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A Hybrid Laplace Transform/Finite Difference Boundary Element Method
for Diffusion Problems

A. J. Davies1, D. Crann1, S. J. Kane1 and C-H. Lai2

Abstract: The solution process for diffusion
problems usually involves the time development
separately from the space solution. A finite differ-
ence algorithm in time requires a sequential time
development in which all previous values must
be determined prior to the current value. The
Stehfest Laplace transform algorithm, however,
allows time solutions without the knowledge of
prior values. It is of interest to be able to de-
velop a time-domain decomposition suitable for
implementation in a parallel environment. One
such possibility is to use the Laplace transform to
develop coarse-grained solutions which act as the
initial values for a set of fine-grained solutions.
The independence of the Laplace transform solu-
tions means that we do indeed have a time-domain
decomposition process. Any suitable time solver
can be used for the fine-grained solution. To illus-
trate the technique we shall use an Euler solver in
time together with the dual reciprocity boundary
element method for the space solution.
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1 Introduction

We consider an approach to the numerical solu-
tion of the diffusion problem in which the ‘space
variation’ is developed using a boundary ele-
ment approach and the ‘time development’ is ob-
tained in a hybrid Laplace transform/finite dif-
ference manner. The motivation for this study
is the proposal of a time domain-decomposition
procedure which has the potential for exploita-
tion in a parallel computing environment. Such
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procedures have been considered before in a
purely finite difference context Lions (2001); Bal
(2002); Maday (2005) in terms of the so-called
parareal algorithm and this proposed approach is
as follows: Decompose the time integration into
coarse-grained time slabs and find the solution at
the start of each time slab. Now use this coarse
solution as an initial-value for a fine-grained so-
lution over each slab. The fine-grained solution
can then be used to recalculate the coarse solution
and the process repeated. The coarse solution is
sequential whereas the fine-grained solutions can
be developed in parallel. There is also a poten-
tial data-distribution difficulty in the updating of
the coarse solution as initial-values for the fine-
grained solutions since there is no guarantee that
the solutions in different time-slabs would be ob-
tained in synchronisation. This difficulty would
be overcome if the coarse solution could also be
developed in parallel.

A numerical Laplace transform approach using
Stehfest’s Stehfest (1970a,b) method provides just
such an approach since the solution at any spe-
cific time can be obtained independently of those
at any other times. The space solution at each
time value could be obtained by any suitable
solver. The most commonly used approach is
that using finite differences Lions (2001); Bal
(2002); Maday (2005); Bal (2005), however Cor-
tial and Farhat Cortial (2005) describe an ap-
proach using finite elements. In our approach
we shall use a boundary element technique in
space incorporating the dual reciprocity method.
This has been used extensively by the authors in
both Laplace transform and finite difference time-
decompositions Crann (2005); Crann, Davies,
Lan and Leong (1998); Davies and Crann (2001);
Davies, Toutip and Bartholomew-Biggs (2001).
A discussion of the use of the Stehfest method in
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a boundary element context is given by Sutradhar
et al. Sutradhar, Paulino and Gray (2002)

We take as our test problem

∇2u =
1
α

∂u
∂ t

+h(x,y, t) in Ω (1)

subject to the boundary conditions

u(s, t) = u1(s, t) on Γ1

q(s, t) =
∂u
∂n

(s, t) = q2(s, t) on Γ2

(2)

with u(x,y,0) = u0(x,y) in Ω (3)

where Ω is a closed two-dimensional region
bounded by the curve Γ = Γ1 + Γ2. We seek the
solution u(x,y, t) for (x,y)ε Ω and 0 < t ≤ T .

2 The Hybrid Algorithm

2.1 The Laplace transform

We define the Laplace transform, u(x,y;λ ), of
u(x,y, t) as

u(x,y;λ ) =
∫ ∞

0
u(x,y, t)e−λt dt

Taking the Laplace transform of the initial
boundary-value problem (1), (2), (3) we obtain

∇2u =
1
α

(λ u−u0)+h in Ω (4)

u(s;λ ) = u1(s;λ ) on Γ1

q(s;λ ) = q2(s;λ ) on Γ2
(5)

The elliptic boundary-value problem given by
equations (4) and (5) is solved using the dual reci-
procity method Crann (2005); Zhu (1997) as fol-
lows:

We write equation (4) in the form

∇2u = b(x,y,u;λ ) in Ω (6)

subject to the same boundary equations (5).

