
Copyright c© 2007 Tech Science Press CMES, vol.17, no.2, pp.115-134, 2007

A New Quasi-Unsymmetric Sparse Linear Systems Solver for Meshless
Local Petrov-Galerkin Method (MLPG)

Weiran Yuan1, Pu Chen1,2 and Kaishin Liu1,3

Abstract: In this paper we propose a direct so-
lution method for the quasi-unsymmetric sparse
matrix (QUSM) arising in the Meshless Local
Petrov-Galerkin method (MLPG). QUSM, which
is conventionally treated as a general unsymmet-
ric matrix, is unsymmetric in its numerical val-
ues, but nearly symmetric in its nonzero distri-
bution of upper and lower triangular portions.
MLPG employs trial and test functions in differ-
ent functional spaces in the local domain weak
form of governing equations. Consequently the
stiffness matrix of the resultant linear system is
a QUSM. The new solver for QUSM conducts
a two-level unrolling technique for LDU factor-
ization method and can be implemented without
great effort by porting a symmetric matrix fac-
torization code. Besides, a blocked out-of-core
strategy is also developed to expand the solution
scale. The proposed approach convincingly in-
creases the efficiency of MLPG, as we demon-
strate.

keywords: MLPG; sparse matrix; linear sys-
tem of equations; high performance computation;
meshless method

1 Introduction

Recently, meshless methods have attracted more
and more attentions due to their flexibility in
solving engineering problems, especially with
reference to discontinuities or moving bound-
aries. Among these methods, Meshless Local
Petrov-Galerkin method (MLPG) [Atluri and Zhu
(1998)] has been considered as a general frame-

1 State Key Laboratory for Turbulence and Complex Sys-
tems and College of Engineering, Peking University, Bei-
jing 100871, P.R. China

2 Corresponding author. E-mail: chenpu@pku.edu.cn
3 Engineering Research Institute, Peking University, Bei-

jing 100871, P.R. China

work or a general basis for the other meshless
methods [Atluri and Shen (2005)]. MLPG in-
volves not only a meshless interpolation for trial
functions, but also a meshless integration of the
local weak form, i.e., it does not need any back-
ground element or mesh. MLPG provides the
flexibility in choosing the trial and test func-
tions, as well as the sizes and shapes of lo-
cal sub-domains, and has been proved to be a
truly meshless method [Atluri (2004)]. There-
fore MLPG is more flexible and easier to han-
dle the problems from which the conventional Fi-
nite Elements (FE) or the other meshless meth-
ods suffer. It has found a wide range of ap-
plications in analyzing elasto-statics [Atluri and
Zhu (2000), Han and Atluri (2004a)], elasto-
dynamics [Batra and Ching (2002), Han and
Atluri (2004b)], convection-diffusion problem
[Lin and Atluri (2000)], thermoelasticity [Sladek,
Sladek and Atluri (2001), Sladek, Sladek, Zhang
and Tan (2006)], beam problems [Raju and
Phillips (2003)], plate problems [Gu and Liu
(2001), Long and Atluri (2002), Qian, Batra and
Chen (2003)], bending problems of shear de-
formable shallow shells described by the Reiss-
ner theory [Sladek, Sladek, Wen and Aliabadi
(2006)], static and dynamic fracture mechan-
ics [Ching and Batra (2001), Gao, Liu and Liu
(2006)], strain gradient theory [Tang, Shen and
Atluri (2003)] and Q-tensor equations of ne-
matostatics [Pecher, Elston and Raynes (2006)].
Vavourakis, Sellountos and Polyzos (2006) com-
pared the accuracy and stability of five different
elasto-static MLPG type formulations.

MLPG mixed finite volume method (MFVM) was
proposed by Atluri, Han and Rajendran (2004) to
simplify and speed up the meshless implementa-
tion for elastostatic problems [Atluri, Han and Ra-
jendran (2004), Han and Atluri (2004a)], elasto-

116 Copyright c© 2007 Tech Science Press CMES, vol.17, no.2, pp.115-134, 2007

dynamic problems [Han and Atluri (2004b)],
nonlinear problems [Han, Rajendran and Atluri
(2005)], and dynamic problems with large de-
formation and rotation [Han, Liu, Rajendran and
Atluri (2006); Liu, Han and Atluri (2006b)].
Liu, Han and Atluri (2006a) proposed a MLPG
mixed collocation method, which results in a sta-
ble convergence rate, while being much more ef-
ficient than the MLPG finite volume method. An
MLPG mixed finite difference method was pre-
sented by Atluri, Liu and Han (2006b). The
three MLPG mixed methods use the mixed ap-
proach to interpolate the variables of different
orders independently, through the MLS approx-
imation. They demonstrate the flexibility of the
MLPG approach, as a general framework, in de-
veloping various meshless methods.

In any implementation the final result of MLPG
is obtained through solution of a resultant linear
system of equations. The coefficient matrix of
the linear system or simply the stiffness matrix
is sparse and does have an almost symmetric dis-
tribution of nonzeros. We call this kind of ma-
trix as quasi-unsymmetric sparse matrix (QUSM),
which has a restriction of symmetric nonzero lo-
cations compared to general unsymmetric matrix.
For simplicity the system stiffness matrix which
has positive principal minors is considered in this
paper. In addition, we deduce in section 3 that the
system stiffness matrix of MLPG is a QUSM. The
infrequent unsymmetric nonzero locations arising
in MLPG can be treated as symmetric by filling
zeros before computation. In fact QUSM provides
most of the advantages of symmetric matrix in the
solution process.

Compared with meshless global weak form meth-
ods, such as Element Free Galerkin method
(EFG) [Belytschko, Lu, and Gu (1994)], the un-
symmetric linear system of equations of MLPG
largely increases the computational cost. There-
fore a high efficient solution procedure for the
resultant linear system plays an important role
in the application phase, as it is crucial for the
solution scale and efficiency of MLPG. Since
1990’s the commercial FEA packages have been
turning to sparse storage schemes and gained a
speedup of more than 10 times [Nguyen and

Peyton (1993); Nguyen, Qin, Chang, and Tong
(1997); Damhaug, Reid, and Bergseth (1999);
Chen, Runesha, Nguyen, Tong and Chang (2000);
Runesha and Nguyen (2000); Chen, Zheng, Sun,
and Yuan (2003)]. The sparse scheme only needs
to allocate memory for the non-zeros. The matrix
operation is under the form of indexing and only
non-zeros involve in computation. It is quite safe
to conclude that solvers based on various sparse
storage schemes are, in terms of solution time,
memory requirement and scale of the problems,
much more efficient than conventional dense or
bandwidth schemes.

General sparse solvers may be mainly divided into
two categories: symmetric solver, e.g. MA27 and
MA47 [Duff and Reid (1983)], and unsymmetric
solver, e.g. SuperLU [Li (2005)]. The symmet-
ric solvers do not suit for MLPG unless we take
the trial function as the test function. However,
the trial function and test function are generally
taken from different space in MLPG method, so
the stiffness matrix is QUSM. Although a QUSM
can be treated as general unsymmetric matrix and
solved by general unsymmetric solvers such as
SuperLU, the solver proposed in this paper takes
advantage of the properties of QUSM arising in
MLPG and deliver significantly higher efficiency.

1.1 Contributions

The objective of this paper is to propose a new di-
rect solver for QUSM arising in MLPG. The new
solver provides higher efficiency for LDU factor-
ization on benchmark tests, so it speeds up the
solution processes for linear system of equations.
This solver is accelerated by two-level unrolling
techniques that employ the concept of master
equations and searches for appropriate depths of
unrolling during factorization. The triangular fac-
torization of global stiffness matrix is the most
important phase of solving sparse linear system
of equations. Therefore we focus on the strategy
of triangular factorization in this paper.

Building upon previous works of Runesha and
Nguyen (2000) and Chen, Zheng, Sun, and Yuan
(2003), this paper makes the following contribu-
tions:

A New Quasi-Unsymmetric Sparse Linear Systems Solver for MLPG 117

• It derives that MLPG produces a linear sys-
tem of equations with QSUM.

• It reviews the direct methods of the sparse
matrix factorization with unrolling tech-
niques [Nguyen and Peyton (1993); Nguyen,
Qin, Chang, and Tong (1997)] for high per-
formance implementation.

• It integrates LDU factorization for QUSM
and existing symmetric factorization meth-
ods.

