
Copyright c© 2007 Tech Science Press CMES, vol.18, no.1, pp.31-43, 2007

Thermo-Poro-Elastostatic Green’s Functions for Unsaturated Soils

Ehsan Jabbari1 and Behrouz Gatmiri2,3

Abstract: In this paper after a discussion about
the evolution of the unsaturated soils’ governing
differential equations and a brief history of the
Green’s functions for porous media, the govern-
ing equations, i.e., the mathematical model in the
presence of heat effects are presented and simpli-
fied so as the derivation of the associated Green’s
functions be in the realm of possibility. The ther-
mal two- and three-dimensional, full- and half-
space Green’s functions for unsaturated porous
media, although in a relatively simplified form,
are being introduced for the first time, follow-
ing the previous works of the authors. The de-
rived Green’s functions have been demonstrated
graphically and verified mathematically by com-
paring with the previously introduced correspond-
ing Green’s functions. The resulted solutions may
be used in a BEM or other meshless numerical
models.

Keyword: Boundary element method; thermal
Green’s function; fundamental solution; porous
media; unsaturated soils.

1 Intoduction

The study of coupled heat and moisture transfer
in a deformable partly saturated porous medium is
an area of research receiving considerable current
attention. One reason for this interest is that the
problem is of importance in the strategic, interna-
tional issue of the safe disposal of high-level nu-
clear waste [Schrefler (2002)]. As a consequence,
a significant number of papers in this field have
appeared in the recent literature [de Boer (1996)].

Two main distinguished strategies are generally

1 SPI Consulting Engineers, Tehran, Iran
2 Faculty of Civil Engineering, University of Tehran, Iran
3 CERMES, Ecole Nationale des Ponts et Chaussées,

France

used to arrive at the description of the behavior
of the porous continua: one starts from macro-
mechanics and the other from micro-mechanics.
Phenomenological approaches and the mixture
theories belong to the first strategy while averag-
ing theories belong to the second one.

Historically, Woltman (1974) introduced the con-
cept of volume fractions and Delesse (1848)
dealt with the concept of surface fractions. Fick
(1855) studied the problem of diffusion of mix-
tures, Darcy (1856) the motion of a liquid in a
porous solid and Stefan (1871) the diffusion of
gas through a porous diaphragm. Fillunger (1913)
introduced the concept of effective stress, i.e., the
stress which controls stress-strain, volume change
and strength behavior in a porous medium and
studied the problems of uplift, friction and cap-
illarity in porous solids. Terzaghi (1923) inves-
tigated saturated deformable porous solids and
also made use of the effective stress principle.
Biot (1941, 1956) developed the phenomenologi-
cal approach of Terzaghi further and extended it to
the three-dimensional case. A macroscopic ther-
modynamic approach to Biot’s theory was used
by Coussy (1995).

Modern mixture theories were developed by Mor-
land (1972), Goodman and Cowin (1972), Sam-
paio and Williams (1979), Bowen (1980, 1982),
Passman, Nunziato and Walsh (1984), Svendsen
and Hutter (1955), and de Boer (2000). Aver-
aging theories were developed by Hassanizadeh
and Gray (1979, 1979) and Whitaker (1980) and
the theory of homogenization was used by Auri-
ault (1987, 1991). For more detailed review see
Schrefler (2002) and for an extensive review of
the history of porous media theories see de Boer
and Ehlers (1988).

The Boundary Element Method (BEM), as the
most efficient one among the numerical methods
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for solving the boundary value problems govern-
ing the various physical phenomena, is going to
be employed for more complicated and coupled
ones regarding the behavior and consequently the
governing differential equations. Main advan-
tages of the method include the reduction of the
problem dimension by one and the implicit ful-
fillment of the radiation condition for unbounded
domains.