In this form we can apply the dual reciprocity ap-
proach using the fundamental solution, u∗, of the
Laplacian operator given by

u∗ = − 1
2π

lnR (7)

Consequently we use the fundamental solution (7)
and Green’s theorem and write equation (6) in the
integral form

ciui +
∫

Γ
q∗ui dΓ−

∫
Γ

u∗qi dΓ+
∫

Ω
biu

∗ dΩ = 0

(8)

We approximate the source term, b, in equation
(6) in terms of a linear combination of radial basis
functions, f j(R), in the form

bi =
M

∑
j=1

α j f j (Ri) (9)

where bi is the value of the function b at node i.
The collocation is performed at the M = N + L
nodes where N and L are the numbers of bound-
ary and internal nodes respectively. The functions
f j are chosen in such a manner that we can find
a particular solution û with the property ∇2û = f j

and we define q̂ = ∂ û/∂n. Using these functions
in equation (8) and using Green’s theorem we ob-
tain the boundary integral equation

ciui +
∫

Γ
q∗ui dΓ−

∫
Γ

u∗qi dΓ

=
N

∑
j=1

α j

(
ciûi j +

∫
Γ

q∗û j dΓ−
∫

Γ
u∗q̂ j dΓ

)

(10)

Internal values are given by

ciui = −
∫

Γ
q∗ui dΓ+

∫
Γ

u∗qi dΓ

+
L

∑
j=1

α j

(
ciûi j +

∫
Γ

q∗û j dΓ−
∫

Γ
u∗q̂ j dΓ

)
(11)

We note here that we could consider the opera-
tor in equation (4) to be the modified Helmholtz
operator and the associated fundamental solution

u∗ = 1
2π K0

(√
λ
α R

)
but there would be no obvi-

ous benefit since we would still need a dual reci-
procity approach to handle the non-homogeneous
term in equation (4).

There has been some recent interest in cases for
which there is no convenient analytic form but
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where there is the possibility of a numerical com-
putation of the fundamental solution Obreakspace
and Duddeck (2006). Also, if the equation con-
tains a convection term then this may be incorpo-
rated into the Green’s function Simões and Tadeu
(2005). The Laplace transform approach is also
appropriate in such cases as these.

Equations (10) and (11) may be combined, to-
gether with collocation at the M nodes in equation
(9), to give the overall set of equations

HU−GQ =
[
HÛ−GQ̂

]
F−1b(U) (12)

where F is the collocation matrix from equation
(9) written in the form b = Fα. Here matrices H
and G are the usual boundary element matrices
and Û and Q̂ are the matrices of collocated values
of the functions û and q̂ Wrobel (2002).

Equation (12) can be written in the form

HU−GQ = Sb(U) (13)

where S is a matrix which depends only on the
geometry.

By virtue of the form of equation (4) we see that
b is a linear function of u so that equation (13)
is a linear system of equations. The solution of
equation (13) yields the approximate transforms
U and Q which may then be inverted to obtain the
approximate solutions U and Q.

To implement the Stehfest method we proceed as
follows:

Choose a specific time value, τ , at which we seek
the solution and define a discrete set of transform
parameters given by

{
λ j = j

ln2
τ

: j = 1,2, . . .,m; m even

}
(14)

The dual reciprocity boundary element method is
applied to equation (6) for each λ j to obtain a set
of approximate boundary values

Ui j, i = 1, . . . ,N; j = 1, . . .,m

and a set of internal values

U
I
k j, k = 1, . . .,L; j = 1, . . . ,m

The inverse transforms are then given as follows:

Ur =
ln2
τ

m

∑
j=1

wjUr j (15)

and

UI
r =

ln2
τ

m

∑
j=1

wjUr j (16)

where r = 1, . . .,N for boundary points and r =
1, . . .,L for internal points.