• It extends the unrolling techniques to a new
two level unrolling that employs the con-
cept of master equations and dynamically
searches for an appropriate depths of un-
rolling. It speeds up the solution process by
providing higher MFLOPS for LDU factor-
ization.

• It demonstrates how the block out-of-core
strategy for symmetric matrix in Chen,
Zheng, Sun, and Yuan (2003) is improved to
accelerate our LDU factorization for QUSM
on limited memory machines.

• It reports an excellent performance in terms
of time consuming in numerical experiments
attained on non-parallel PC machine and dis-
cusses the advantages of the proposed meth-
ods.

1.2 Relation to previous works

Numerous direct methods have been proposed to
solve sparse linear systems efficiently. We will
discuss a few recent publications that describe
those techniques similar to ours.

• Compared with the famous general sparse
solver SuperLU [Li (2005)], the proposed
solver is only restricted on QUSM. The gen-
eral unsymmetric solvers, e.g. SuperLU, do
not take account of specialty of QUSM and
do not contain an out-of-core strategy.

• The out-of-core strategy like one in Chen,
Zheng, Sun, and Yuan (2003) is improved
and incorporated with our solver to release

the scale of problems from the limit of core-
memory.

• Runesha and Nguyen (2000) as well as Yuan,
Chen, and Liu (2006) implemented one-level
unrolling LDU factorizations for QSUM. In
this paper, two-level unrolling is considered
to enhance performance of LDU.

• Even for two-level unrolling, a dynamic
search for unrolling depths based on the
master-equation data structure proposed by
[Nguyen, Qin, Chang, and Tong (1997);
Runesha and Nguyen (2000)] is conducted
to increase efficiency. In the previous work
of Chen, Zheng, Sun, and Yuan (2003), fixed
unrolling depths based on the cell sparse
storage scheme was implemented, which led
to lower efficiency for smaller (near 1) un-
rolling depths.

1.3 Overview

In section 2, we briefly describe notations in
this paper. Section 3 derives the system stiff-
ness matrix as a QUSM from MLPG. Section
4 compares the concept of master equation with
super-equation and reviews corresponding storage
schemes as well as the conventional jki LDU fac-
torization methods. Section 5 gives the flowchart
of the proposed QUSM solver. In section 6, we
discuss how the conventional LDU factorization
can be updated to make use of loop unrolling tech-
niques. This provides the foundation of two-level
unrolling, which is introduced in section 7. In sec-
tion 8, we propose an implementation of out-of-
core scheme and corresponding solution method.
Finally, we present the numerical test results for
several engineering problems in section 9. Sec-
tion 10 gives conclusions and final thoughts.

2 Notation

Scalars and vectors are lowercase and matrices are
uppercase symbols. Moreover, vectors and ma-
trices are written in bold, i.e, a,b, . . ., z denote
scalars, a,b, . . .,z and A,B, . . .,Z stand for vec-
tors and matrices, respectively. In this article we

118 Copyright c© 2007 Tech Science Press CMES, vol.17, no.2, pp.115-134, 2007

use the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x11 x12 x13 x16 x17 x19
x21 x22 x23 x26 x27 x29

x31 x32 x33 x34 x35 x39
x43 x44 x45 x46
x53 x54 x55 x56

x61 x62 x64 x65 x66 x69
x71 x72 x77 x79

x88 x89
x91 x92 x93 x96 x97 x98 x99

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

1
2
3
4
5
6
7
8
9

(1)

to give a demonstration of QUSM, in which the
symbols xmn refer to the original nonzero terms.
Conventionally the factors of A is denoted by an
upper triangular matrix U, a lower triangular ma-
trix L, and a diagonal matrix D. Symbols fmn in
U and L indicates nonzero terms produced by the
fill-in phenomena.

Algorithms and skeleton code are given in figures.
The arrays and variables in the storage scheme
will be denoted by uppercase and lowercase italic
symbols, respectively. So we can write IA(k) to
denote the k-th element of the array IA.

3 MLPG and the System Stiffness Matrix

The purpose of the present section is to eluci-
date the numerical character of the linear sys-
tem obtained by MLPG. Although MLPG is one
of the meshless approaches, it is quite different
from the other approaches, such as diffuse ele-
ment [Nayroles, Touzot and Villon (1992)] and
the Element Free Galerkin (EFG) method [Be-
lytschko, Lu and Gu (1994)]. The trial and the
test functions are taken from the different func-
tional spaces in MLPG, whereas they are taken
from the same functional space in the other mesh-
less approaches. Furthermore, the weak form is
derived on each local individual domain. Conse-
quently, the coefficient matrix of the linear system
is sparse and unsymmetric in the MLPG method.

MLPG uses a local weak form over a local sub-
domain Ωs, which is located entirely inside the
global domain Ω. As an illustrative example let
us consider a Poisson equation in the domain Ω
and bounded by Γ of which the strong form of
governing equation and the boundary conditions

are given in Eq. 2 to 4:

∇2u(x) = p(x), x ∈ Ω (2)

u = u on Γu (3)

∂u
∂n

≡ q = q on Γq (4)

where u and q are the prescribed potential and nor-
mal flux, respectively, on the boundary; and n is
the outward normal direction to the boundary Γ.
Three local weak formulations of Eq. 2 are listed
below.

A local unsymmetric weak formulation 1
(LUSWF1) can be written as

∫
Ωs

(∇2u− p)vdΩ = 0, (5)

where u is the trial function and v is the test func-
tion.

Using the divergence theorem, the local symmet-
ric weak formulation (LSWF) is obtained

∫
Ls

qvdΓ+
∫

Γsu

qvdΓ+
∫

Γsq

qvdΓ

−
∫

Ωs

(u,iv,i + pv)dΩ−α
∫

Γu

(u−u)vdΓ = 0
(6)

in which, Γsq is a part of ∂Ωs, over which the nat-
ural boundary condition is specified.

Select a test function v that vanishes over Ls, then
we obtain the following local weak form (LSWF),

∫
Ωs

u,iv,idΩ−
∫

Γsu

qvdΓ+α
∫

Γu

uvdΓ

=
∫

Γsq

qvdΓ−
∫

Ωs

pvdΩ +α
∫

Γu

uvdΓ
(7)

Using the divergence theorem twice and selecting
a test function v which vanishes over Ls, we ob-
tain another local unsymmetric weak formulation
(LUSWF2),

∫
Γsu

qvdΓ−
∫

Ls

uv,inidΓ−
∫

Lsq

uv,inidΓ

+
∫

Ωs

u∇2vdΩ

=
∫

Ωs

pvdΩ−
∫

Γsq

qvdΓ+
∫

Γsu

uv,inidΓ

(8)

A New Quasi-Unsymmetric Sparse Linear Systems Solver for MLPG 119

In MLPG, the Petrov-Galerkin method is used in
each local sub-domain with the trial and test func-
tion from different spaces.

Atluri and Shen (2002a) and Atluri and Shen
(2002b) labeled six MLPG methods as MLPG1
to MLPG6 corresponding to the different choices
of test functions. Among these methods, MLPG1,
MLPG5 and MLPG6 are developed based on the
LSWF; MLPG2 and MLPG3 are derived from
LUSWF1; and MLPG4 is based on LUSWF2.
A summary of the variety of MLPGs is given in
Tab. 1, where we denote the support of the trial
function as Ωtr, and the support of the test func-
tion as Ωte.

Table 1: MLPG methods
Methods Local

weak
form

Relation between
Ωtr and Ωte

MLPG1 LSWF Ωte < Ωtr

MLPG2 LUSWF1 Ωte can be arbitrary
MLPG3 LUSWF1 Ωte = Ωtr

MLPG4 LUSWF2 Ωte < Ωtr

MLPG5 LSWF Ωte < Ωtr

MLPG6 LSWF Ωte = Ωtr

From the previous analysis, various local weak
formulations of MLPGs lead to a resultant linear
system of equations

Ax = b (9)

As is apparent from Eq. 5 to Eq. 8, in the Petrov-
Galerkin approach, the test functions v are in gen-
eral different from the trial functions u, so even
when a symmetric weak form is used, the matrix
A of the linear system obtained from MLPG is
basically unsymmetric.

In the MLPG a local weak form, which is located
entirely inside the global domain, is used. The lo-
cal weak form constructs the global stiffness ma-
trix through integration over local sub-domains.
Since the sub-domain is rather small, it is easy to
derive that the global stiffness matrix of MLPG is
not only unsymmetric but also sparse.

