigated. The
temperature over the shell structure is assumed to
be constant. The variation of frequency and loss
factor for different core to facing (tc/t f ) thick-
ness ratio, length to mean radius (L/R) ratio in
case of truncated conical shell and radius to to-
tal thickness (R/t) ratio in case of hemi spherical
shell with cut out at a apex, t = (2t f + tc), under
clamped-clamped (C-C) boundary condition are
studied. The variation of shear modulus and loss
factor with temperature for two types of cores is
reported by Nashif, Jones and Henderson (1985)
are shown in figure 2.

3.1 Validation

The sandwich shells with orthotropic facings and
viscoelastic core under thermal environment are
not available in the literature. In order to en-
sure the correctness of the code developed in
the present study, the frequency and loss factor
are validated with sandwich cylindrical shell with
isotropic facing and viscoelastic core presented
by Pradeep, Ganesan and Padmanabhan (2006).
This has been carried out by converting the gen-
eral shell in to cylindrical shell by changing Rφ
equal to infinity, Rθ equal to R (radius), φ=90˚
and fiber angle=0.

The variation of frequency and loss factor with
temperature obtained from Pradeep, Ganesan and
Padmanabhan (2006) are shown in figure 3, and
the corresponding results of the present formula-
tion are given in figure 4. Comparing the figure 3

and 4 it can be seen that there is a very good agree-
ment between the two formulations as for as the
loss factor are concerned. In case of fundamental
frequency slight variation is observed. This may
be due to fact that, the present formulation is gen-
eral shells of revolution using isoparametric three
noded element with seven degrees of freedom per
node applicable to Wilkins theory, but Pradeep,
Ganesan and Padmanabhan (2006) are used the
two noded element having six degrees of freedom
per node applicable to thin shell theory. How-
ever there is a good agreement between the fre-
quencies at higher modes, moreover the buckling
temperature at fundamental mode is having good
agreement with Pradeep, Ganesan and Padman-
abhan (2006). The properties and geometry of the
clamped-clamped cylindrical shell with EC2216
core used by Pradeep, Ganesan and Padmanabhan
(2006) are tabulated in the table 1.

In order to validate the present formulation of
sandwich shell with orthotropic facings under
thermal environment, the results are taken at at-
mospheric temperature and validated with Ra-
masamy and Ganesan (1999). The geometry and
material properties used for the validation are
given in table 2.

Figure 5 shows the variation of frequency and loss
factor with circumferential mode number, there is
a very good agreement between the present results
and reference (Ramasamy and Ganesan (1999)).
Based on these validations, the present study ex-
tended to investigate the behaviour of sandwich
truncated conical and hemispherical shells with
composite facings and viscoelastic core under
thermal environment.

3.2 Buckling and free vibration of truncated
conical shell

The general shell element with sandwich struc-
ture, which is converted in to conical shell by
making Rφ has infinity and cone angle α = 90−
φ , is shown in figure 6(a). Where L is length of
the shell, r = r(s) = a+ s sinα is the radius at the
coordinate point (s, θ , z), a and b are the small and
big end radius of the conical shell respectively and
mean radius R = (a+b)/2. The figure 6(b) shows
the cross- sectional view of the shell thickness,
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Figure 2: Shear modulus and Loss factor with temperature for EC2216 and DYAD606 core material (Nashif,
Jones and Henderson 1985).
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Figure 3: Frequency and modal loss factor with temperature (Pradeep, Ganesan and Padmanabhan (2006)).

Table 1: Properties and geometry proposed by Pradeep, Ganesan and Padmanabhan (2006)

E=206GPa, νs=0.3, ρs=7800kg/m3, G∗
core=620.5(1+0.3i)T=30MPa,

ρcore=1340kg/m3, Length=L=1m, Radius=R=1m,
Thickness=tc=ts=1.5mm

Table 2: Properties and geometry proposed by Ramasamy and Ganesan (1999)

E1=76GPa, E2=5.5GPa, G12=2.3GPa, νs=0.34, ρs=1460kg/m3,
G∗

core=23(1+0.34i)T=30MPa, ρcore=1340kg/m3, Length=L=12.2m,
Radius=R=18.29m,Thickness=tc=ts=0.0127m
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Figure 4: Frequency and loss factor with buckling temperature for EC2216 core sandwich cylindrical shell.
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Figure 5: Validation with Ramasamy and Ganesan (1999), tc/t f =1,kevelar/epoxy composite cylindrical
shell.

where t f and tc are the facings and core thickness
respectively.

