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triangulation For Fracture Path Prediction Simulations In Nonlinear

Elastic-Plastic Materials
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Abstract: First, for growing cracks in elastic-
plastic materials, an incremental variational prin-
ciple is developed to satisfy the boundary condi-
tions near newly created crack surfaces. Then us-
ing this variational principle, a moving finite ele-
ment method is formulated and developed, based
on the Delaunay automatic triangulation. Further-
more, theoretical backgrounds on numerical pre-
diction for fracture path of curving crack using
T* integral are explained. Using the automatic
moving finite element method, fracture-path pre-
diction simulations are successfully carried out.
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1 Introduction

Numerical prediction of fracture path is an ex-
tremely important research subject not only for
academic interest but also for the establishment
of a safety design methodology that prevents
catastrophic overall failures of structures. How-
ever, numerical fracture-path predictions of non-
linear fracture phenomena have not fully been
succeeded, due to various inherent difficulties.

In previous studies, for fracture path predictions
in elastic materials, we developed a moving finite
element method based on Delaunay automatic tri-
angulation. This made it possible to predict dy-
namic crack kinking and curving fracture paths
under impact loading. Furthermore, the moving
finite element method was extended by Nishioka,
Tchouikov and Fujimoto (2001) to dynamic crack
branching problems, and demonstrated excellent
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prediction of dynamic crack branching paths.

In this study, to establish a simulation method for
complex crack propagation in nonlinear materials,
first, we derive an incremental variational princi-
ple to satisfy the boundary conditions near newly
created crack surfaces. Using this variational
principle, we formulate a moving finite element
equation. Then, based on this variational prin-
ciple and Delaunay automatic triangulation tech-
nique proposed by Sloan and Houlsby (1984) and
Taniguchi (1992), we develop a moving finite ele-
ment method based on Delaunay automatic mesh
generation.

In this study, the authors used the T* integral de-
rived by Atluri, Nishioka and Nakagaki (1984) to
numerical prediction for fracture path of a curv-
ing crack in a nonlinear material. Thus, the theo-
retical backgrounds on numerical prediction us-
ing the T* integral for fracture path of curving
crack are presented. To demonstrate the appli-
cability of the present methodology, we carried
out the elastic-plastic fracture path prediction for
a curving crack under a mixed-mode condition.
The pertinent results of this numerical prediction
are also presented.

The applicability of the T* integral has been
studied by several researchers (Okada and
Atluri(1999), Kobayashi and Atluri(1998), Okada
and Atluri(1997), Kobayashi and Atluri(2001),
Brust, Nishioka, Atluri and Nakagaki(1985),
Nishioka(2005), Fujimoto and Nishioka(2005)).

2 Moving Finite Element Method Based On
Delaunay Automatic Mesh Generation

To simulate crack propagation by finite element
method two different concepts of computational
modeling can be considered, i.e. (i) the station-
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ary element procedure (or fixed element proce-
dure), and (ii) the moving element procedure, as
reviewed by Nishioka and Atluri(1986), and Nish-
ioka (1994, 1997).

For elastic-plastic crack propagation problem, the
fixed finite element procedure has the following
severe disadvantages:

(1) The boundary conditions near propagating
crack tip cannot be satisfied exactly.

(2) The fixed mesh pattern may not fit with actual
fracture paths.

To overcome the aforementioned difficulties,
Nishioka and coworkers have developed various
types of moving finite element method.

Recently the concept of moving finite element
method was extended by Nishioka, Tokudome
and Kinoshita (2001) to dynamically curving
and kinking fracture problems using the modi-
fied Delaunay automatic triangulation proposed
by Taniguchi (1992).

In this study, we further extend the moving fi-
nite element method based on Delaunay auto-
matic triangulation to elastic-plastic crack prop-
agation problem.

Generation phase simulation of dynamic crack bi-
furcation phenomenon using moving finite ele-
ment method based on Delaunay automatic trian-
gulation was successfully achieved by Nishioka,
Furutsuka, Tchouikov and Fujimoto(2002).

2.1 Modified Delaunay automatic triangula-
tion

In the modified Delaunay triangulation, only ex-
terior and interior boundary points and specified
interior points (if they are necessary) are required
for automatic mesh generation.

Let us consider to generating mesh for a cracked
body whose initial crack opening is very small.
Points on boundaries are placed at first. At this
time, to distinguish the upper and lower crack sur-
faces (see Fig.1(a)), the coordinates of the upper
and lower crack surfaces are shifted by infinitesi-
mally small distances ±ε toward the perpendicu-
lar direction to the crack surfaces. Thus, the crack

is opened by 2ε . Due to the stress singularity
at the crack tip, the specified interior points are
placed around the crack tip also (Fig.1 (b)). Then
the mesh pattern is automatically generated using
exterior boundary points and the specified interior
points(Fig.1 (c)).