However we need to note that the nonzero dis-
tribution of the system stiffness matrix of MLPG

is nearly symmetric. The nonzero distribution of
the matrix A depends upon the nodes located in-
side the domain of influence of the node [Atluri
(2004)]. Wherein, the domain of influence of
a node is the union of the domains of defini-
tion of all points (in general, but the integration-
quadrature points in specific) in the local do-
main of the source node. Moreover, the do-
main of definition of a point means a sub-domain
which covers all the nodes whose weight func-
tions in the Moving Least Square (MLS) [Lan-
caster and Salkauskas (1981)], Partition Unity
(PU) [Babuska and Melenk (1997)] and Shepard
functions [Shepard 1968] approximation (or ra-
dial basis functions [Powell 1992] in the RBF ap-
proximation) do not vanish at the point. Since
in geometry, the shapes and sizes of the weight
functions (or radial basis functions) of nodes and
points around a sub-domain are practically iden-
tical, the relationship between two neighboring
nodes are generally symmetric in the influence
domain of each other, i.e. if node XI is in the do-
main of influence of node XJ, then XJ is in the
domain of influence of XI . Therefore the nonzero
distribution of the matrix A is thus almost sym-
metric, i.e. the matrix A is a QUSM. In addition
we assume the parameters chosen in MLPG are
potent to arise A with positive principal minors.

In Eq. 9, the matrix A = (Ai j), Ai j ∈R is a QUSM.
The vectors x and b stand for the unknown vector
and the known input vector.

Although only the formula of the Poisson equa-
tion is considered in this section for illustrative
purpose, the system stiffness matrix arising from
MLPG of various problems is obtained in a sim-
ilar way, e.g., two or three dimensional, static or
dynamic, elastic or inelastic problems. Also for
nonlinear problems, the stiffness matrix of lin-
earized MLPG formulations is derived with the
same procedure. Therefore, we conclude that the
MLPG matrix arising in a large range of problems
is QUSM.

4 Conventional Sparse Matrix LDU Factor-
ization

The unsymmetric matrix A in Eq. 9 with positive
principal minors has a unique triangular factoriza-

120 Copyright c© 2007 Tech Science Press CMES, vol.17, no.2, pp.115-134, 2007

tion as follows:

A = LDU (10)

After completing the triangular factorization the
solution of Eq. 10 can be separated into three
steps:

Ly = b (11)

Dz = y (12)

Ux = z (13)

If A is sparse, then normally L and U are also
sparse. Moreover, the nonzero structure of A, i.e.
the set of pairs (i, j) for which Ai j �= 0, is a subset
of the nonzero structure of L+U.

Undoubtedly, computing L and U is the most
costly step in solution of the linear system of
Eq. 9. Before factorization, one generally per-
mutes the rows and columns of A symmetrically
so as to reduce the number of non-zeros in L and
U [Duff, Erisman, and Reid (1989), George and
Liu (1981)].

4.1 Storage Scheme and Master-equation

Sparse algorithms for symmetric solution can
be briefly classified into left-looking and multi-
frontal. Our experience showed both can achieve
very high performance. In this paper we adopt a
left-look algorithm for QUSM.

Generally speaking, the storage of a sparse ma-
trix can choose either row pivoting compact stor-
age scheme or column pivoting compact storage
scheme in numerical computations. Row pivoting
scheme regards a matrix as an ordinal set of com-
pact row vectors. In this paper, a mixed scheme
like the one in Runesha and Nguyen (2000) will
be used for the stiffness matrices. The upper tri-
angle is stored in an ordinal set of row pivoting
scheme, while the lower triangle is stored in an or-
dinal set of column pivoting schme. For a QUSM
the non-zeros of the upper and lower portion of
matrix A have the symmetric sparse structure. We
define two arrays (IA, JCA) as symbolic matrix
and (PA, QA) as numerical matrix. The array IA
is the row/column index of the column/row sub-
scripts array JCA and its numerical array PA/QA.

The number of non-zeros of the k-th row/column
is IA(k)-IA(k−1) (assume IA(0)=0) in each indi-
vidual triangle. Therefore, three arrays IA, JCA
and PA represent the upper portion in the row piv-
oting compact storage scheme and similarly, IA,
JCA and QA represent the lower portion of ma-
trix A in the column pivoting compact storage
scheme.

We adopt Sherman’s storage scheme [Sherman
(1975)] to reduce the size of column (or row for
upper portion) subscript array JCA. The modified
subscript array is JA. In order to use JA, an aux-
iliary array KA is needed to indicate the start lo-
cation of each column/row in modified subscripts
array JA. The sizes of the numerical matrices PA
and QA remain unchanged, but the total mem-
ory requirement has been reduced by reducing the
symbolic matrices. A similar data structure with
arrays IU, JU, PU and QU can be established for
the factors L and U.

In the solution of most 2D and 3D engineering
problems, the degrees of freedom (DOFs) associ-
ated with a node have always successive numbers,
thus the corresponding rows as well as columns of
stiffness matrix A often share the same sparse pat-
tern. Such a group of successive equations is iden-
tified as a super-equation. For example, the set of
super-equations in Eq. 1 consists of {1, 2}, {3},
{4, 5}, {6}, {7}, {8} and {9}. Nguyen and Pey-
ton (1993) have succeeded to use super-equation
techniques in solutions of FEA. In Chen, Zheng,
Sun, and Yuan (2003), a special cell-sparse stor-
age scheme is designated to store the matrix with
super-equation subscripts.

However, the master-equation is defined in the
factor matrix U and L rather than in the orig-
inal matrix A [Nguyen, Qin, Chang, and Tong
(1997), Runesha and Nguyen (2000), Chen and
Sun (2005)]. The rows of U/LT that have the
same nonzero patterns (including xmn and fmn in
Eq. 14 and Eq. 15) are identified as master-
equation. The set of master-equations in Eq. 14
and Eq. 15 consists of {1, 2}, {3, 4, 5, 6, 7} and

A New Quasi-Unsymmetric Sparse Linear Systems Solver for MLPG 121

{8, 9}.

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
x21 1
x31 x32 1

x43 1
x53 x54 1

x61 x62 f63 x64 x65 1
x71 x72 f73 f74 f75 f76 1

1
x91 x92 x93 f94 f95 x96 x97 x98 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

1
2
3
4
5
6
7
8
9

(14)

UD =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x11 x12 x13 x16 x17 x19

x22 x23 x26 x27 x29
x33 x34 x35 f36 f37 x39

x44 x45 x46 f47 f49
x55 x56 f57 f59

x66 f67 x69
x77 x79

x88 x89

x99

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

1
2
3
4
5
6
7
8
9

(15)

The master-equation concept can be incorporated
into the conventional sparse storage scheme by an
additional integer array, MASTERU(neq). The
positive MASTERU(i) stands for the size of the
master-equation starting from the i-th equation,
while the zero MASTERU(i) indicates that the
i-th equation is a slave-equation [Nguyen, Qin,
Chang, and Tong (1997)]. In contrast to the super-
equation, identical row nonzero patterns of L and
column nonzero patterns of U are not required for
a master-equation. Since the fill-in phenomenon,
the average size of master-equations can be larger
or even much larger than that of super-equations.
We have enhanced the performance of unsymmet-
ric solvers through master-equations with one-
level unrolling in Yuan, Chen, and Liu (2006).

4.2 Basic LDU Factorization

Generally, the sparse factorization program will
specify a particular order of operations. The bulk
of the work in the LDU factorization of an unsym-
metric matrix A with positive principal minors oc-
curs in a triple nested loop around the following
statements:

Uji = A ji −LjkUki (0 < k < j ≤ i); (16)

Li j = Ai j −Uk jLik (0 < k < j ≤ i). (17)

There are 6 possibilities to arrange the triple
nested loop: ki j,k ji, ik j, i jk, jik and jki. The pro-
posed factorization method uses jki form [Zheng
and Chang (1995)] of the nested loop, in which
all modifications to the target row/column are per-
formed in the inner loops, using source columns
to its left (for L) or upper (for U). This arrange-
ment is also known as backward-reference or left-
looking form. The jki form of LDU factoriza-
tion can be expressed as in Fig. 1, where the
RowColumnTask(k, j) does the elimination of A jk

in the lower triangle and Ak j in the upper triangle,
i.e. the reduction of the target j-th row/column
by a multiple of the k-th row/column of the
upper/lower triangle; The RowColumnTask(j, j)
does division of the off-diagonals of the target j-
th row/column by their diagonal. Note that this
sequence is not mandated. The k ji (also know as
right-looking) form is obtained by interchanging
the two outer loops.

for row/column j = 1 : neq
for k = all appropriate rows/columns

RowColumnTask(k, j)
end
RowColumnTask(j, j)

end

Figure 1: jki factorization

Similar to the symmetric case, the numerical fac-
torization for QUSM also requires keeping track
of the rows/columns that will contribute to the
target row/column. Instead of scatter-gather op-
erations, Chen, Zheng, Sun, and Yuan (2003)
suggested a direct updating operation for sym-
metric case. In this paper, the unsymmetric di-
rect updating implementation, as shown in Fig.
2, updates the numerical values of the target j-
th row/column {PU(l),QU(l)|IU(j − 1) < l ≤
IU(j)} on their storage locations by the previous
rows/columns. The array piece UPD(j : neq) is
used as a map from the column/row indices of
the j-th row/column to their PU and QU posi-
tions. When the factorization is processed syn-
chronously, UPD for the factorization of L and U
is identical.