As in this method, during formulating boundary
integral equations, the applied mathematics con-
cept of the Green’s functions has been employed;
this type of fundamental solutions for the govern-
ing partial differential equations should be first
derived and therein lies the reason that the devel-
opment of the BEM is restricted by the enclosed
difficulties. The Green’s functions or in more gen-
eral term the fundamental solutions of the govern-
ing partial differential equations have been pre-
sented and explained in relatively complete forms
for isothermal saturated soils phenomenon.

The first fundamental solutions for governing dif-
ferential equations of saturated soils have been
introduced by Cleary (1977) for quasi-static
problem following the earlier work of Nowacki
(1966). Closed form Laplace transform do-
main quasistatic poroelastic fundamental solu-
tions were obtained by Cheng and Ligget (1984,
1984). The first fundamental solutions for dy-
namic poroelasticity seem to be presented by Bur-
ridge and Vargas (1979) who presented a gen-
eral solution procedure similar to that of Dere-
siewicz (1960-1967). Norris (1985) derived time
harmonic Green’s functions for a point force in
the solid and a point force in the fluid. Kay-
nia and Banerjee (1992) used the same solution
scheme and derived the fundamental solution in
the Laplace transform domain as well as transient
short-time solution.

The time harmonic poroelastic fundamental so-
lutions were introduced by Bonnet (1987) and
Boutin, Bonnet and Bard (1987). Boutin worked
on the equations that are based upon the homoge-
nization theory for periodic structures but his so-
lution is in symmetrical form, while the Green’s
functions for this problem should not be symmet-
ric. Weibe and Antes (1991) obtained a time do-

main fundamental solution for the Biot type dy-
namic poroelasticity for the first time, neglecting
the viscous coupling and without numerical eval-
uation of the kernel functions. Chen (1994, 1994)
provided nearly the most complete analytical time
domain Green’s functions for both two and three-
dimensional full dynamic poroelasticity. There-
upon, Gatmiri and Kamalian (2002) modified
his two-dimensional solutions and boundary inte-
gral formulation to lead to more accurate results.
Schanz and Pryl (2004) derived dynamic funda-
mental solutions for deformable soil’s solid skele-
ton with compressible and incompressible fluid
in Laplace transform domain. Simultaneously,
Gatmiri and Nguyen (2005) derived closed form
Green’s functions for two-dimensional saturated
soil with incompressible fluid. Both of the papers
have concluded that an incompressible model can
only be used in wave propagation problems if not
the short time behavior is considered and also if
the ratios of the compression moduli are very in-
significant. More recently, Seyrafian, Gatmiri and
Noorzad (2006) have presented analytical Green’s
functions for a continuously non-homogeneous
half-space saturated media under a time-harmonic
vertical point load without employing any poten-
tial function.

For unsaturated soils, the authors have derived
the first Green’s functions for the nonlinear gov-
erning differential equations for static [Gatmiri
and Jabbari (2004, 2004)] and quasi-static [Gat-
miri and Jabbari (2005, 2005)] poroelastic media
for both two and three-dimensional problems and
half-space domains [Jabbari and Gatmiri (2006)].

The present research is an effort for deriving
thermo-poro-elastic full- and half-space Green’s
functions for two- and three-dimensional unsatu-
rated media, for the first time, using a few neces-
sary and sophisticated simplifications which cer-
tainly may be picked gradually off in the future
by a few more analytic endeavors to improve the
validity of the results.

2 Governing equations

For an unsaturated material influenced by heat ef-
fects, the governing partial differential equations
consisted of four main groups: equilibrium equa-
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tions, air transfer equations, fluid transfer equa-
tions [Gatmiri, Delage and Cerrolaza (1998)] and
heat diffusion equations.