The weights, wj, are given by Stehfest Stehfest
(1970a,b) as

wj = (−1)
m
2 + j

·
min( j, m

2 )

∑
k=[ 1

2 (1+ j)]

k
m
2 (2k)!

(m
2 −k)!k!(k−1)!( j−k)!(2k− j)!

(17)

2.2 Finite Difference Method

If we define the time slabs as

0 = τ0 ≤ t < τ1, τ1 ≤ t < τ2, . . .,τp−1 ≤ t < τp = T

then the fine-grained approach is applied in each
time slab τi ≤ t < τi+1 (i = 0,1, . . ., p−1) and
we could use any suitable finite difference time
integration scheme. We shall use the Euler
method to illustrate the process; indeed most finite
difference- based boundary element processes do
use Euler but we may well wish to use a more ac-
curate algorithm such as Runge-Kutta.

We use n−1 time steps with time step

Δt = (τi+1 −τi)/n

The Euler algorithm to solve equation (1) is given
by the explicit scheme

∇2u(k+1)
i =

1
αΔt

u(k+1)
i − 1

αΔt
u(k)

i +h(x,y, tk)

k = 0,1, . . .,n−1 (18)

with

tk+1 = tk +Δt, t0 = τi
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In a similar manner to that in section 2.1 we can
develop the dual reciprocity form of equation (18)
as

HU(k+1)−GQ(k+1) = Sb(Uk) (19)

and the solution of this system of linear equations
yields the solutions at the times tk.

3 Examples

Example 1

We consider the problem given by equation (1),
with α = 1 and h = 0, in the unit square {(x,y) :
0≤ x≤ 1, 0≤ y≤ 1} subject to the boundary con-
ditions

u(x,1, t) = 0 u(1,y, t)= 1

q(0,y, t)= q(x,0, t) = 0

and the initial condition u(x,y,0) = 0.

The problem has the analytic solution

u(x,y, t)

= 1− 16
π2

∞

∑
n=0

∞

∑
m=0

(−1)m+n

(2m+1)(2n+1)

·cos

[
(2n+1)πx

2

]
×. . . . . .×cos

[
(2m+1)πy

2

]

· exp
(−απ2 [

(2m+1)2 +(2n+1)2] t/4
)

We use 36 linear boundary elements with 9 inter-
nal nodes. The radial basis functions for the dual
reciprocity method are given by f j(R) = 1+R.

The coarse-grained Laplace transform solution is
developed at t = 0.2,0.4, . . .,1 i.e. over equal
time slabs, and the fine-grained Euler solver uses
a time step Δt = 0.025. The solution is shown in
figure 1.

We see that the hybrid Laplace transform/Euler
method compares well with the analytic solution.
We note that the Laplace transform solution at
(0.75,0.75) with t = 0.2 is relatively poor. This
reflects the relatively low value, τ = 0.2, in equa-
tion (14); it is well-documented Crann (2005) that
Stehfest’s method can yield relatively poor val-
ues for small values of τ . It is interesting to note
that, even though the Laplace transform value at
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Figure 1: Solution to the problem in example 1 at
three points for 0 ≤ t ≤ 1.

t = 0.2 is relatively poor, we still obtain good re-
sults from the Euler solver in 0.2 < t < 0.4.

A parallel algorithm is potentially of most use in
non-linear problems. To illustrate we consider the
following example.

Example 2

We consider the problem

∇2u =
1
α

∂u
∂ t

+u2 +h(y, t)

with α = 1, defined in the unit square {(x,y) :
0 ≤ x ≤ 1, 0 ≤ y ≤ 1} subject to the boundary
conditions u(0,y, t)= 0, u(1,y, t)= t2, q(x,0, t) =
q(x,1, t) = 0 and the initial condition u(x,y,0) =
u0(x,y) = 0 with h(x,y, t)= 2t2−2x2t. The prob-
lem has the analytic solution u = x2t2.

