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Spectral Element Approach for Inverse Models of 3D Layered Pavement
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Abstract: 3D spectral element method in the
article is presented to predict the pavement
layer modules using field measurement of Falling
Weight Deflectometer (FWD). To improve the
computational efficiency of the layer-condition
assessment, one type of spectral element is pro-
posed to develop the dynamic analysis of 3D
multi-layered system subjected to an impulsive
load. Each layer in structure is simulated as two-
noded layer spectral element or one-noded spec-
tral element in frequency domain. In order to
identify the parameters of layered structures, a
nonlinear optimization method called Powell hy-
brid algorithm is employed. The optimization
procedure is performed in frequency domain and
aims at minimizing the discrepancy of measured
and calculated transfer function. In the case of
the inverse calculation, it was verified that the
Powell’s algorithm had obtained stable and effi-
cient convergences at the angle frequencies rang-
ing from 10 Hz to 80 Hz. The new dynamic
method was applied in the Continuously Rein-
forced Concrete Pavement(CRCP) project which
has four layers. Compared with static method, it
proved that the inversed-analytical results of the
3D spectral element dynamic method is more ac-
curate and stable.

Keyword: 3D spectral element, Falling Weight
Deflectometer (FWD), Continuously Reinforced
Concrete Pavement (CRCP)

1 Introduction

Non-destructive dynamic testing is nowadays a
well-recognized method for evaluating the struc-
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tural capacity of pavements. Falling Weight De-
flectometer (FWD) is one type of commonly used
nondestructive tests. Most of computer programs
used today for the parameter identification are
based on the static analysis. In static analysis,
only the maximal values of measured deflections
are employed, which often leads to the incorrect
results of the strength of rigid pavement layers
and subgrade. However, when applying dynamic
analysis, the computational efficiency always be-
comes a big concern in the inverse calculation.
Dynamic Finite Element Method, usually an ef-
fective numerical method, can analyze compli-
cated models with different geometries and load-
ing conditions. However, due to its discrete char-
acteristics of element meshes, FEM is difficult to
be utilized in backcalculations. On the other hand,
the analytical dynamic method, though very effi-
cient, is usually cumbersome to treat complicated
geometries and boundary conditions. Therefore,
semi-analytical method is proposed for the for-
ward and inverse dynamic model of 3D layered
pavement structure.

Spectral element method developed by Doyle is
one class of semi-analytical method. The al-
gorithm describes waveguides in the element as
the superposition of incident waves and reflection
waves. Following this theory, Doyle (1997) ap-
plied spectral analysis mainly for the 1-D waveg-
uides, Rizzi (1992) focused the work on the re-
sponse of the wave propagation in 2-D layered
solids, and Al-Khoury (2001) utilized the spectral
element to analyze the dynamic impact of FWD
load pulses on pavements. However, previous
work only solved dynamic problems in the 2-D
or semi-infinite multi-layered system.

A new type of spectral element was developed
for three-dimensional layer system. Two types
of spectral elements, two-noded layer spectral
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element and one-noded throw-off spectral ele-
ment were presented by Wu (2006) to calculate
the models of three-layered pavement . In this
study, Powell hybrid nonlinear optimization is in-
troduced for the inverse algorithm and the objec-
tive function is constructed through the discrep-
ancy between theoretical and measured transfer
function. Backcalculation of identifying layer pa-
rameters is achieved by the minimized determina-
tion of the objective function. The inverse system
of the new dynamic method is applied in CRCP
pavement FWD measurement for the quality eval-
uation of pavement layers.

2 3D layer spectral element

3D layer spectral element is proposed for the
three-dimensional layered structure subjected to
FWD pulse load (Fig. 1). In the spectral analysis,
one layer of the structure is treated as one layer
spectral element. Two types of 3D spectral ele-
ments are developed for the layer structure, two-
noded layer spectral element (Fig. 2) and one-
noded throw-off spectral element (Fig. 3). In two-
noded elements, two nodes are put to the center of
upper surface and bottom surface; in one-noded
element, one node is set to the center of upper
surface. Generally, the last layer can be treated
as a one-noded throw-off element if its thickness
is large enough.