Buckling and free vibration analysis of sandwich
conical shell by using general shell element un-
der thermal environment is investigated. There
are three types of composite facings such as
graphite/epoxy, glass/epoxy and boron/epoxy are
used in the present study and the detail study has
been conducted on boron/epoxy composite fac-
ings with different core materials.

The material properties used in the present study
are listed in the table 3 are reported by Jones
(2005). Two types of cores such as EC2216 and

DYAD606 are used for the present analysis by
taking in to account of temperature independent
and dependent shear modulus of the cores. The
complex shear moduli values considered in the
present analysis for EC2216 and DYAD606 are
580 (1+0.3i) MPa and 187 (1+0.388i) MPa re-
spectively at room temperature.

3.2.1 Buckling analysis of truncated conical
shell

3.2.1.1 Effect of facing material on buckling tem-
perature at different modes

Variation of buckling temperature of conical sand-
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Figure 6(b): Cross-sectional view of shell thickness with composite facings and viscoelastic core.

Table 3: Composite lamina properties (Jones 2005)

Facing material E1 E2 ν12 G12 α1 α2

(GPa) (GPa) (GPa) (10−6/oC) (10−6/oC)
High-strength Graphite-epoxy (AS-3501) 128 11 0.25 4.5 0.45 27.4
E-Glass-epoxy 53.4 17.9 0.25 8.6 6.3 20.5
Boron-epoxy 204 18.5 0.23 5.6 6.1 30.3

wich shell with different composite facings and
EC2216 core having cone angle 15˚ in clamped-
clamped condition is investigated. Figure 7 shows
the variation of buckling temperature with differ-
ent circumferential modes. The buckling temper-
ature decreases with increasing the mode number,
there is a drastic reduction of buckling tempera-
ture up to n=10 then onwards more or less remains
constant.

From the figure 7 it is observed that the graphite-
epoxy sandwich conical shell is having very high

buckling temperature compared to glass epoxy
and boron-epoxy sandwich shells at all modes.
This trend may be due to the co-efficient of ther-
mal expansion of graphite-epoxy composite in
fiber direction is very low compared to other two
materials. Because of that the compressive stress
developed in the graphite-epoxy composite sand-
wich shell is very low which leads to higher buck-
ling temperature.

3.2.1.2 Buckling analysis of boron-epoxy sand-
wich conical shell
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Figure 7: Buckling temperature with harmonics at
zero fiber angle.

The glass-epoxy and graphite-epoxy composite
facing conical shells are having very high buck-
ling temperature, so that the viscoelastic material
not with stand at high temperature. The detail
study of sandwich conical shell with viscoelastic
layer is carried out by using boron-epoxy compos-
ite facings, which is having lower buckling tem-
perature compared to other two composite facing
materials. In the study of boron-epoxy sandwich
conical shell, composite damping is not included.

a) Effect of core to facing thickness ratio on buck-
ling temperature

Figure 8 shows the first axial mode buckling
temperature for first 20 circumferential modes
of a truncated conical shell with EC2216 core
and boron-epoxy composite facings in clamped-
clamped (C-C) condition, by taking the fiber an-
gle 0˚, cone angle as 15˚ and length to mean ra-
dius ratio (L/R) as 1. From the figure 8 it is no-
ticed that the buckling temperature decreases with
increasing the circumferential mode and reaches
a minimum value then onwards starts increasing
with circumferential modes. The buckling tem-
perature increases with increase in core thickness
at all the modes, which is observed in both cases,
when shear modulus (G∗) of the core considered
as a function of temperature and independent of
temperature. Doubling the core thickness there is
an increase in the buckling temperature by about
50 to 75˚C at lower and higher modes. Figures

8(a) and 8(b) show the variation of buckling tem-
perature with circumferential modes for EC2216
core by considering the shear modulus constant
(at room temperature) and function of tempera-
ture respectively. Comparing the figures 8(a) and
8(b) it is noticed that the buckling temperature of
the structure is more when the G∗ is constant with
temperature at room temperature.