2.1 Equilibrium and constitutive equations of
solid skeleton

Quasi-static equilibrium equations based on
the two independent parameters (σ − pa) and
(pa − pw), with linear elastic behavior are

(σi j −δi j pa), j + pa,i +bi = 0 (1)

and stress-strain relations including heat effects
(in finite deformations form)

d (σi j −δi j pa) =
Di jkldεkl +δi jDs (dpa −dpw)−δi jCT dT (2)

or

(σi j −δi j pa) =
λ δi jεkk +2μεi j +δi jDs (pa − pw)−δi jCT T (3)

and (linear, i.e., assuming small deformation gra-
dients) strain-displacement relationships, describ-
ing the kinematics of deformation are

εi j =
1
2

(ui, j +u j,i) . (4)

Substituting the constitutive relations into the
equilibrium equations yields the final governing
(Navier’s) equations, stating the equilibrium of
solid skeleton, in the form of

(λ + μ) u j,i j + μ ui, j j +(Ds −1) pa,i −Ds pw,i

+CT T,i + bi = 0. (5)

In Eqs.1-5 λ and μ are Lamé’s coefficients, Di jkl

are the coefficients of soil elasticity (constitutive
tensor) and Ds is the coefficient of deformations
due to suction effect. In addition, σ , ε , u and
b stand for stress, strain, displacement of soil’s
solid skeleton and the body forces, respectively.
Also, pa, pw and T denote air and water pressures
and temperature and δi j represents the Kronecker
delta operator.

In Eq.5 CT is the specific heat capacity of unsatu-
rated mixture and is defined as

CT = (1−n)ρsCps +n(1−Sr)ρaCpa+n SrρwCpw

+ n(1−Sr)ρvCpv, (6)

but will be considered an average constant in the
medium. In Eq.6 Cps, Cpa, Cpw and Cpv are spe-
cific heat capacities of soil particles, air, water and
vapor, respectively. Furthermore, ρs, ρa, ρw and
ρv are soil particles, air, water and vapor mass
densities, respectively. n and Sr stand for porosity
and degree of saturation.

2.2 Continuity and transfer equations for air

According to generalized Darcy’s law (1856) for
air transfer the air velocity, ua, is defined as

ua = −Ka∇
(

pa

γa
+Z

)
. (7)

Considering that pa is a function of temperature,
i.e. pa = pa (T ), Eq.7 can be written as

ua = −Ka

γa

∂ pa

∂T
∇T −Ka∇

(
pa

γa
+Z

)
. (8)

Using the thermodynamic state equations for
gases, the 1

γa

∂ pa
∂T term can be replaced by

1
γa

∂ pa

∂T
=

pa + patm

(T +273) γa
= βpa (9)

this yields

ua = −Kaβpa∇T −Ka∇
(

pa

γa
+Z

)
(10)

where γa and Z are air unit weight and the ele-
ment’s height from an arbitrary level, respectively.
patm is atmosphere pressure and βpa is considered
a constant. The air coefficient of permeability, Ka,
is defined as

Ka = DK
γa

μa
[e (1−Sr) ] EK (11)

where μa and e are air dynamic viscosity and void
ratio, respectively and DK and EK are constants
[Lambe and Whitman (1969)].
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Again a generalized Darcy’s law for liquid trans-
fer states that

uw = −Kw∇
(

pw

γw
+Z

)
(12)

in which γw is water unit weight. The water per-
meability, Kw, is defined as [Kovacs (1981)]

Kw = Kwz0

(
Sr −Sru

1−Sru

)3.5

(13)

where Sru is residual degree of saturation and Kwz0

is the intrinsic water permeability defined as

Kwz0 = aKw 10αKw e (14)

where akw and αkw are constant coefficients.

Again like the air transfer, as the water transfer
phenomenon (water pressure) is temperature de-
pendent, the water velocity, uw, should be rewrit-
ten as

uw = −KTw∇T −Kw∇
(

pw

γw
+Z

)
(15)

in which the thermal water diffusivity, KTw, is
considered herein a constant coefficient, see Ap-
pendix A.