122 Copyright c© 2007 Tech Science Press CMES, vol.17, no.2, pp.115-134, 2007

Table 2: Comparison between unsymmetric and symmetric cases

Process Symmetric case Proposed unsymmetric case
symbolic assembly element location array individual non-zero locations
reordering same as symmetric
symbolic factorization same as symmetric
numerical assembly only the upper portion both upper and lower portions
numerical factorization operation on the upper one interactive operation on both portions
reduction and substitution L for both operations L for reduction, U for substitution

c-prepare position mapping
do i = IU(j - 1) + 1, IU(j)

UPD(JU(i)) = i
end do
...
c-loop for all appropriate k
k = CHAIN(j)
do while (k .gt. 0)

kk = k
k = CHAIN(k)
c-RowColumnTask(k, j)
ss = QU(IU(kk - 1) + 1) * QU(UPD(kk))
tt = PU(IU(kk - 1) + 1) * PU(UPD(kk))
do i = UPD(kk), IU(kk)

PU(UPD(JU(i))) = PU(UPD(JU(i))) - ss * PU(i)
QU(UPD(JU(i))) = QU(UPD(JU(i))) - tt * QU(i)

end do
...

end do
...
c-RowColumnTask(j, j)
ss = 1.0d0 / PU(IU(j - 1) + 1)
do i = IU(j - 1) + 2, IU(j) !off-diagonals

PU(i) = PU(i) * ss
QU(i) = QU(i) * ss

end do
...

Figure 2: FORTRAN skeleton of jki LDU factor-
ization

5 Flowchart of QUSM Solver

The flowchart of QUSM solver can be divided
into 6 phases:

• Symbolic assembly must be performed to
collect the matrix non-zero pattern from in-
put data: Read the data first time to collect
the pattern and construct IA and JCA. Be-
cause the pattern of the upper and lower por-

tion is assumed to be same, so only one of
them will be saved. As proposed in Chen,
Zheng, Sun, and Yuan (2003), we can con-
vert the symbolic matrix into the cell sym-
bolic matrix in order to reduce computa-
tional effort.

• Reordering operation permutes the rows and
columns of A symmetrically so as to re-
duce the number of non-zeros in U and
L. The successful implementation of any
sparse equation solver depends considerably
on the reordering method. Currently, AMD
[Amestoy, Enseeiht-Irit, Davis, and Duff
(2004)] and METIS [Karypis and Kumar
(1998)] can be used to accomplish this phase.
In order to enhance the performance, the re-
ordering is operated in the cell symbolic ma-
trix.

• Symbolic factorization is designed to find the
locations of all nonzero off-diagonal terms
(including fill-in terms) of the factorized ma-
trix U and L. The symbolic factorization
generates the structure IU, JU of the factor-
ized matrix from the non-zero structure IA,
JA of the matrix A. One of the major goals
of symbolic factorization is to predict the re-
quired computer memory for subsequent nu-
merical factorization for either the upper or
lower portion of the matrix. Compared to
symmetric case, the total memory required
for the numerical matrices of QUSM is twice
the amount predicted by the symbolic factor-
ization.

• Numerical assembly reads the input data
again and fills the numerical values into the
patterns depending on IU and JU.

A New Quasi-Unsymmetric Sparse Linear Systems Solver for MLPG 123

• Numerical factorization computes numeri-
cally the factors L, D and U. This phase will
be reported in the following sections of this
paper.

• Reduction and substitutions are imple-
mented following the formula in Eq. 4 to
Eq. 6, once the factorized matrices L, D and
U are computed. In the forward solution, the
factorized matrices L and D are used, and in
the backward substitution, the factorized ma-
trix U is used.

Assume that all principal minors of the matrix
A are positive, the mentioned phases are safe to
perform separately. Tab. 2 compares the corre-
sponding phases of the proposed solution method
with the solution methods of FEA through LDLT

factorization. The mixed row and column pivot-
ing storage scheme implies the symmetric non-
zero structure. Symmetric nonzero structure al-
lows using reordering approaches, such as AMD
[Amestoy, Enseeiht-Irit, Davis, and Duff (2004)]
and METIS [Karypis and Kumar (1998)] devel-
oped for symmetric equations. Therefore, the
QUSM solution in this paper is organized the
same in phases of reordering and symbolic factor-
ization as the symmetric solution [Nguyen, Qin,
Chang, and Tong (1997); Chen, Zheng, Sun, and
Yuan (2003)]. We present an adaptable approach
to port existent solution procedures from symmet-
ric case to unsymmetric case. Since both upper
and lower parts PA and QA of the matrix are con-
sidered in the phase of numerical assembly, the
core memory requirement is roughly doubled to
the symmetric case. The numerical factorization
phase considers the interaction between the lower
and upper portion. We use L for reduction and U
for substitution, instead of using L for both stages
in symmetric case.

6 QUSM Solver with One-level Loop Un-
rolling

Excellent numerical computation methods im-
prove the efficiency of solution, but it is not the
exclusive factor. The loop unrolling [Nguyen and
Peyton (1993)] technique of matrix computation

which efficiently reduce the data transmission be-
tween register and RAM is widely used in paral-
lel and serial computing. We also incorporate the
loop unrolling strategies effectively into the de-
veloped unsymmetric sparse solver in conjunction
with the master degree of freedom strategy. In
Algorithm of Fig. 1, RowColumnTask(k, j) and
RowColumnTask(m, j) are independent of each
other. Thus, the k-loop does not have to be done
in sequential order. One of the possibilities to re-
organize the k-loop is to group several successive
k’s together, i.e. super-equations.

Consider the super-equation sk for k as a single
entity, the Eq. 16 and Eq. 17 can be unrolled as

Uji = A ji −Lj,skUsk,i −Lj,sk+1Usk+1,i− . . .

−Lj,sk+nUsk+n,i (0 < sk < j ≤ i) (18)

Li j = Ai j −Usk, jLi,sk −Usk+1, jLi,sk+1 − . . .

−Usk+n, jLi,sk+n (0 < sk < j ≤ i) (19)

Clearly, only the loop for k is replaced by a loop

for row j = 1 : neq
for sk = all appropriate super-rows/super-columns

OneLevelRowColumnTask(sk, j)
end
RowColumnTask(j, j)

End

Figure 3: jki LDU factorization with loop un-
rolling

for super-equations sk. Fig. 3 briefly outlines a jki
implementation with loop unrolling that unrolls
the k-loop only, where the OneLevelRowColum-
nTask might be carried out by a series of Row-
ColumnTasks. However, in this elimination pro-
cedure of the target j-th row/column, the super-
equation and its n slave-equations in the super-
equation starting at sk are treated as a single entity.
The size of the super-equation, n+1, becomes the
unrolling depth. Previous studies showed that this
unrolling brings significant improvement to the
efficiency of matrix computations. As the target

124 Copyright c© 2007 Tech Science Press CMES, vol.17, no.2, pp.115-134, 2007

j-th row/column is a slave of the super-equation
starting at sk, the size of the super-equation start-
ing at sk is temporarily reduced to j − sk. The
rows/columns of a super-equation have a unique
sparse pattern, i.e. the rows/columns have the
same column/row subscript, except for those col-
umn/row subscripts in the diagonal sub-matrix.
Thus, we can easily modify Fig. 2 into unrolling
form as shown in Fig. 4.

c-OneLevelRowColumnTask(sk, j)
if (size(sk) .eq. 1) then

ss = QU(IU(kk - 1) + 1) * QU(UPD(kk))
tt = PU(IU(kk - 1) + 1) * PU(UPD(kk))
do i = UPD(kk), IU(kk)

PU(UPD(JU(i))) = PU(UPD(JU(i))) - ss * PU(i)
QU(UPD(JU(i))) = QU(UPD(JU(i))) - tt * QU(i)

end do
else if (size(sk) .eq. 2) then

ss0 = QU(IU(kk - 1) + 1) * QU(UPD(kk))
tt0 = PU(IU(kk - 1) + 1) * PU(UPD(kk))
ss1 = QU(IU(kk) + 1) * QU(UPD(kk) + ksh1)
tt1 = PU(IU(kk) + 1) * PU(UPD(kk) + ksh1)
do i = UPD(kk), IU(kk)

PU(UPD(JU(i))) = PU(UPD(JU(i)))
- ss0 * PU(i) - ss1 * PU(i + ksh1)

QU(UPD(JU(i))) = QU(UPD(JU(i)))
 - tt0 * QU(i) - tt1 * QU(i + ksh1)

end do
else if (size(sk) .eq. 3) then
...
...