In reality, the shear modulus is function of tem-
perature, the variation of shear modulus of the
EC2216 with temperature shown in figure 2 is
given by Nashif, Jones and Henderson (1985).
The shear modulus decreases with temperature
due to that the buckling temperature of the struc-
ture is lower, when the shear modulus considered
as a function of temperature.

b) Effect of core material on buckling temperature

Figure 9 shows the first axial mode buckling tem-
perature of conical sandwich shell with DYAD606
core material by considering the temperature in-
dependent and dependent shear modulus of the
core. From the figure 9(a) it is noticed that
the buckling temperature follows the same pat-
tern of curves of EC2216 core sandwich conical
shell with harmonics. The buckling temperature
increases with increase in core thickness at all
modes, which is observed when the constant shear
modulus is considered at room temperature. Fig-
ure 9(b) shows the variation of buckling temper-
ature with circumferential modes when the tem-
perature dependent shear modulus of DYAD606
core is considered. The buckling temperature
decreases slightly with increasing the circumfer-
ential mode number, and also influence of core
thickness on buckling temperature is not observed
much. From the reference (Nashif, Jones and
Henderson (1985)) it is observed that the shear
modulus of DYAD606 after 50˚C temperature be-
comes 1/10 the value of G∗ at room temperature,
because of that increasing the core thickness is not
having effect on the buckling temperature.

Comparing the figure 9(a) and 9(b) it is observed
that the buckling temperature is very low when the
temperature dependent shear modulus of the core
is considered. The reason for this is shear modu-
lus of DYAD606 decreases drastically with tem-
perature as reported by Nashif, Jones and Hen-
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Figure 8: Buckling temperature of sandwich conical shell with boron/epoxy facings and EC2216 core ma-
terial at zero fiber angle (a) G=Const,(b) G = f (T ).
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Figure 9: Buckling temperature of sandwich conical shell with boron/epoxy facings and DYAD606 core
material at zero fiber angle (a) G=Const,(b) G = f (T ).

derson (1985, figure 2). Comparing the figure 8
and 9 the buckling temperature of conical sand-
wich shell with EC2216 core is having more than
the DYAD606 core. In the present study the shear
moduli values for EC2216 and DYAD606 core are
580MPa and 127MPa respectively, at room tem-
perature. When these values are used for the anal-
ysis of the shell having EC2216 as core material
has higher buckling temperatures than DYAD606
core material for any given thickness of the core.
From reference (Nashif, Jones and Henderson
1985) (figure 2) it is found that when the tem-

perature dependent shear modulus for DYAD606
is considered, the modulus falls drastically with
temperature and becomes almost 1/10 of its value
at room temperature for 20˚C temperature rise.
Where as in case of EC2216 core shear modulus
does not change that much drastically. It only be-
comes 1/2 of its value at room temperature for the
same temperature rise.

The truncated conical shell with EC2216 core ma-
terial has a higher buckling temperature when the
temperature dependent shear modulus is used for
any given core thickness. It can be concluded
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from these results that if the shear modulus of the
core is high then the buckling temperatures will
be high and also an increase in the core thickness
considerably increases the buckling temperatures.
In contrast when the shear modulus of core is low
the buckling temperatures are lower and increase
in core thickness has little influence on buckling
temperature.

c) Effect of fiber orientation on buckling tempera-
ture

Figure 10 shows the variation of buckling temper-
ature with fiber angle of a boron-epoxy composite
facing sandwich conical shell having EC2216 and
DYAD606 core materials at m = n = 1. Buckling
temperature increases with increase in fiber angle
in case of both the type of cored sandwich conical
shells, and also increase in core to facing thick-
ness ratio the buckling temperature increases. In-
creasing the fiber angle from 0 to 90 the stresses
developed in clamped-clamped shell goes on de-
creases, which leads to increase in the buckling
temperature of the shell.