Now, the mass conservation law for air unit vol-
ume should be written as [Alonso, Battle, Gens
and Llort (1988)]

∂
∂ t

{ρan [1−Sr (1−H)]}+div [ρa (ua +Huw)]

= 0 (16)

in which H is Henry’s coefficient which denotes
the amount of dissolved air in water, t is time vari-
able and n stands for porosity.

With the assumption of constant ρa and Ka in
space, dispensing with time variations, and re-
membering that the Laplacian of Z is zero, we
have

ρaKa

γa
∇2 pa +

HρaKw

γw
∇2 pw

+(Kaβpaρa +H KTw) ∇2T = 0 (17)

where div, ∇ and ∇2 stand for divergence, gradi-
ent and Laplacian operators, respectively.

Indeed, assuming Ka, Kw and KTw as constants
in the considered domain enables us to suppose
the governing differential equation in the linear
form although some key features of the nonlinear-
ity are still reserved, using variable coefficient Ka,
Kw and KTw in the derived Green’s functions [Gat-
miri and Jabbari (2005)]. In other words, keeping
above parameters as a variable, makes the differ-
ential equation nonlinear (or with variable coef-
ficients) so that deriving the considered Green’s
functions will become too difficult, at least with
common methods. Therefore as a first step of de-
riving the Green’s functions, it is reasonable to
keep the effects of mentioned conductivity coeffi-
cients after deriving the Green’s functions, using
the linear form of the governing differential equa-
tions.

2.3 Continuity and transfer equations for wa-
ter

The moisture phase transfer can be normally di-
vided to liquid and vapor transfer components.
The water velocity is represented in Eq.15 while
the equation of vapor diffusion in porous media
according to Philip and de Vries (1957) theory is
given as

qvap = −Dv∇ρv (18)

where qvap is the vector of vapor flux density and
Dv depends partially on the degree of saturation
and porosity. Since the procedure is both temper-
ature and pressure dependent, the vapor velocity
can be represented as

uv =
qvap

ρw
= −Dpv∇pa −DT v∇T (19)

in which Dpv and DT v are considered constant co-
efficients, see Appendix A.

The conservation law for total moisture transfer,
dispensing with time variations, may be repre-
sented as

−div [ρw (uw +uv)] =
∂ (ρm)

∂t
= 0 (20)

in which ρm is moisture density.
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Considering Eq.20 and again assuming constant
ρw, Dpv, DT v and KTw, we have

ρwDpv∇2 pa +
ρwKw

γw
∇2 pw

+ρw (DT v +KTw) ∇2T = 0. (21)

A discussion similar to that brought for Ka, Kw

and KTw shows that it is inevitable to dispense
with variations of DTv and Dpv in order to ar-
rive at a linearized form of the governing differen-
tial equations, although the approach still reserves
some nonlinearity features.

2.4 Heat equations

Heat equations are consisted of heat diffu-
sion equation and energy conservation equation.
Based on the Philipe and de Vries theory (1957)
the flow of heat, Q, in an unsaturated porous
medium is

Q = −λm∇T +[Cpaρaua +Cpwρwuw +Cpvρwuv]
· (T −T0)+ρwh f auv +ρvh f aua (22)

in which λm accounts for Fourier heat diffusion
coefficient

λm = (1−n)λs +n Srλw +n (1−Sr)λv. (23)

In Eq.23 the first term denotes the conductive heat
flow, the second term is related to the convec-
tive heat flow in liquid, vapor and air and two
last terms denote the latent heat related to evap-
oration. In addition, λs, λw and λv stand for soil
particles, water and vapor thermal conductivities,
respectively. h f a is the latent heat of vaporization
of soil water and T0 is initial temperature, see Ap-
pendix A.

Energy conservation equation in a porous medium
can be expressed as [Philipe and de Vries (1957)]

∂Φ
∂ t

λm +divQ = 0 (24)

in which Φ is the volumetric buck heat con-
tent of the medium [Gatmiri, Seyedi, Delage and
Fry (1997)] and is defined by

Φ = CT (T −T0)+n(1−Sr)ρvh f a. (25)

Eq.25 is valid if the local thermal equilibrium
among the soil particles, the air and the water can
be justified.