Figure 4: FORTRAN skeleton of jki LDU factor-
ization with loop unrolling

7 QUSM Solver with Two-level Unrolling

7.1 An Approach Based on Super-equation

Nguyen and Peyton (1993) and Chen, Zheng,
Sun, and Yuan (2003) reported two-level un-
rolling LDLT factorizations, in which the super-
equations sk and s j for k and j, respectively, are
treated as two entities, i.e. j-loop and k-loop are
unrolled simultaneously.

In the case of LDU factorization of this paper,
there are as many assignments in the innermost
i-loop of two level unrolling LDU as the size of

the super-equation s j in the form of Eq. 18 and
Eq. 19

⎛
⎜⎜⎜⎝

Us j,i

Us j+1,i
...

Us j+s,i

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

As j,i

As j+1,i
...

As j+s,i

⎞
⎟⎟⎟⎠−

(
MAT

I

)
⎛
⎜⎜⎜⎝

Us j,i

Us j+1,i
...

Us j+s,i

⎞
⎟⎟⎟⎠
(20)

where(
MAT

I

)
=

⎛
⎜⎜⎜⎝

Ls j,sk Ls j,sk+1 · · · Ls j,sk+t

Ls j+1,sk Ls j+1,sk+1 · · · Ls j+1,sk+t
...

...
. . .

...
Ls j+s,sk Ls j+s,sk+1 · · · Ls j+s,sk+t

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

Li,s j

Li,s j+1
...

Li,s j+s

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Ai,s j

Ai,s j+1
...

Ai,s j+s

⎞
⎟⎟⎟⎠−

(
MAT

II

)
⎛
⎜⎜⎜⎝

Li,sk

Li,sk+1
...

Li,sk+t

⎞
⎟⎟⎟⎠
(21)

where(
MAT

II

)
=

⎛
⎜⎜⎜⎝

Usk,s j Usk+1,s j · · · Usk+t,s j

Usk,s j+1 Usk+1,s j+1 · · · Usk+t,s j+1
...

...
. . .

...
Usk,s j+s Usk+1,sk+s · · · Usk+t,s j+s

⎞
⎟⎟⎟⎠

Compared to Eq. 16 and Eq. 17, not only the loop
for k is replaced by a loop for super-equations sk,
but also the outermost loop for j is replace by a
loop for super-equation sj. If the average size of
super-equations, i.e., average value of s or t, is
adequate, the algorithm based on Eq. 20 and Eq.
21 is much faster than that based on Eq. 16 to Eq.
19[Chen, Zheng, Sun, and Yuan2003].

7.2 A New Approach for Two-level Unrolling
by Master-equation

In Eq. 20 and Eq. 21 for two-level un-
rolling driven by super-equation, besides the re-
quirements of consistent nonzero pattern of rows

A New Quasi-Unsymmetric Sparse Linear Systems Solver for MLPG 125

Figure 5: jki LDU factorization with two-level loop unrolling by super-equation

Figure 6: jki LDU factorization with two-level loop unrolling by master-equation

126 Copyright c© 2007 Tech Science Press CMES, vol.17, no.2, pp.115-134, 2007

sk, sk+1, . . ., sk+s and of rows s j, s j+1, . . ., s j+
t that are ensured by super-equations and elimina-
tion chain, two level-unrolling LDU requires one
nonzero (s + 1)× (t + 1) submatrix for U at the
cross of super-column starting at sk and super-
row starting at sj, as shown in Fig. 5. Simi-
larly, another non-zero (t + 1)× (s + 1) subma-
trix at the cross of super-row starting at sk and
super-column starting at sj is also required for
L. The two submatrices is an implicit result of
super-equations, since they have consistent parti-
tions in rows as well as in columns. The imple-
mentation of sparse two-level unrolling LDU is
a straightforward choice in conjunction with the
cell sparse storage scheme [Chen, Zheng, Sun,
and Yuan (2003)].

But if the average size of super-equations is small
(near 1), the algorithm based on super-equation is
ineffective. That means, unrolling does not bring
much efficiency. However, the fill-ins make the
size of master-equations larger than that of super-
equations. Replacing super-equation by master-
equation directly in Eq. 20 and Eq. 21 is un-
fortunately unrealistic, since we could not find a
nonzero cross submatrix of master-row mk and
master-column mj, as shown in Fig. 6.

for row/column j = 1 : neq
for k = all appropriate master-rows/master-columns

Find unrolling depth of j
TwoLevelMasterTask(k, j)

end
TwoLevelMasterTask(j, j)

End

Figure 7: jki LDU factorization with two-level
loop unrolling

Using the definition of master-equation, the con-
sistent nonzero patterns of rows of U as well as
columns of L within a master-equation are en-
sured by definition of master-equations. As illus-
trated in Fig. 7, the requirement of nonzero (s +
1)×(t +1) or (t +1)×(s+1) submatrices can be
replaced by finding an appropriate nonzero cross
rectangle (n + 1)× (m + 1) starting at j-th row

in master-column mk for upper triangle U, and a
nonzero cross rectangle (m+1)× (n+1) starting
at j-th column in master-row mk for lower triangle
L. The unrolling depth m for j-loop depends on
the count of consecutive nonzero columns/rows
starting at j-th column/row in master-row/master-
column mk and the count of rows/column with
same nonzero pattern. Clearly, n and m are not
greater than the corresponding sizes of master
equation, respectively. In the innermost i-loop of
this algorithm, there is an elimination on U and L:

⎛
⎜⎜⎜⎝

Uj,i

Uj+1,i
...

Uj+s,i

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

A j,i

A j+1,i
...

A j+s,i

⎞
⎟⎟⎟⎠−

(
MAT
III

)
⎛
⎜⎜⎜⎝

Um j,i

Um j+1,i
...

Um j+n,i

⎞
⎟⎟⎟⎠
(22)

where(
MAT
III

)
=

⎛
⎜⎜⎜⎝

Lj,mk Lj,mk+1 · · · Lj,mk+n

L j+1,mk Lj+1,mk+1 · · · Lj+1,mk+n
...

...
. . .

...
Lj+m,mk Lj+s,mk+1 · · · Lj+m,mk+n

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

Li, j

Li, j+1
...

Li, j+m

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Ai, j

Ai, j+1
...

Ai, j+m

⎞
⎟⎟⎟⎠−

(
MAT

IV

)
⎛
⎜⎜⎜⎝

Li,mk

Li,mk+1
...

Li,mk+n

⎞
⎟⎟⎟⎠
(23)

where(
MAT

IV

)
=

⎛
⎜⎜⎜⎝

Umk, j Umk+1, j · · · Umk+n, j

Umk, j+1 Umk+1, j+1 · · · Umk+n, j+1
...

...
. . .

...
Umk, j+m Umk+1, j+m · · · Umk+n, j+m

⎞
⎟⎟⎟⎠

For the outermost loop in Eq. 22 and Eq. 23,
the master equation mj is not treated as a single
entity; and the row/column j may not be the head
equation of a master-equation mj.

A New Quasi-Unsymmetric Sparse Linear Systems Solver for MLPG 127

do while (mk.gt.0)
Search size(mj)
c-TwoLevelMasterTask(mk, mj)
if (size(mk) .eq. 1) then

if (size(mj).eq.1) then
call TwoLevelMasterTask11(...)

else if (size(mj).eq.2) then
. . .

end if
else if(size(mk) .eq. 2) then

if (size(mj).eq.2) then
call TwoLevelMasterTask22(...)