Figure 1: An example of mesh generation

2.2 Automatic mesh generation for propagat-
ing crack

Nishioka and coworkers have developed various
types of moving finite element procedure. These
are reviewed and summarized by Nishioka and
Atluri (1986) and Nishioka(1994, 1997). In this
study, the concept of the moving finite element
method is extended to complex crack propagation
problems using the modified Delaunay automatic
triangulation.

In the moving finite element method based on De-
launay automatic triangulation, a crack advanced
as shown Fig. 2. The group of the specified inte-
rior points around the propagating crack tip trans-
lates in each step for which crack growth occurs.
In each step, the previous crack tip point breaks
into two nodal points. The crack tip always re-
mains at the center of the group of the moving
elements throughout the analysis even for com-
plicated crack propagation. At each step, the inte-
rior region between the specified nodes around the
crack tip and specified boundary nodes, is auto-
matically broken into triangular elements by using
the modified Delaunay automatic triangulation.
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Figure 2: Moving finite element procedures for a
propagating crack

3 Variatinal Principle for a propagating
crack in a Nonlinear Material

Let us consider a propagating crack in an elastic-
plastic material. Here we use the incremental in-
finitesimal deformation theory. In the moving fi-
nite element procedure, the mesh pattern near the
propagating crack tip translates in each time step
as illustrated in Fig. 2. After the mesh translation,
the moving finite element method requires the
mapping of solution fields in the previous mesh
onto those in the present mesh. To satisfy the gov-
erning equations and the boundary conditions in
the present mesh at time t=t0 + Δt, a new incre-
mental variational principle is derived as follows:

∫
V

(Δσi jδεi j +ρΔüiδui)dV −
∫

V
Δ fiδuidV

−
∫

St

ΔtiδuidS

= +
∫

v
f t0
i δuidV +

∫
t
t0
i

δuidS

−
∫

St

(σ t0
i j δεi j + ρ üt0

i )dV (1)

Where the superscript t0 denotes a quantity of the
previous step (t = t0) in the present mesh pattern
at time t. The new crack surfaces are created by
the crack propagation during time increment Δt.
The finite element solution field obtained from the
new variational principle satisfies the following
equilibrium equation and the mechanical bound-
ary condition including the crack surfaces at time

t = t0 +Δt:

Δσi j, j +Δ fi −ρΔüi = −(σ t0
i j, j + f t0

i −ρ üt0
i )

Δσi jn j = tt0
i +Δti −σ t0

i j n j

(2)

The finite element method was developed based
on Eq. (1)

4 The T ∗ integral

The global components the T* integral T ∗
k can be

expressed as

T ∗
k =

∫
Γ+Γc

[(W +K)nk − tiui,k]dS

+
∫

VΓ−Vε

[
ρ üiui,k −ρ u̇iu̇i,k +σi jεi j,k −W,k

]
dV

(3)

Where W and K are the stress working and kinetic
energy densities, respectively. Integral paths are
shown Fig. 3.

Figure 3: Integral Paths

Γ is a far-field contour that encloses the crack tip
and envelops a volume VΓ; Γε is a near-field con-
tour arbitrarily close to the propagating crack tip
and envelops a small volume Vε ; and Γc is the
crack surface enclosed by Γ. Physically, the near-
tip region Vε can be considered as the process
zone in which micro-processes associated with
fracture occur.

For elastic material, the T* integral reduces to the
J’ integral derive by Nishioka and Atluri(1983)
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for elasto-dynamic cases. Moreover the T* inte-
gral reduces to the J integral derived by Budiansky
and Rice (1973) for elastostaric cases.

4.1 Physical Meaning of the Components of
the T ∗ integral

The crack-axis components of the T* integral T ∗0
l

can be easily obtained by the coordinate transfor-
mation:

T ∗0
l = αlk(θ0)T ∗

k (4)

Where θ0 is the crack direction. The tangential
crack-axis component T ∗0

1 has the meaning of the
energy flow rate to the process zone for a prop-
agating crack in an elastic-plastic material under
a steady-state condition. The vertical crack-axis
component T ∗0

2 can be considered as a measure
of mixed-mode state of the crack tip as reviewed
in the paper [Nishioka and Fujimoto (2000)].

4.2 Vertical Crack-Axis Components of the T ∗

Integral

For an elasto-dynamically propagating crack in
homogeneous material, the crack-axis compo-
nents of the T* integral cat be related with stress
intensity factors as derived by Atluri, Nishioka
and Nakagaki (1984). Thus in this case, we have

T ∗0
2 = J

′0
2 = −AIV (C)

μ
KIKII (5)

where AIV (C) is function of the crack velocity
C. For a static crack (C = 0), this function is
AIV (0) = (κ +1)/4.