Combining above equations and neglecting time
variations yield

div
{
−λm∇T

+[Cpaρaua +Cpwρwuw +Cpvρwuv] (T −T0)

+ρwh f auv +ρvh f aua

}
= 0 (26)

which may be simplified as

{
(CpaρaKaβpa +CpvρwDpv) (T −T0)

+ρah f a
Ka

γa
+ρwh f aDpv

}
∇2 pa

+
{

Cpwρw
Kw

γw
(T −T0)

}
∇2 pw

+
{

λm +
(
CpaρaKaβpa

+CpwρwKTw +CpvρwDTv
)

(T −T0)

+ρah f aKaβpa +ρwh f aDT v

}
∇2T = 0. (27)

In Eq.27 we have again dispensed with the vari-
ations of Ka, Kw, KTw, Dpv and DTv to use the
linear form of the equations and (T −T0) means
the mean value of (T −T0) in the computational
domain.

2.5 Simplified mathematical model

The governing partial differential equations based
on the considered linearization assumptions may
be summarized and simplified as

c11u j,i j +c12ui, j j +c13 pa,i +c14 pw,i +c15T,i +c16

= 0

c21∇2 pa +c22∇2 pw +c23∇2T = 0

c31∇2 pa +c32∇2 pw +c33∇2T = 0

c41∇2 pa +c42∇2 pw +c43∇2T = 0

(28)
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where i, j = 1,2 for two- and i, j = 1,3 for three-
dimensional problems and the ci j coefficients are

c11 = λ + μ , c12 = μ ,

c13 = −1+Ds, c14 = −Ds,

c15 = CT , c16 = bi,

c21 =
ρaKa

γa
, c22 =

HρaKw

γw
,

c23 = Kaβpaρa +HKTw,

c31 = ρwDpv, c32 = ρw
Kw

γw
,

c33 = ρw (DTv +KTw) ,

c41 =
(

Cpaρa
Ka

γa
+CpvρwDpv

)
(T −T0)

+ ρah f a
Ka

γa
+ ρwh f aDpv,

c42 = Cpwρw
Kw

γw
(T −T0),

c43 = λm+

(CpaρaKaβpa +CpwρwDTw +CpvρwDT v) (T −T0)
+ρah f aKaβpa +ρwh f aDTv. (29)

The differential equations system (28) may be
written in the following matrix form

[Ci j]×�ω = �f (30)

where Ci j = ci j × di j and di j are the differential
operators. Also, for two- and three-dimensional
cases we have

Two-dimensional:

ωi = ui, fi = −bi, i, j = 1,2,

ω3 = pa, ω4 = pw, ω5 = T.
(31)

Three-dimensional:

ωi = ui, fi = −bi, i, j = 1,3,

ω4 = pa, ω5 = pw, ω6 = T.
(32)

Now, considering the above linearized differen-
tial equations system we will be able to derive the
Green’s functions using the classical methods as
the first approximations of the unsaturated soils’
thermal Green’s functions.

3 Green’s functions

Based on the method of Kupradze (1979) or
Hörmander (1963) [also see Manolis and Pavlou
(2002)], the Green’s functions of a set of differ-
ential equations with linear differential operators
are the cofactors of Ci j:

[gi j] =
[
C∗

i j

]
ϕ (33)

in which ϕ is a potential function and satisfies the
equation

det (Ci j) ϕ +δ (x) = 0 (34)

where δ (x) is the Dirac delta function of di-
mension five or six for two- or three-dimensional
problems, respectively. By definition of the po-
tential function ϕ , a set of fundamental solu-
tions will be achieved [Melnikov and Melnikov
(2001)]. This leads to such equation

Πi ∇n ϕi +δ (x) = 0,

Πi = −ci−1
12 (c11 +c12)