Figure 1: Structure of 3D layer pavement system

When homogeneous isotropic elastic solid with
constant elastic material properties subjected to
dynamic loads, there are two types of body waves:
dilatational (P) wave and shear (S) wave. By the

Figure 2: Two-noded layer element

Figure 3: One-noded throw-off element

method of the separation of variables, the poten-
tials are separated into three independent parts in-
cluding components x, y and z. The potentials be-
come

ϕ̃ = ϕ̃(z) · e−ikrx · e−ikmy

ψ̃ = ψ̃(z) · e−ikrx · e−ikmy
(1)

kr and km are independent variables defined as the
roots of x and y direction in plate respectively. kzp

and kzs are defined as wavenumbers of the P and
S waves. The following relationships hold:
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Here ωn is angle frequency. Cp and Cs are the
wave velocities of P and S waves.

2.1 Two-noded layer spectral element

In two-nodal layer spectral element, each node
has three degrees of freedom in x, y and z direc-
tions, respectively. Due to the limited depth of z
direction in a layer element, the vertical response
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of wave at any node can be considered as the su-
perposition of the incident wave and the reflection
wave. Applying the superposition method, the po-
tentials ϕ̃(z) and ψ̃(z) in the two-noded layer el-
ement is the summation of the potentials in the
positive z direction and those in the negative z di-
rection, which is expressed as follows:

ϕ̃(z) = A · e−ikzpz +B · e−ikzp(h−z)

ψ̃(z) = C · e−ikzsz +D · e−ikzs(h−z)
(3)

In these two equations, the first terms in the brack-
ets represent the incident wave propagating from
the upper surface at z = 0 and the second terms
represent the reflected wave propagating from the
boundary at z = h, where h is the thickness of the
layer element.

When Substituting the potential equations into the
displacement equations and taking the conditions
of z = 0 at node 1 and z = h at node 2 into the
equations, the relations between the nodal dis-
placement vector u and the coefficient vector a are
expressed in the matrix style as follows:

ũ = Ñ · ã (4)

Inversing the Eq. 4, it becomes:

ã =
M̃
Δ
· ũ (5)

where the square matrix is defined as Ñ−1 = M̃/Δ.
Δ is the determinant of the matrix Ñ. Substituting
the potential equations into the stress equations,
the stress matrix becomes:

T̃ = μ · P̃ · ã = μ · P̃ · M̃
Δ

· ũ = (μ/Δ) · k̃ · ũ
here k̃ = P̃ · M̃

(6)

k̃, the matrix relating nodal force to nodal dis-
placement, is analogues to the dynamic ele-
ment stiffness in the conventional finite element
method.

2.2 One-noded throw-off spectral element

The one-noded throw-off spectral element (Fig.
3) is a semi-infinite element. It is assumed that
the wave only propagates in the negative z direc-
tion. Due to the absence of reflected wave in the

throw-off element, the potentials of dilatational
and shear waves can be simplified by equalizing
the coefficients B and D zero.

ϕ̃(z) = A · e−ikzpz

ψ̃(z) = C · e−ikzsz
(7)

In the similar way as the two-noded layer element,
a dynamic stiffness matrix can be formulated for
the one-noded spectral element.

The behavior associated with Rayleigh waves is
only observed after the coefficients have been
determined by such equations as Eq.(5) (Rizzi,
1992). It is obvious that the single mode in the
spectral response does in fact superposed to give
the Rayleigh surface wave. The other components
are necessary for the complete solution of the lo-
cation near the impact site.