The lowest buckling temperature of sandwich
conical shell with EC2216 core at different fiber
orientation of a circumferential (n) and axial (m)
mode are tabulated in Table 4. From the table 4 it
is noticed that the lowest buckling temperature of
a truncated conical shell is observed at zero fiber
orientation of 11th circumferential mode.

Table 4: Lowest buckling temperature of sand-
wich conical shell with boron-epoxy facings and
EC2216 core

Fiber orienta-
tion(degrees)

Buckling temperature
˚C (m, n)

0 101.9 (1,11)
15 125.9 (1,10)
30 264.4 (1,1)
45 424.9 (1,13)
60 332.2 (1,16)
75 295.2 (1,17)
90 539.8 (1,20)

m=Axial mode, n=Circumferential mode

3.2.2 Frequency and damping analysis of trun-
cated conical shell

3.2.2.1 Influence of facing material on frequency
and loss factor with temperature

Figure 11 shows the variation of frequency and
loss factor with temperature, the study has been
carried out up to 250˚C because viscoelastic layer
cannot withstand at higher temperature. From
the figure it is noticed that at atmospheric tem-
perature glass-epoxy composite sandwich conical
shell is having higher frequency than the other
two composite sandwich conical shells. Increas-
ing the temperature the frequency of boron-epoxy
sandwich conical shell decreases, near the buck-
ling temperature there is a drastic reduction in the
frequency and finally approaches to zero at buck-
ling temperature.

This may be due to increase in temperature in the
equation (26) the real part of the stiffness [KR] re-
duces by the influence of geometric stiffness ma-
trix [Kg]. Near the buckling temperature the stiff-
ness of the structure becomes zero, due to the fact
that the frequency attains to zero. Loss factor
of sandwich conical shell with EC2216 core and
boron-epoxy facing material is lower than other
two facing (graphite-epoxy and glass-epoxy) ma-
terials at room temperature, as the temperature ap-
proaches the buckling temperature the loss factor
value shoots up.

3.2.2.2 Influence of facing material on frequency
at different harmonics

Figure 12(a) and 12(b) shows the variation of
frequency with circumferential modes of conical
sandwich shell with EC2216 core having glass-
epoxy and graphite-epoxy composite facings re-
spectively at 0˚ and 90˚ fiber orientation. Fre-
quency decreases with increase in mode num-
ber and reaches a minimum value then increases
with increase in mode number. At lower modes
membrane energy is predominant with increase in
mode number membrane energy reduces and fre-
quency decreases, at higher modes bending en-
ergy is predominant which leads to increase in
frequency with increasing the mode number after
n=10.

In both type of composite facing materials, the
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Figure 10: Variation of buckling temperature with fiber angle (a) EC2216 core (b) DYAD606 core.
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Figure 11: Frequency and loss factor with temperature at zero fiber orientation.

frequency at 90˚ fiber orientation is more com-
pared to zero fiber orientation. The stiffness of
the shell in circumferential direction is more when
the fibers oriented at 90˚, which leads to increase
in the frequency of the shell.

3.2.2.3 Influence of composite damping on total
damping

Composite damping is the property of material
and is obtained from the experiment. Compos-
ite damping also comes under Structural damp-
ing. Figure 13 shows the contribution of com-
posite damping and viscoelastic (EC2216) damp-
ing to the total damping of the system. Figure
13(a) and 13(b) shows the variation of loss factor

with circumferential modes for conical sandwich
shell with EC2216 core having glass-epoxy and
graphite-epoxy composite facings respectively at
zero fiber orientation. From the figure 13(a) it
is noticed that the composite damping is more
than the viscoelastic damping at all the harmonics.
Composite damping increases at lower modes and
then decreases up to n=10 then onwards almost
remains constant with increase in mode number.
Viscoelastic damping decreases with increase in
harmonics. Comparing the figure 13(a) and 13(b)
viscoelastic damping is more at lower modes
when graphite-epoxy composite facings are used,
which results in increase in total damping of the
sandwich conical shell with graphite-epoxy com-
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Figure 12: Frequency variation with circumferential modes for different fiber orientation (a) Glass/Epoxy
(b) Graphite/Epoxy.
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Figure 13: Effect of composite damping on total damping at zero fiber orientation (a) Glass/Epoxy (b)
Graphite/Epoxy.

posite facings.