(
c23 (c32c41 −c31c42)

+c22 (c31c43 −c33c41)+c21 (c33c42−c32c43)
)

(35)

where

{
two-dimentional problem: n = 10 i = 2,
three-dimentional problem: n = 12 i = 3

(36)

in which ∇2m =
(
∇2

)m
is m occurrence(s) of the

Laplacian operator. The solutions of Eq.35 in
symmetric (only r-dependent) domains are

ϕ2 =
r8 [25−12ln(r)]
3,538,944D2π

(37)

for two-dimensional problem and

ϕ3 =
r9

14,515,200D3π
(38)

for three-dimensional problem.
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3.1 Full-space Green’s functions

Based on the resulted ϕ functions, gi j Green’s

functions or
[
C∗

i j

]
ϕ matrix’s elements can be de-

rived for two and three-dimensional cases as fol-
lows

Two-dimensional problem:

gi j = F2
11∇8δi jϕ +F2

12∇6∂i∂ jϕ i, j = 1,2

gi3 = F2
13∇6δiϕ, gi4 = F2

14∇6δiϕ,

gi5 = F2
15∇6δiϕ,

gi j = 0 i = 3,5 j = 1,2,

g33 = F2
21∇8ϕ, g34 = F2

22∇8ϕ,

g35 = F2
23∇8ϕ,

g43 = F2
31∇8ϕ, g44 = F2

32∇8ϕ,

g45 = F2
33∇8ϕ,

g53 = F2
41∇8ϕ, g54 = F2

42∇8ϕ,

g55 = F2
43∇8ϕ.

(39)

Three-dimensional problem:

gi j = F3
11∇10δi jϕ +F3

12∇8∂i∂ jϕ i, j = 1,3,

gi4 = F3
13∇8δiϕ, gi5 = F3

14∇8δiϕ,

gi6 = F3
15∇8δiϕ,

gi j = 0 i = 4,6 j = 1,3,

g44 = F3
21∇10ϕ, g45 = F3

22∇10ϕ,

g46 = F3
23∇10ϕ,

g54 = F3
31∇10ϕ, g55 = F3

32∇10ϕ,

g56 = F3
33∇10ϕ,

g64 = F3
41∇10ϕ, g65 = F3

42∇10ϕ,

g66 = F3
43∇10ϕ.

(40)

The F2
i j coefficients are presented in Appendix B

while F3
i j coefficients are related to F2

i j coefficients
with

F3
i j = c12F2

i j . (41)

3.2 Half-space Green’s functions

When the domain is half-space, as the most of the
engineering problems, the method of reflection

[McOwen (2003)] should be used to compute the
Green’s functions and other corresponding ker-
nels. Based on this method, the full-space Green’s
function should be superposed with its reflection
respect to the considered axis or plane in two- and
three-dimensional problems, respectively, i.e.

Ghal f−space(x−ξ )
= G f ull−space(x−ξ )−G f ull−space (x−ξ ∗)

(42)

in which G is the Green’s function, x is the loca-
tion of the potential function or receiver point, ξ
is the location of the excitation point and ξ ∗ is its
reflection respect to the considered axis or plane.
The resulted half-space Green’s functions are il-
lustrated in the following figures.

4 Verification

Evidently, the final and exact verification of the
resulted Green’s functions should be performed
by implementing them in a proper BEM model,
but as a preliminary check, one may observe that
by approaching KTw, DTv and Dpv , as the main
characteristics of the three phase model, to zero,
Fi

11, Fi
12 and Πi will approach to

F2
11 =

λm (λ +2μ)KaKwρaρw

γaγw
,

F2
12 =

λm (λ + μ)KaKwρaρw

γaγw
,

Π2 =
λmμ (λ +2μ)KaKwρaρw

γaγw
,

(43)

for the two-dimensional problem, while for the
three-dimensional problem the corresponding val-
ues are