. . .
end if
. . .

end do
c-TwoLevelMasterTask(mj, mj)
if (size(mj) .eq. 1) then

call TwoLevelMasterTask1(...)
else if(size(mj) .eq. 2) then

call TwoLevelMasterTask2(...)
. . .
end if

Figure 8: FORTRAN skeleton of jki LDU factor-
ization with two-level loop unrolling

Fig. 8 outlines the implementation skeleton of
jki LDU factorization with two-level unrolling by
master-equation. Limiting the sizes of the master-
equations to 6, there are 36 TwoLevelMasterTask
sub-routines, respectively, that perform numerical
eliminations of different master-equation depth
combinations of mk and mj. A small C++ pro-
gram was developed to generate all these subrou-
tines. Larger limit of unrolling depths leads to
more elimination subroutines and may not bring
more efficiency in practice. The data structure of
the new algorithm benefit from the characteristic
of QUSM, and is more friendly in implementation
than the cell sparse storage scheme [Chen, Zheng,
Sun, and Yuan (2003)].

7.3 Speedup Analysis

In modern computer architectures, many features,
such as memory caching and instruction-level par-
allelism, are widely used to improve the comput-
ers performance [Dowd and Severance (1998)].
The algorithms proposed in this study are well

suited to take advantage of such features. Un-
rolling enables compilers to reduce the overhead
of variable indexing to improve the performance
of a program. The loop unrolling in sparse LDU
improves the algorithms ability to use instruction
interleaving. In modern computers, the CPU can
issue a new instruction before the previous in-
struction is finished if the result of the previous
instruction is not needed and there is no hardware
conflict. Instruction interleaving is a technique
to use such instruction-level parallelism. With
instruction interleaving, if one instruction has to
wait for the result of the previous instruction,
other instructions are inserted between these two
instructions so that the waiting time is not wasted.
To use instruction interleaving, the loop body has
to be large enough so that there are enough in-
structions independent of each other. With the
unrolling of the loop, the size of the loop body
is increased.

8 Limited Memory Strategies

Without an out-of-core strategy, a general ap-
proach of solving large problems relies on the vir-
tual memory paging system, allowing the operat-
ing system to move data between core-memory
and disk. This approach has the advantage that
it requires no modification to in-core programs,
but experience with large-scale applications has
shown that it is unacceptably slow.

A jki form (or left-looking form) can be made
to go out-of-core by taking advantage of the fol-
lowing observation: once row/column j of U/L
has been completed, row/column j of U/L is
never updated again. Therefore, we advanced
the out-of-core strategy in FEA proposed by Fel-
lipa (1975), Wilson and Dovey (1978) and Chen,
Zheng, Sun, and Yuan (2003) for the specialty of
asymmetry. We split the matrix and its factors
into blocks of similar sizes. Since the gift of sym-
metric nonzero distribution of A, the unsymmet-
ric matrix can be split symmetrically. Generally
speaking, the block size is determined so that at
least two blocks can be accommodated simulta-
neously in the core memory. In our implementa-
tion on PC machines, however, the block size is
decreased so that five or more blocks are allowed

128 Copyright c© 2007 Tech Science Press CMES, vol.17, no.2, pp.115-134, 2007

to reside simultaneously in the core memory.

8.1 Out-of-core storage scheme

The original matrix A and its factor L and U
should be partitioned independently, since there
are much more non-zeros in the factors than in
the original matrix. The symbolic and numerical
matrices should be saved in separate files, since
the symbolic matrices are generated before the
numerical matrices.

Tab. 3 outlines the out-of-core sparse storage
scheme. The matrix A and its factor L and U are
partitioned respectively at columns and rows into
lblk and lblu blocks. Each block has a maximum
of laxt entries. The integer array BOUND(lblk +
lblu) indicates the last row/column of each block.
During the LDU factorization and reduction sub-
stitution process, the control information, depend-
ing on which storage scheme is used in Tab. 2,
should be in the core memory.

8.2 Out-of-core LDU Factorization

It is observed that rows/columns and super-
rows/super-columns form the hierarchical struc-
ture of LDU elimination procedure. Consider-
ing the block described in the previous subsec-
tion as an upper layer in this hierarchical struc-
ture, the block factorization can be directly out-
lined as Fig. 9 and Fig. 10. Here, a BlockTask

for BJ = 1 : nblu
Initialize block BJ
for BK = all appropriate block

Load block BK
BlockTask(BK, BJ)

end
BlockTask(BJ, BJ)
Save block BJ

end

Figure 9: jki form block LDU factorization

consists of a number of OneLevelRowColumn-
Tasks or TwoLevelMasterTasks depending on the
sparse algorithms, as shown in Fig. 4 and Fig.
8. A block linked list BCHAIN(nblu) will be es-
tablished to link all appropriate blocks for each

c - loop for all appropriate sk
sk = BCHAIN(sj)
sk last = sj
do while (sk .gt. 0)

skk = BCHAIN(sk)
if (sk is in block BK) then

call SuperRowColumnTask or TwoLevelMasterTask ...
else

BCHAIN(sk last) = sk
sk last = sk

end if
sk = skk

end do

Figure 10: FORTRAN skeleton of jki form block
LDU factorization

block being reduced. In addition, a chain fil-
ter in BlockTask(BK,BJ) is necessary to iden-
tify whether the linked (master-)row/column is in
block BK and to ensure the correct chain for the
next BlockTask(BKK,BJ).

When totally ntblk + 1 (ntkblk > 1) blocks ac-
commodate in the available core memory, we can
place simultaneously ntblk target blocks in the
core memory. Fig. 11 describes our multi-block
out-of-core implementation. Surely, if we con-
sider BJ as a master target block of BJ, BJ +
1, . . . , BJ + ntblk − 1, the block linked list
BCHAIN(nblu) now only starts from every ntblk
block. In our out-of-core tests, Fig. 11 generally
needs less elapsed time to do LDU factorizations
than Fig. 9.

for BJ = 1 : nblu : ntblk
Initialize blocks BJ, BJ + 1, ..., BJ + ntblk - 1 to a big block B
for BK = all appropriate block

Load block BK
BlockTask(BK, BJJ)

end
BlockTask(BJJ, BJJ)
Save block BJ, BJ + 1, ..., BJ + ntblk - 1

end

Figure 11: jki form multi-block LDU factoriza-
tion

The multi-block jki LDU factorization algorithm
uses unrolling of the target block loop to reduce

A New Quasi-Unsymmetric Sparse Linear Systems Solver for MLPG 129

Table 3: Data files and blocking

Contents Arrays File
type

Record
length

Record
number

Control
information

IA(neq)
IU(neq)
MASTERU(neq)
BOUND(lblk + lblu)

Sequential

Symbolic
matrix

JCA(laxt, lblk)
JCU(laxt, lblu)

D
irect

laxt integers lblk + lblu

Numerical
matrix

PA(laxt, lblk)
QA(laxt, lblk)
PU(laxt, lblu)
QU(laxt, lblu)

D
irect

laxt reals lblk + lblu

Table 4: Descriptions of test examples

Test example description structure neq nzr
PKUML01 Linear static analysis of square plate by MLPG1,

131 * 131
QUSM 34,191 1,968,955

PKUML02 Linear static analysis of square plate by MLPG1,
161 * 161

QUSM 51,681 2,980,285

PKUML03 2D static fracture analysis by MLPG1 QUSM 80,400 5,254,036
PKUML04 2D static fracture analysis by MLPG1, 201 * 201 QUSM 80,601 4,653,525
PKUML05 Linear static analysis of square beam by MLPG1,

151 * 391
QUSM 117,691 8,817,691

PKUML06 Linear static analysis of square beam by MLPG1,
181 * 401

QUSM 144,761 10,865,481

PKUML07 Linear static analysis of square beam by MLPG1,
161 * 701

QUSM 225,021 16,900,141

PKUML08 Linear static analysis of square plate by MLPG1,
501 * 501

QUSM 501,501 33,554,431

Hood Hood symmetric 220,542 5,494,489
BMW7st 1 Linear static analysis of a car body symmetric 141,347 3,740,507
BMWCRA 1 Automotive crankshaft model with nearly

150,000 TETRA elements
symmetric 148,770 5,396,386

CRANKSG1 Linear static analysis of a crankshaft detail symmetric 52,804 5,333,507
CRANKSG2 Linear static analysis of a crankshaft detail symmetric 63,838 7,106,348
PWTK Pressurized wind tunnel symmetric 217,918 5,926,171

disk I/O for out-of-core solution. With the core
memory divided into two blocks, all appropri-
ate stiffness blocks have to be read in once for
each target block. In the multi-block jki LDU
factorization algorithm, the core memory is di-
vided into ntblk +1 blocks. With unrolling of the
target block loop by ntblk, all appropriate stiff-

ness blocks are read in once for every ntblk tar-
get blocks. Using the multi-block algorithm, the
disk I/O can be greatly reduced compared with the
two-block algorithm.