3 Assemblage of the global stiffness matrix
and spectral structure

Under the condition that the displacements are
compatible between two elements, the global
stiffness matrix is assembled by some layer ele-
ments and one throw-off element. The rule of as-
semblage is similar to the conventional finite el-
ement method. The global equation is expressed
as:[
K̃(z,kr,km,ωn)

] ·Ũ = P̃ (8)[
K̃(z,kr,km,ωn)

]
is the global stiffness matrix. Ũ

is the global displacement vector, and P̃ is the
global force vector. These two vectors in fre-
quency domain can be evaluated by the displace-
ment and stress boundary conditions. If P̃ only
includes the vertical displacement at the first node
in the whole layer structure, P̃ will become a unit
vector. Then the in-time displacement becomes:

ui(x,y, t) = ∑
n

∑
m

∑
r

A · G̃ · F̃rm · cos(krx) · cos(kmy)

· F̃n · eiωnt (9)

in which G̃ is the inverse matrix of K̃, A is the
area of the applied load, F̃rm is the coefficient of
the spatial distribution of the applied load, and F̃n

is the time variation coefficient that is determined
by the theory of Fast Fourier Transforms (FFT).
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4 Determination of F̃rm

A pulse load can be separated into two indepen-
dent functions, then

P [(x,y), t] = f (x,y) ·F(t) (10)

f (x,y) is the spatial distribution function of the
cubic shape load and F(t) is the time variation
function. For the cylindrical shape load, an equiv-
alent cubic shape load can be assumed as cubic
shape load with rectangular 2b×2b amplitude q,
which is

f (x,y) =

{
q for −b ≤ x ≤ b,−b ≤ y ≤ b

0 another

(11)

Then, the method of double Fourier transforms is
utilized to determinate the spatial distribution co-
efficient F̃rm.

f (x,y) = f (x) · f (y)
= ∑

r
∑
m

F̃rm cos(krx)cos(kmy) (12)

5 Parameter identification of the bounded
layer system

In the normal dynamic testing, a testing pulse is
applied on the center of surface and the vertical
displacements are measured from a series of sen-
sors (S1, S2, . . . . . ., Sn) located at center and some
distances away from the loading area. (Fig. 4)

Figure 4: Measured locations of Geophone

Inverse calculation system should select one of
optimization methods as an algorithm for param-
eter identification. Since the spectral element for-
ward model is processed by a series of nonlinear

equations mentioned above, the parameter identi-
fication system should utilize nonlinear minimiza-
tion techniques. Modified Powell hybrid algo-
rithm is proposed to solve nonlinear equations in
non-constrained optimization system.

6 Modified Powell hybrid algorithm

The algorithm applies a hybrid between Quasi-
Newton and Steepest Decent iteration techniques
conforming to a step size criterion. The step size
parameter δk, the boundary of region of trust, is
the factor to describe the type of iteration. In Pow-
ell method the search direction ps is first calcu-
lated by the Quasi-Newton iteration:

J (xk)qk = −ps (xk)
qk = −H (xk) ps (xk)
‖qk‖ ≤ δk

(13)

Here ps(xk) is the objective function to be min-
imized, J (xk) is the finite difference approxima-
tion of the Jacobian at the point xk, and H (xk) is
its inverse. If the calculated point satisfies a cer-
tain criterion, the steepest descent will be used to
calculate the next one. If the criterion is failed,
the new search direction will be a hybrid between
the Quasi-Newton and the steepest descent.

7 Inverse calculation with nonlinear opti-
mization

In the inverse calculation, inputting a proper fixed
angle frequency (ωn), the program starts with
some initial guess of the unknown parameters
such as layer E moduli. Parameter identification
is performed by means of iterative comparison of
the measured versus calculated results. The theo-
retical response results is derived from

[ũ1 ũ2 . . . ũi] =
[
G̃11 G̃21 . . . G̃i1

] · P̃1 (14)

[ũ1 ũ2 . . . ũi] is the nodal vertical displacement
vector in frequency domain, and P̃1 is a unit vec-
tor. Then vertical displacements in frequency do-
main at nodes and the sensors’ location are calcu-
lated as:
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ũs
i (ωn) =