Similarly as discussed above the figure 14(a) and
14(b) shows the variation of loss factor at 90˚ fiber
orientation. From the figure 14 it is observed that
when the fiber orientation is at 90˚ the compos-
ite damping is more predominant in lower modes
and viscoelastic damping is dominant at higher
modes. It is advantages to use both composite and
viscoelastic damping so that the vibrations can be
controlled either the system vibrate at lower or
higher modes. Comparing the figure 13 and 14
the total damping at higher modes is more at zero

fiber orientation.

3.2.2.4 Frequency and damping analysis of
boron-epoxy sandwich conical shell

Frequency and damping analysis of boron-epoxy
composite facings sandwich conical shell with
cone angle (α) 15˚ and fiber angle 0˚ in clamped
–clamped condition is carried out. Parametric
studies are considered as different core mate-
rial with temperature dependent and independent
shear modulus of the core.

a) Variation of frequency and loss factor with tem-
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Figure 14: Effect of composite damping on total damping at 90˚ fiber orientation (a) Glass/Epoxy (b)
Graphite/Epoxy.

perature

Figure 15 shows the variation of frequency and
loss factor with buckling temperature for differ-
ent circumferential modes. The core material
EC2216 with tc/t f ratio 1 and L/R ratio 1, the
shear modulus of the core assumed to be constant
with temperature. The natural frequency of the
shell decreases slightly with increase in tempera-
ture till the temperature is closer to the buckling
temperature. When the buckling temperature is
approached, the frequency falls very sharply with
the increase in temperature and finally tends to
zero at critical buckling temperature of a partic-
ular mode. Since the buckling temperatures of
the higher modes are lower, so the frequency of
higher modes becomes zero before the first mode
buckling temperature.

The loss factor of the shell for all modes remains
constant up to certain temperature and then start
to increase with temperature reaching a very high
value when temperature approaches the buckling
temperature of particular modes. This is expected
because the denominator value in the equation
(27) decreases as the temperature increases due to
the effect of [Kgn] matrix, which leads to increase
in the loss factor of the shell.

b) Influence of core material on frequency

Figure 16 shows the variation of frequency and

modal loss factor of a sandwich conical shell with
temperature for DYAD606 core material. The
variation of frequency and loss factor with tem-
perature are similar trend as compared to coni-
cal shell having EC2216 core material (figure 15).
Comparing the figure 15 and 16 it is observed
that the conical shell with DYAD606 core is hav-
ing lower buckling temperatures for given core
thickness. From the reference (Nashif, Jones and
Henderson 1985) (figure 2) it is observed that the
shear modulus of DYAD606 core is lower than
the EC2216, due to fact that the stiffness of con-
ical shell with DYAD606 core is lower than the
EC2216 core, so the DYAD 606 core sandwich
conical shell frequency attains to zero and loss
factor shoots up earlier than the EC2216 core due
to lower buckling temperature.

c) Influence of temperature dependent properties
of core material:

Figure 17 shows the variation of natural frequency
and loss factor for a sandwich conical shell with
EC2216 core material. The shear modulus of
the core is considered as a function of tempera-
ture (variation of shear modulus with temperature
of EC2216 and DYAD606 are given in figure 2).
The frequency and loss factor pattern is similar as
explained in the earlier section 3.2.2.4(a), when
temperature independent shear modulus is used.
Comparing the figure 15 and 17 there is a slight
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Figure 15: Frequency and loss factor with temperature for EC2216 core having G=const
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Figure 16: Frequency and loss factor with temperature for DYAD606 core having G=const

change in the buckling temperature at which fre-
quency becomes zero. As the temperature ap-
proaches the buckling temperature the loss factor
start increasing and tends to a high value near the
buckling temperature.