130 Copyright c© 2007 Tech Science Press CMES, vol.17, no.2, pp.115-134, 2007

9 Numerical Experiments and Discussion

In this section, we report the performance results
of using the proposed solver and SuperLU
[Demmel, Eisenstat, Gilbert, Li, and Liu (1999),
Li (2005)] on a set of test examples of the
system stiffness matrices of two-dimensional
elasto-static problems implemented by MLPG1,
which is based on the local symmetric weak
form, and uses the modified MLS weight function
[Gao, Liu and Liu (2006)] as the test function
in each sub-domain. Furthermore, examples
of the resultant system stiffness matrix chosen
from collection of European PARASOL project
(http://www.parallab.uib.no/projects/parasol/data)
are tested in Tab. 5 and Tab. 6 including some
symmetric examples for which correct answers
can be obtained by the proposed unsymmetric
solver. The stiffness matrices of the test examples
of 34,191 to 501,501 dimensions are all produced
in practical engineering applications or research
projects. A brief description of each problem is
given in Tab. 4.

Table 5: Numerical test results of SuperLU: on
symmetric examples

Test Factorization time (s)
examples 128MB 256MB 512MB in-core
Hood 2172.37 395.57 73.22 28.33
BMW7st 1 803.91 214.60 59.80 40.35
BMWCRA 1 8322.17 1622.85 907.08 336.55
CRANKSG1 892.46 298.71 205.98 142.60
CRANKSG2 4645.28 712.51 401.73 228.29
PWTK 1756.12 753.79 301.34 102.46

Table 6: Numerical test results of proposed two
level unrolling: on symmetric examples

Test Factorization time (s)
examples 128MB 256MB 512MB in-core
Hood 39.29 37.78 ⇒ 8.20
BMW7st 1 37.53 ⇒ ⇒ 10.88
BMWCRA 1 227.25 229.00 224.56 52.61
CRANKSG1 67.78 117.77 ⇒ 27.86
CRANKSG2 161.22 160.70 ⇒ 41.72
PWTK 151.91 75.39 ⇒ 21.06

Note: “⇒" indicates that the example tends to be in-
core on this memory limit.

Table 7: Numerical test results of SuperLU: on
unsymmetric examples

Test Factorization time (s)
examples 128MB 256MB 512MB in-core
PKUML01 174.11 47.90 ⇒ 37.19
PKUML02 470.04 114.65 ⇒ 68.57
PKUML03 2294.93 312.65 177.30 141.88
PKUML04 3492.00 380.97 244.12 194.91
PKUML05 N/A 888.53 496.02 196.11
PKUML06 N/A 3799.86 1218.59 313.14
PKUML07 N/A N/A N/A N/A
PKUML08 N/A N/A N/A N/A

Note: “N/A" indicates that the example exceed
memory limit.

Table 8: Numerical test results of one level un-
rolling: on unsymmetric examples

Test Factorization time (s)
examples 128MB 256MB 512MB in-core
PKUML01 80.98 60.24 ⇒ 30.62
PKUML02 154.89 97.84 ⇒ 60.70
PKUML03 281.16 268.30 201.09 111.73
PKUML04 466.20 307.05 210.45 114.14
PKUML05 498.55 473.34 329.81 187.20
PKUML06 679.78 701.44 718.75 267.61
PKUML07 N/A 1079.56 825.03 472.33
PKUML08 N/A N/A 3449.41 1966.02

Table 9: Numerical test results of two level un-
rolling: on unsymmetric examples

Test Factorization time (s)
examples 128MB 256MB 512MB in-core
PKUML01 38.73 ⇒ ⇒ 14.80
PKUML02 70.99 95.64 ⇒ 28.80
PKUML03 151.00 208.31 217.95 56.78
PKUML04 149.89 247.01 128.78 56.89
PKUML05 228.56 403.73 381.72 90.30
PKUML06 525.58 557.52 366.03 132.41
PKUML07 N/A 871.58 907.57 258.23
PKUML08 N/A N/A 2885.06 1161.97

9.1 In-core numerical test

The purpose of in-core tests is to compare the per-
formance of the proposed solver with the well-
known sparse solver SuperLU. The tests are on a
PC based on Pentium IV 3.0GHz CPU with Win-
dows operation system for the proposed solver
and Linux for SuperLU. The performance results

A New Quasi-Unsymmetric Sparse Linear Systems Solver for MLPG 131

of the in-core numerical tests are listed in the
columns of ”in-core” of Tab. 7, Tab. 8 and Tab.
9, which indicate that the efficiency of the pro-
posed solver is better than that of SuperLU. We
have to note that SuperLU is a general purpose
solver for sparse matrix, but the proposed solver
is optimized in storage schemes and factorization
methods towards the special case of QUSM. In
the domain of computational mechanics, most un-
symmetric stiffness matrices can be counted as
QUSM. So the proposed solver can be applied
widely.

9.2 Out-of-core numerical test

When solving large problems that exceed the
memory limit of machine, the in-core algorithm
will not work well, even with the virtual mem-
ory of the operation system. Thus the proposed
out-of-core strategy will be of benefit to the solu-
tion. This test compared the effect of out-of-core
strategy respectively with the memory limited to
128MB, 256MB and 512MB. Tab. 7, Tab. 8 and
Tab. 9 indicates evidently advantage of out-of-
core strategy when we solve large problems on
PC with small size of memory. Therefore, we
can solve problems which might not viable with
general algorithms on non-parallel machines, e.g.
problem PKUML08 which has 501,501 equations
and 33,554,431 non-zeros can be solved under
512MB memory. The elapsed time of out-of-
core tests are not as steady as ones the in-core
tests, since out-of-core procedure is related to the
schedule of disk I/O of the operation system. The
results of our tests are all taken from the average
of 3 runs.

10 Conclusion

In this paper, a novel sparse jki LDU factoriza-
tion of QUSM arising in MLPG with two-level
unrolling and out-of-core strategies is discussed
in terms of algorithms and their implementations.
A definition of super-equations based on the non-
zero pattern of the matrix A, as well as master-
equation based on the non-zero pattern of the
factor L and U, are introduced. In our tests,
larger unrolling depths for both k-loop and j-loop
are achieved based on master-equation and cor-

responding storage scheme. Two-level loop un-
rolling sparse LDU factorizations have been im-
plemented and carefully tested. A discussion of
out-of-core strategies is included to speedup the
solving of large-scale applications. The numeri-
cal tests showed that the proposed solution proce-
dure is very efficient in terms of elapsed time. The
entire solution pipelining provides friendly inter-
face to the users. The proposed procedure signif-
icantly improved the efficiency of MLPG and can
be widely used as the default direct solver in en-
gineering computational mechanics methods with
quasi-unsymmetric sparse stiffness matrices.

Acknowledgement: This research was partially
sponsored by National Natural Science Founda-
tion of China (grant nos. 10232040, 10572002
and 10572003).

References

Amestoy, R. P.; Enseeiht-Irit; Davis, A. T.;
Duff, S. I. (2004): Algorithm 837: AMD, an ap-
proximate minimum degree ordering algorithm.
ACM Trans. Math. Soft., vol. 30, no. 3, pp. 381-
388.

Atluri, S. N. (2004): The Meshless Local Petrov-
Galerkin (MLPG) Method for Domain & Bound-
ary Discretizations. Tech Science Press, Los An-
geles, CA.

Atluri, S. N.; Han, Z. D.; Rajendran, A. M.
(2004): A new implementation of the meshless fi-
nite volume method, through the MLPG “Mixed”
approach, CMES: Computer Modeling in Engi-
neering & Sciences, vol. 6, no. 6, pp. 491-513.

Atluri, S. N.; Liu H. T.; Han, Z. D. (2006a):
Meshless Local Petrov-Galerkin (MLPG) Mixed
Collocation Method For Elasticity Problems,
CMES: Computer Modeling in Engineering &
Sciences, vol.14, no. 3, pp. 141-152.