∞

∑
m=0

∞

∑
r=0

G̃(z,kr,km,ωn) · F̃rm

· cos(krx(Sn)) (15)

x(S j) is the distances from sensors to the center.
Hence the objective function is expressed as the
discrepancy between the measured and theoretical
transfer function at the different location of sen-
sors (Figure. 4). Minimizing procession gives
Min:

ps (ωn) =

∣∣∣∣∣
∞

∑
m=0

∞

∑
r=0

G̃11 · F̃rm · cos(krx(S j))

∣∣∣∣∣
theo

−|ũs
1 (ωn)|meas (16)

The first absolute value given in the function rep-
resents the theoretical transfer function, while the
second is the measured transfer function. If the
difference is more than some selected minimum
criterion, the iteration will continue until mini-
mum criterion is satisfied. Then the parameter re-
sults are obtained by outputting. The algorithm of
the program is as follows:

1 Program 3DSEP_Back calculation

2 Input ωn, x0

3 Use FFT to transform F (t) and us(t) to F̃ (ω)
and ũs(ω)

4 Set x = x0 , ũs
1 (ωn)theo = 0

5 m_Loop Do m=1, M

6 r_Loop Do r=1, R

7 Form element stiffness matrices and global
stiffness matrix

8 Compute the theoretical transfer functions:

ũs
1 (ωn)theo = ũs

1 (ωn)theo +G̃11 · F̃rm ·cos(krx(S j))

9 Enddo r_Loop

10 Enddo m_Loop

11 Calculate the objective function:

ps (x) = |ũs
1 (ωn)|theo −|ũs

1 (ωn)|meas

12 Start minimization

13 If (ps (x) > ε)

14 Determine new guess for x

15 Go to m_Loop

16 Endif

17 Output

18 End program

8 Numerical Verification of inverse analysis

The typical FWD field measurement is used as
the input data for inverse calculation. Figure 5
shows the typical FWD datum at measured point
of a pavement structure. The structure consists
of an asphalt layer (E = 2500 MPa and h = 150
mm), a subbase layer (E = 300 MPa and h =350
mm) and subgrade layer (E = 100 MPa and h = ∞).
Fig. 5(a) shows the measured load pulse, and Fig.
5(b) shows the measured vertical deflection of the
pavement structure at the sensors from r = 0 to r
= 1800. The minimization algorithm was used for
identifying the materials’ E modules of the three
layers. The initial guess for the modules were: as-
phalt’s E = 1000 MPa, subbase’s E = 50 MPa and
subgrade’s E = 30 MPa, which represented about
30% of the actual values.

Table 1: Calculated parameters following various
frequencies

Frequency Asphalt Subbase Subgrade Error
(Hz) E(Mpa) E(Mpa) E(Mpa) (%)
14.01 2504 301 83 1.41
30.02 2500 306 80 0.67
68.04 2503 303 83 1.62
80.05 2500 312 89 5.08

The inverse calculation was processed at fre-
quency ranging from 2 to 80Hz shown in Tab.
1. The convergence to minimum was less than
45 iterations. The longest iterative process only
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(a)

(b)

Figure 5: Typical FWD measurement data (a)load
pulse (b) Measured surface vertical deflection

costs about 10 seconds. In order to avoid numer-
ical ambiguities, it is recommended that the in-
verse calculation be performed by more than one
frequency.

9 Backcalculation in CRCP testing pavement
FWD measurement

Continuously Reinforced Concrete Pavement
(CRCP) is a Portland cement concrete (PCC)
pavement that has continuous longitudinal steel
reinforcement and no intermediate transverse ex-
pansion or contraction joints. The pavement is al-
lowed to crack in a random transverse cracking
pattern and the cracks are held tightly together
by the continuous steel reinforcement. In this
project, the measured pavement have four layers,
including Asphalt concrete, CRCP plate, semi-
rigid subbase and soil subgrade. The CRCP pave-
ment has two types of structures—Testing road 1
and Testing road 2. The cross-section of CRCP
testing roads is shown in Fig.6, and the structure
of them are drawn in Fig.7. In the structure of
Testing road 1, the first two layers—SMA and

CDAC can be combined into one Asphalt layer
due to the similar E modules. Corresponding to
the structure of CRCP pavement, a flexible pave-
ment is designed for the comparison. The geo-
metrical and physical characteristics of the there
kinds of structures are displayed in Tab. 2.