d) Variation of frequency and loss factor with fiber
angle for different modes

Figure 18 shows the variation of frequency and
loss factor with fiber orientation of a boron-epoxy
facing and EC2216 core sandwich conical shell.
Shear modulus of the core considered as constant
and core to facing thickness ratio (tc/t f ) 1, length
to mean radius ratio (L/R) 1, in clamped-clamped
condition at atmospheric temperature. From fig-

ure 18 it is observed that first fundamental mode
frequency increases with increasing the fiber ori-
entation and the frequency of higher modes are
lower than the fundamental mode at any fiber ori-
entation. Loss factor remains constant with fiber
orientation at fundamental mode but at higher
modes loss factor increases with fiber angle.

Figure 19 shows the variation of frequency and
loss factor with fiber orientation of a boron-
epoxy facing and DYAD606 core sandwich coni-
cal shell. Comparing the figure 18 and 19 there
no much difference observed in the frequency
trend but the loss factor of sandwich shell with
DYAD606 core is having more damping than
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Figure 17: Frequency and loss factor with temperature for EC2216 core having G = f (T )
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Figure 18: Frequency and loss factor with fiber angle for different modes of sandwich conical shell with
EC2216 core.

EC2216 core which is observed at 90˚ fiber orien-
tation. Comparing the figure 19 and 20 increasing
the L/R ratio frequency and loss factor decreases,
which are observed at all fiber orientation. In-
creasing the L/R ratio the mass of the structure in-
creases which leads to decrease in the frequency.

3.3 Buckling and free vibration of hemispher-
ical shell with cut out at apex

The study has been extended to some typical cases
of hemispherical shell with boron-epoxy facings
and EC2216 core having 15˚ cut out angle (β ) at
apex as shown in figure 21. The parametric study

is carried out for different radius to total thickness
(R/t) ratio, core to facing thickness ratio (tc/t f )
and various fiber orientations. The general shell
element, which is also converted in to hemispher-
ical shell by making Rφ and Rθ equal to radius R
as shown in Figure 21. Where β is the cut out
angle at apex, the mid surface is discretised in to
finite elements is also shown in figure 21.

3.3.1 Buckling analysis of hemispherical shell

Figure 22(a) shows the variation of buckling tem-
perature with circumferential modes (n) by con-
sidering the temperature independent shear mod-
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Figure 19: Frequency and loss factor with fiber angle for different modes of sandwich conical shell with
DYAD606 core.
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Figure 20: Frequency and loss factor with fiber angle for different modes of sandwich conical shell with
EC2216 core L/R = 5

ulus of the core. Buckling temperature increases
with circumferential modes up to n=5 and reaches
a very high value then decreases with increasing
the circumferential modes. Buckling temperature
increases with increasing the core to facing thick-
ness ratio, which is observed at all the harmon-
ics. Increasing the core thickness two times there
is increase in buckling temperature about 100˚C,
which is observed at fundamental mode (n=1).
Figure 22(b) shows the variation of buckling tem-
perature with fiber angle for different harmonics
by considering shear modulus of the core con-
stant with temperature. Buckling temperature of

5th harmonic is more compared to other lower and
higher harmonics at all fiber orientation. Buckling
temperature increases with fiber angle up to 30˚
then onwards decreases with increasing the fiber
angle.

3.3.2 Free vibration analysis of hemispherical
shell

The buckling temperature of sandwich hemi-
spherical shell is more than the sandwich conical
shell, the viscoelastic core is not withstanding at
higher temperature because of that the frequency
study is limited to 200˚C. Figure 23 shows the
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Figure 21: Cut section of hemispherical shell with cut out angle at apex.
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Figure 22(a): Buckling temperature with harmonics
for various core to facing thickness ratio (tc/t f ).
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Figure 22(b): Buckling temperature with fiber angle
for different harmonics (n).

variation of frequency and loss factor with tem-
perature for different radius to total thickness ra-
tio (R/t) at zero fiber orientation. Frequency in-
creases with increasing the temperature at lower
modes (n=1) but at higher modes (n=5) frequency
decreases with increase in temperature. Loss fac-
tor decreases with increasing the temperature at
lower modes (n=1) but at higher modes (n=5) loss
factor increases with increasing the temperature.