F3
11 =

λmμ (λ +2μ)KaKwρaρw

γaγw
,

F3
12 =

λmμ (λ + μ)KaKwρaρw

γaγw
,

Π3 =
λmμ2 (λ +2μ)KaKwρaρw

γaγw
,

(44)

and consequently, implementing them in the gi j

Green’s functions results in
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Two-dimensional problem:

gi j =

[(λ + μ)−2(λ +3μ) ln(r)] r2δi j +2(λ + μ)xix j

8πr2μ (λ +2μ)

Three-dimensional problem:

gi j =
(λ +3μ) r2δi j +(λ + μ) xix j

8π r3μ (λ +2μ)
(45)

those are exactly the well-known two- and three-
dimensional elastostatic Green’s functions [Gat-
miri and Jabbari (2005)].

5 Illustration

For instance, some of the derived Green’s func-
tions for two- and three-dimensional and full- and
half-space cases are shown through Figs. 1-8 with
the following initial values. The consequent pa-
rameters are provided in Appendix A.

E = 3×104 kPa ν = 0.35

H = 0.02 Ds = 2

ρa = 1.293 kg/m3

μa = 1.85×10−5kg/ms

ρw = 1000 kg/m3 g = 9.806 m/s2

aKw = 1.2×10−9m/s αKw = 5

Sr = 0.5 Sru = 0.05

e0 = 0.75

DKa = 1×10−4 m2 EKa = 2.6

Cps = 800 J/Kg◦K Cpw = 4180 J/Kg◦K

Cpv = 1870 J/Kg◦K Cpa = 1000 J/Kg◦K

h f a = 2.4×106 J/Kg

λs = 0.9 W/m◦K

λa = 0.0258 W/m◦K
λw = 0.6 W/m◦K

p̂a = 11000 Kg/m2 p̂w = 1200 Kg/m2

T0 = 20 ◦C T = 25 ◦C
(46)
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Figure 1: 2D Full-space Green’s function g11,
solid skeleton displacement in direction one due
to unit point load in direction one.
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Figure 2: 2D Full-space Green’s function g12,
solid skeleton displacement in direction one due
to unit point load in direction two.
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Figure 3: 2D Half-space Green’s function g11,
solid skeleton displacement in direction one due
to unit point load in direction one.
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Figure 4: 2D Half-space Green’s function g12,
solid skeleton displacement in direction one due
to unit point load in direction two.
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Figure 5: 3D Full-space Green’s function g11,
solid skeleton displacement in direction one due
to unit point load in direction one at z = 0.10m.
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Figure 6: 3D Full-space Green’s function g12,
solid skeleton displacement in direction one due
to unit point load in direction two at z = 0.10m.
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Figure 7: 3D Half-space Green’s function g11,
solid skeleton displacement in direction one due
to unit point load in direction one at z = 0.10m.
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Figure 8: 3D Half-space Green’s function g12,
solid skeleton displacement in direction one due
to unit point load in direction two at z = 0.10m.

6 Conclusion

In this paper we introduced two- and three-
dimensional, full- and half-space thermo-poro-
elastostatic Green’s functions for the three phase
phenomenon of unsaturated soils governing dif-
ferential equations, for the first time. The pre-
sented Green’s functions have been derived using
a few simplifications to linearize the governing
partial differential equations and therefore ratio-
nalize the use of common straightforward meth-
ods for Green’s functions derivation. As a pri-
mary verification, it has been demonstrated that
the presented Green’s functions approach to their
corresponding elastostatic ones when the princi-
pal characteristics of the thermal three phase phe-
nomenon will vanish. The resulted Green’s func-
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tions are also demonstrated through figures.
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Appendix A: Coefficients estimation

Dpv has been defined as

Dpv = −D0

ρ2
w

ω n h
ρ0

R T
σ (T )