Backcalculations are performed in four layers of
the structure, including AC layer, CRCP layer,
semi-rigid subbase and soil subgrade. In Tab. 2,
the thickness and Poisson’s ratio of pavement are
input as given parameters, and E module of every
layer is calculated as outputting. As a compari-
son, the dynamic and static inverse methods are
utilized for E module’s backcalculation. Here, the
dynamic inverse system applies 3D spectral ele-
ment inverse dynamic algorithm, while the static
inverse system is based on a typical static model
subjected to a uniform load.

The backcalculation results of every layer’s E
modules are shown from Fig. 8 to Fig.11. The
transverse axis of each figure is the number of
measured points and the vertical axis expresses
the inversed results of E modules. In the first layer
(Fig. 8), the inversed E modules calculated by the
dynamic method were more stable and close to
the actual value than those by the static method.
But the deference of the dynamic and static re-
sults was not very large. The static method still
can give the relatively correct inversed-analytical
results of AC layer. However, from Fig. 9 to
Fig. 10, it was observed that the dynamic results
were close to the measured E modules, whereas
the static inverse resolution are much higher than
accurate variables. It proved that the results of the
static backcalculation were inaccurate in CRCP
layer and semi-rigid subbase. The reason of this
phenomena maybe is that the strength of those
two layers are much larger than the first layer and
the vagarious results of the static method often ap-
pear in relatively rigid layers. In the soil layer
(Fig. 11), even the results of the dynamic method
are not very stable. That means, for the limitation
of FWD pulse’s energy, the responsive signals re-
ceived by FWD are not enough to achieve precise
inversed results of the last layer in this project.
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Figure 6: The cross-section of CPCP testing roads

Figure 7: The structure of testing road 1 and testing road 2

Table 2: The geometrical and physical characteristics of the there structures

Structure Thickness (cm) E (MPa) Poisson’s ratio

Test 1

AC layer 10 2000 0.35
CRCP layer 26 30000 0.167

Semi-rigid subbase 20 5000 0.20
Soil subgrade ∞ 500 0.45

Test 2

AC layer 6 2000 0.35
CRCP layer 24 30000 0.167

Semi-rigid subbase 26 5000 0.20
Soil subgrade ∞ 500 0.45

Flexible pavement

AC layer 25 2000 0.35
Crushed rock layer 15 500 0.40
Semi-rigid subbase 16 5000 0.20

Soil subgrade ∞ 500 0.45

10 Conclusions

The three-dimensional layer spectral element is
developed in this study for the analysis of multi-
layered pavement system subjected to dynamic
loading. Based on the spectral analysis, one el-
ement is adequate to describe one layer, so the
number of the element meshes is equal to the
number of the layers. The system is solved by
the multi-summation over the frequencies and the

wavenumbers, which alleviates the inconvenience
of the numerical calculation of infinite integra-
tion. The transformation from time to frequency
domain is achieved by using FFT (Fast Fourier
transforms), and procedures from frequency to
time domain are done by means of IFFT (Inverse
FFT). Hybrid Powell optimization is applied for
the minimized determination of the discrepancy
between theoretical and measured transfer func-
tion. The accuracy and efficiency were verified
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Figure 8: AC layer in 35◦ calculated by dynamic and static method

Figure 9: CRCP layer calculated by dynamic and static method
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Figure 10: Semi-rigid subbase calculated by dynamic and static method

Figure 11: Soil subgrade calculated by dynamic and static method
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by numerical examples both in the analytical for-
ward and inverse calculations. In this article, the
new dynamic method is utilized in CRCP pave-
ment project. Through the backcalculation of the
structural layers, it proved that the 3D spectral el-
ement method has great priority in evaluating rel-
atively rigid pavement layers.
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