This trend may be due to at lower modes mem-
brane effect is more and when the mode number
increases bending effect becomes predominant.

Decreasing the R/t ratio frequency and loss factor
increases at all the temperature which is observed
at n=1.

Figure 24 shows the variation of frequency and
loss factor with fiber orientation for different ra-
dius to total thickness ratio (R/t) at atmospheric
temperature. From the figure 24 it is observed that
frequency increases with increasing the fiber an-
gle at lower modes (n=1), and at higher modes
(n=5) frequency increases up to 30˚ fiber orienta-
tion then onwards decreases with increasing the
fiber angle. Loss factor decreases with increas-
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Figure 23: Variation of frequency and loss factor with temperature for different radius to total thickness
(R/t) ratio.
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Figure 24: Variation of frequency and loss factor with fiber angle for different R/t ratio.

ing the fiber angle which is observed at n=1. De-
creasing the radius to total thickness (R/t) ratio
frequency and loss factor increases at all fiber ori-
entation at n=1.

4 Conclusions

The buckling and free vibration analysis of sand-
wich general shells of revolution under thermal
environment is investigated for different geome-
try such as truncated sandwich conical shell and
hemispherical shell with cut out at apex using var-
ious facing and core materials. The following
conclusions are obtained from the investigation.

1. The graphite-epoxy sandwich truncated con-
ical shell is having very high buckling tem-
perature compared to glass epoxy and boron-
epoxy sandwich shells at all modes. This
trend may be due to the co-efficient of ther-
mal expansion of graphite-epoxy composite
in fiber direction is very low compared to
other two materials.

2. In case of glass epoxy and graphite-epoxy
composite facing materials the frequency at
90˚ fiber orientation is more compared to
zero fiber orientation. The stiffness of the
conical shell in circumferential direction is
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more when the fibers oriented at 90˚, which
leads to increase in the frequency of the con-
ical shell.

3. The composite damping is more than the vis-
coelastic damping at all the harmonics. Vis-
coelastic damping is more at lower modes
when graphite-epoxy composite facings are
used, which causes increase in total damp-
ing of the sandwich conical shell compared
to glass-epoxy composite facings.

4. Truncated sandwich conical shell buckling
temperature increases with increase in core
(EC2216) thickness at all modes, which is
observed in both cases, when shear modu-
lus (G∗) of the core considered as a func-
tion of temperature and independent of tem-
perature. Doubling the core thickness there
is an increase in the buckling temperature
by about 50 to 75˚C at lower and higher
modes. Buckling temperature of the struc-
ture is more when the G∗ is constant with
temperature at room temperature.

5. The truncated sandwich conical shell with
EC2216 core material has a higher buckling
temperature compared to DYAD606 core
when the temperature dependent shear mod-
ulus is used for any given core thickness.

6. The natural frequency of the conical shell de-
creases slightly with increase in temperature
and near the buckling temperature frequency
becomes zero at a particular mode. Since the
buckling temperatures of the higher modes
are lower, so the frequency of higher modes
becomes zero before the first mode buckling
temperature.

7. The loss factor of the conical shell for all
modes remains constant up to certain tem-
perature and then start to increase with tem-
perature reaching a very high value when
temperature approaches the buckling tem-
perature of particular modes.

8. Hemispherical sandwich shell buckling
temperature increases with circumferential
modes up to n=5 and reaches a very high

value then decreases with increasing the
circumferential modes. Increasing the core
thickness two times there is increase in
buckling temperature about 100˚C, which
is observed at fundamental mode (n=1).
Decreasing the R/t ratio frequency and loss
factor increases at all the temperature which
is observed at n=1.

9. Hemispherical sandwich shell frequency in-
creases with increasing the fiber angle at
lower modes (n=1), loss factor decreases
with increasing the fiber angle which is ob-
served at n=1. Decreasing the radius to total
thickness (R/t) ratio, frequency and loss fac-
tor increases at all fiber orientation at n=1.
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