Contrary to tangential crack-axis component of
the T ∗ integral T ∗0

1, the vertical crack-axis com-
ponent to the crack direction, i.e., T ∗0

2 is zero un-
der pure mode I and II conditions as can be seen
by Eq.(5). for a fixed value of KI , The absolute
value of T ∗0

2 increases for increasing KII value.
Moreover, the sign of T ∗0

2 can be used to judge the
direction of inplane shearing mode, For instance,
T ∗0

2 is negative if KII is positive, and vice versa.
Thus the vertical crack-axis components of T ∗ can
be used as a measure that expresses the magnitude
of the mixed-mode state.

Similarly with the local symmetry criterion (KII =
0 criterion), for curving crack propagation in a

homogeneous material, T ∗0
2 = 0 criterion can be

postulated.

5 Mixed-Phase Simulation With Fracture-
Path Prediction Mode

For non-self-similar fracture such as curving
crack growth, three types of numerical simula-
tion can be considered, as proposed by Nishioka
(1997). First, the generation phase simulation can
be conducted similarly with the generation phase
simulation proposed by Kanninen (1978) for self-
similar dynamic fracture, except additionally us-
ing experimental data on the curved fracture-path
history. (see Fig.4 (i))

Figure 4: Types of fracture simulation

On the other hand, in the application phase simu-
lation for curving crack growth, two criteria must
be postulated or predetermined as shown Fig. 4
(ii). One is the crack-propagation criterion, and
the other is the propagation-direction criterion.
(see Fig.4 (ii))

To verify only the propagation-direction criterion,
Nishioka (1997) has proposed “mixed-phase sim-
ulation” as depicted in Fig. 4 (iii).

In this study, to verify local symmetry criterion
for curving crack propagation in a homogeneous
elastic-plastic material (T ∗0

2 = 0 criterion), we
carried out the elastic-plastic fracture path predic-
tion for a curving crack under mixed-mode condi-
tion using crack-propagation history obtained by
experiments.
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6 Experiments Before Fracture-Path Predic-
tion Simulation

Kobayashi and coworkers (1999) carried out
mixed mode elastic-plastic stable crack growth
experiments.

Specimen geometry that they used is shown in
Fig. 5, and its material is 2024-T3 Al alloy.
Figure 6 shows constitutive relation for 2024-T3

Figure 5: Specimen geometry

Al alloy. In this figure, experimental data pro-
viding by Kobayashi and coworkers (1999) are
indicated by circle symbol. Based on these ex-
perimental data, the authors evaluate swift type
constitutive equation as shown in this figure.
Relation between displacement Uy and shear load

Figure 6: Constitutive Relation for 2024-T3 Al
alloy

Px and relation between displacement Uy and
crack propagation length Δa are shown in Fig.

7 and Fig. 8 obtained by experiments. Fit-
ted curves of experimental data used in after-
mentioned fracture-path prediction simulation are
shown in these figures also.

Figure 7: Relation between Displacement Uy and
Shear Load Px

Figure 8: Relation between Displacement Uy and
Crack Propagation Length Δa

7 Fracture-Path Prediction Simulation

In this study, we carried out fracture-path predic-
tion phase simulations using afore-mentioned ex-
perimental relations and local symmetry criterion
(T ∗0

2 = 0) as criterion for crack propagation direc-
tion prediction.

The simulated fracture-paths using a moving fi-
nite element method and local symmetry criterion
(T ∗0

2 = 0) are shown in Fig. 9. In this figure, the
magnification factor of displacement is ten.
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Figure 9: Mesh patterns on crack propagation progress

Figure 10 shows the distributions of equivalent
plastic strain pattern. Large plastic deformations
are seen around the crack-tip and the loading
point.

T ∗ integrals are plotted in Fig. 11 against various
integral paths. Excellent path independence can
be seen even for elastic-plastic boundaries.

The history of T ∗ components are shown in Fig.12
It is seen that T ∗0

2 integral is almost zero during
crack propagation. On the other hand, the T ∗0

1

integral is drastically reduces its value, and tends
to reach nearly constant after a certain amount of
crack extension.

In Fig. 13, predicted fracture path is com-
pared with experimentally obtained fracture-
paths. Since the reinforcing straps were placed on
the far right side of the specimen, the numerical
results can be compared with the reinforced spec-
imens up to X ∼ 6mm. Simulated fracture-path
agrees well with experimental results.
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Figure 10: Equivalent plastic strain pattern
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Figure 11: Independence of T ∗ integral
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Figure 12: Histories of components of T ∗ integral

8 Conclusions

In this study a moving finite element method of
elastic-plastic fracture was developed and numeri-
cal simulation for elastic-plastic fracture path pre-
diction was achieved.

Figure 13: Predicted fracture path and experimen-
tal fracture paths

Predicted fracture path using T ∗0
2 = 0 criterion un-

der mixed mode loading agrees with experimental
fracture path.

Therefore, the moving finite element method is
useful to estimate not only for elastic fracture
problem but also for elastic-plastic fracture prob-
lem.
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