We use 36 linear boundary elements with 9 inter-
nal nodes for the dual reciprocity method. The
radial basis functions are f j(R) = 1 + R. The
Laplace transform solution is developed at times
0.5p (p = 1,2, . . .,8) and the Euler time step is
Δt = 0.1 in each time slab.

In this case we cannot apply the Laplace trans-
form directly due to the non-linear term u2. We
use a direct iteration approach Crann (2005) in
which we write the partial differential equation in
the form

∇2ui =
1
α

∂ui

∂ t
+u2

i−1 +h(x,y, t) i = 1,2, . . .,
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with u(0) = u0.

The Laplace transform approach gives

∇2ui =
1
α

(λ ui −u0)+
u2

i−1

λ
+h(x,y;λ )

Again, in each iteration, this equation is of the
same form as equation (6) and the dual reciprocity
equations are of the same form as equation (13).
The explicit Euler algorithm solver requires only
a simple modification of equations (18) and (19).

In figure 2 we show the time development at the
points (0.2,0.2), (0.5,0.5), (0.8,0.8) for 0 ≤ t ≤
4. On this scale we are unable to see how the so-
lution has developed. Consequently we consider
the time development at the point (0.8,0.8) for
3 ≤ t ≤ 4 and this is shown in figure 3.
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Figure 2: Time development of the solution at
three points for 0 ≤ t ≤ 4.

From figure 3 we see that the Laplace transform
solution, the coarse-grained solution, compares
well with the analytic solution. The Euler solu-
tion is diverging from the analytic solution as time
progresses. The hybrid Laplace transform/finite
difference solution (LT/FDM) does not deterio-
rate as time progresses. However, the fine-grained
Euler solution is progressively worse as time pro-
gresses. In order to illustrate this phenomenon we
calculate the difference between the RMS errors
for the Euler/Laplace transform method, eELT ,
and for the Euler method, eE . This difference,
eE −eELT is shown in figure 4.
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Figure 3: Time development of the solution at the
point (0.8,0.8) for 3 ≤ t ≤ 4.
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Figure 4: Difference between the RMS errors for
0 ≤ t ≤ 4.

We notice from figure 4 that eE − eELT is pos-
itive and that it has its maximum at time τi,
the beginning of time slab i, where the coarse-
grained Laplace transform solution ‘pulls’ the
fine-grained Euler back towards the analytic so-
lution. We notice also that these differences in-
crease as t increases.

In this example we have chosen a relatively large
time-step for the fine-grained solver to show how
the relatively accurate coarse-grained solver acts
to mitigate the errors. In practice of course we
would use a fine-grained step-size so that the or-
der of error within each time slab is at least of the
same order as the coarse-grained solver. In figure
5 we show the hybrid LT/FDM for time slabs of
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size 0.2 and an Euler step size Δt = 0.01.
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Figure 5: Time development of the solution at
(0.8,0.8).

4 Conclusions

The hybrid Laplace transform/finite difference
method provides a suitable approach to the so-
lution of diffusion problems. In this investiga-
tion we have considered the approach in a se-
quential manner. The process is, however, inher-
ently parallel; the fine-grained solutions could all
be obtained independently. Also, there would be
no inter-processor communication and the imple-
mentation would have an excellent load balance
since each processor performs exactly the same
program on the same amount of data.

There is an important consideration in respect of
the errors in the Laplace transform; the coarse-
grained solution must be of the same order of ac-
curacy as the fine-grained solution. Convergence
criteria and error bounds for finite difference al-
gorithms are well-documented Lambert (1983).
However the behaviour of errors in the Stehfest
Laplace transform method are not explicitly avail-
able; clearly until such theory is available it is dif-
ficult to make specific judgements on how to im-
plement the hybrid method. In practice, of course,
it is the overall error which is important and it is
quite likely that so long as the Laplace transform
solution is sufficiently accurate the fine-grained
solver can be implemented in such a way that the
solution over each time slab is no worse than the

coarse-grained solution. It is important to notice
that in a parallel environment we can afford to
do as much work in each time slab as would be
needed in a global solution with the same finite
difference approach to yield at least an accurate
solution as that produced by the coarse-grained,
Laplace transform, solution.
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