σr
(A-1)

where ω is the mass flow factor close to unity at
normal temperature [Gatmiri, Seyedi, Delage and
Fry (1997)], R = 4.615×106 is the ideal gas con-
stant and h, the relative humidity, is defined as
[Geraminegad and Saxena (1986)]

h =

[
1+

(
n Sr

0.04 ρ0

)−4.27
]−0.42

. (A-2)

D0 is the molecular diffusitivity of water in air and
is defined as [Kirsher and Rohnalter (1940)]

D0 =
244×10−7

pa

(
T

273

)2.3

. (A-3)

ρ0 is the mass density of saturated water vapor and
is defined as [Geraminegad and Saxena (1986)]

ρ0 =
1

194.4
exp

(
0.06374 T −0.0001634 T 2) .

(A-4)
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σr is the surface energy of soil water at reference
temperature while σ (T ) is at temperature T (Cel-
sius) and is defined as [Gatmiri, Seyedi, Delage
and Fry (1997)]

σ (T ) = −75.882+0.165T. (A-5)

DTv has been expressed as

DTv =
D0

ρw
ω n h Dl

dρ0

dT
(A-6)

in which Dl is the ratio of microscopic tempera-
ture gradient in pore space to macroscopic tem-
perature gradient as [Gatmiri, Seyedi, Delage and
Fry (1997)]

Dl =
1
3

[
2

1+B G
+

1
1+B (1−2G)

]
(A-7)

where B is bulk modulus defined as

B =
λa +λv

λw
−1 (A-8)

and the definition of G is

0.3333−0.325(1−Sr) (A-9)

for 0.09 < n Sr < n and

0.0033+11.11

(
0.33−0.325

(n−0.09)
n

)
n Sr

(A-10)

for 0 < n Sr < 0.09.

λv or vapor thermal conductivity is given as

λv = D0ω h h f a
dρ0

dT
. (A-11)

KTw has been introduced as [Gatmiri, Seyedi, De-
lage and Fry (1997)]

KTw = Kw

(
νr

νT

)
p̂w − p̂a

γwσr

dσ (T )
dT

(A-12)

in which p̂a and p̂w are the mean values of air and
water pressures over the computational domain.
νr is the dynamic viscosity of water at a reference

temperature and νT is at temperature T defined as
[White (1999)]

νT =
1.788×10−3

ρ
· exp

(−1.704−5.306 ξ +7.003 ξ 2) (A-13)

in which

ξ =
273

T +273
,

ρ = 1000−0.0178 |T −4|1.7 .

(A-14)

Appendix B: F2
i j coefficients

F2
11 = −(c11 +c12)

(
c23 (c32c41 −c31c42)

+c22 (c31c43 −c33c41)+c21 (c33c42 −c32c43)
)

F2
12 = c11

(
c23 (c32c41 −c31c42)

+c22 (c31c43 −c33c41)+c21 (c33c42 −c32c43)
)

F2
13 = c12

(
c15 (c32c41 −c31c42)

+c14 (c31c43 −c33c41)+c13 (c33c42 −c32c43)
)

F2
14 = c12

(
c15 (c21c42 −c22c41)

+c14 (c23c41 −c21c43)+c13 (c22c43 −c23c42)
)

F2
15 = c12

(
c15 (c22c31 −c21c32)

+c14 (c21c33−c23c31)+c13 (c23c32 −c22c33)
)

κ = −c12 (c11 +c12)

F2
21 = κ (c33c42 −c32c43) ,

F2
22 = κ (c22c43 −c23c42) ,

F2
23 = κ (c23c32 −c22c33) ,

F2
31 = κ (c31c43 −c33c41) ,

F2
32 = κ (c23c41 −c21c43) ,

F2
33 = κ (c21c33 −c23c31) ,

F2
41 = κ (c32c41 −c31c42) ,

F2
42 = κ (c21c42 −c22c41) ,

F2
43 = κ (c22c31 −c21c32) .

(B-1)