Atluri, S. N.; Liu H. T.; Han, Z. D. (2006b):
Meshless Local Petrov-Galerkin (MLPG) Mixed
Finite Difference Method for Solid Mechanics,
CMES: Computer Modeling in Engineering &
Sciences, vol.15, no. 1, pp. 1-16.

Atluri, S. N.; Shen, S. (2002a): The Meshless Lo-
cal Petrov-Galerkin (MLPG) Method. Tech Sci-

132 Copyright c© 2007 Tech Science Press CMES, vol.17, no.2, pp.115-134, 2007

ence Press, Los Angeles, CA.

Atluri, S. N.; Shen, S. (2002b): The meshless
local Petrov-Galerkin (MLPG) method: A sim-
ple and less costly alternative to the finite element
and boundary element methods. CMES: Comput.
Modeling Engrg. Sci., vol. 3, no. 1, pp. 11-52.

Atluri, S. N.; Shen, S. (2005): The basis of
meshless domain discretization: the meshless lo-
cal Petrov-Galerkin (MLPG) method. Advances
in Computational Mathematics, vol. 23, pp. 79-
93.

Atluri, S. N.; Zhu, T. (1998): A new meshless
local Petrov-Galerkin (MLPG) approach in com-
putational mechanics. Comput. Mech. J., vol. 22,
pp. 117-127.

Atluri, S. N.; Zhu, T. (2000): The meshless lo-
cal Petrov-Galerkin (MLPG) approach for solving
problems in elastostatics. Comput. Mech. J., vol.
25, pp. 169-179.

Babuska, I.; Melenk, J. M. (1997): The partition
of unity method, Int.J. Num. Meth. Eng., vol. 40,
no. 4, pp. 727-758.

Batra, R. C.; Ching, H. K. (2002): Anal-
ysis of elastrodynamic deformations near a
crack/notch tip by the Meshless Local Petrov-
Galerkin (MLPG) method, CMES: Computer
Modeling in Engineering & Sciences , vol. 3, no.
6, pp. 717-730.

Belytschko, T.; Lu, Y.Y.; Gu, L. (1994):
Element-free Galerkin methods. Internat. J. Nu-
mer. Mech. Engrg., vol. 37, pp. 229-256.

Chen, P.; Runesha, H. B.; Nguyen, D. T.; Tong,
P.; Chang, T. Y. P. (2000): Sparse algorithms for
indefinite systems of linear equations. Comput.
Mech. J., vol. 25, no. 1, pp. 33-42.

Chen, P.; Sun, S. (2005): A new high perfor-
mance sparse static solver in finite element anal-
ysis with loop-unrolling. Acta Mechanica Solida
Sinica, vol. 18, no. 3, pp. 248-255.

Chen, P.; Zheng, D.; Sun, S.; Yuan, M. (2003):
High performance sparse static solver in finite el-
ement analyses with loop-unrolling. Adv. Engng.
Software, vol. 34, pp. 203-215.

Ching, H. K.; Batra, R. C. (2001): Determi-
nation of crack tip fields in linear elastostatics

by the Meshless Local Petrov-Galerkin (MLPG)
method, CMES: Computer Modeling in Engineer-
ing & Sciences , vol. 2, no. 2, pp. 273-289.

Damhaug, A. C.; Reid, J.; Bergseth, A. (1999):
The impact of an efficient linear solver on finite
element analysis. Comput. Struct., vol. 72, pp.
594-604.

Demmel, J. W.; Eisenstat, S. C.; Gilbert, J. R.;
Li, X. S.; Liu, J. W. H. (1999): A supernodal
approach to sparse partial pivoting. SIAM J. Ma-
trix Analysis and Applications, vol. 20, no. 3, pp.
720-755.

Dowd, K.; Severance, C. R. (1998): High per-
formance computing, 2nd ed. OReilly& Asso-
ciates, Cambridge: Sebastopol, CA.

Duff, I.; Erisman, A.; Reid, J. (1989): Direct
methods for sparse matrices. Clarendon Press,
Oxford.

Duff, I.; Reid, J. (1983): The multifrontal so-
lution of indefinite sparse symmetric linear equa-
tions. ACM Trans. Math. Soft., vol. 9, pp. 302-
325.

Fellipa, C. A. (1975): Solution of linear equa-
tions with skyline-stored symmetric matrix. Com-
put. Struct., vol. 5, no. 1, pp. 13-29.

Gao, L.; Liu, K.; Liu, Y. (2006): Applications
of MLPG method in dynamic fracture problems.
CMES: Computer Modeling in Engineering &
Sciences, vol. 12, no. 3, pp. 181-195.

George, A.; Liu, W. H. (1981): Computer so-
lution of large sparse positive definite systems.
Prentice-Hall , Englewood Cliffs, NJ.

Gu, Y. T.; Liu, G. R. (2001): A Meshless Local
Petrov-Galerkin (MLPG) formulation for static
and free vibration analysis of thin plate, CMES:
Computer Modeling in Engineering & Sciences,
vol.2, no. 4, pp. 463-476.

Han, Z. D.; Atluri, S. N. (2004a): Meshless local
Petrov–Galerkin (MLPG) approaches for solving
3D problems in elasto-statics, CMES: Computer
Modeling in Engineering & Sciences, vol.6, no.
2, pp. 169-188.

Han, Z. D.; Atluri, S. N. (2004b): A Meshless
Local Petrov-Galerkin (MLPG) approaches for
solving 3-dimensional elasto-dynamics, CMC:

A New Quasi-Unsymmetric Sparse Linear Systems Solver for MLPG 133

Computers, Materials & Continua, vol.1, no. 2,
pp. 129-140.

Han, Z. D.; Liu H. T.; Rajendran, A. M.;
Atluri, S. N. (2006): The Applications of Mesh-
less Local Petrov-Galerkin (MLPG) Approaches
in High-Speed Impact, Penetration and Perfora-
tion Problems, CMES: Computer Modeling in En-
gineering & Sciences, vol.14, no. 2, pp. 119-128.

Han, Z. D.; Rajendran, A. M.; Atluri, S. N.
(2005): Meshless local Petrov–Galerkin (MLPG)
approaches for solving nonlinear problems with
large deformations and rotations, CMES: Com-
puter Modeling in Engineering & Sciences,
vol.10, no. 1, pp. 1-12.

Karypis, G.; Kumar, V. (1998): A fast and high
quality multilevel scheme for partitioning irregu-
lar graphs. SIAM J. Sci. Comput., vol. 20, no. 1,
pp. 359-392.

Lancaster, P.; Salkauskas, K. (1981): Sur-
faces generated by moving least squares methods.
Math. Comput., vol. 37, no. 155, pp. 141-158.

Li, X. S. (2005): An overview of superLU: Algo-
rithms, implementation, and user interface. ACM
Trans. Math. Soft., vol. 31, no. 3, pp. 302-325.

Lin, H.; Atluri, S. N. (2000): Meshless Local
Petrov-Galerkin (MLPG) method for convection-
diffusion problems, CMES: Computer Modeling
in Engineering & Sciences, vol. 1, no. 2, pp. 45-
60.

Liu, H. T.; Han, Z. D.; Atluri, S. N. (2006a):
Meshless Local Petrov-Galerkin (MLPG) Mixed
Collocation Method for Elasticity Problems,
CMES: Computer Modeling in Engineering &
Sciences, In press.

Liu H. T.; Han Z. D.; Rajendran, A. M; Atluri,
S. N. (2006b): Computational Modeling of Im-
pact Response with the RG Damage Model and
the Meshless Local Petrov-Galerkin (MLPG) Ap-
proaches, CMC: Computers, Materials & Con-
tinua, In press.

Long, S. Y.; Atluri, S. N. (2002): A Meshless
Local Petrov-Galerkin method for solving the be-
ding problem of a thin plate, CMES: Computer
Modeling in Engineering & Sciences, vol. 3, no.
1, pp. 53-63.

Nayroles, B.; Touzot, G.; Villon, P. (1992):
Generalizing the finite element method: diffuse
approximation and diffuse elements. Comput.
Mech., vol. 10, no. 5, pp. 307-318.

Nguyen, D. T.; Qin, J.; Chang, T. Y. P.; Tong,
P. (1997): Efficient sparse equation solver with
unrolling strategies for computational mechanics.
In Proc. of the ICES’97 conf., pp. 676-81, Costa
Rica.

Nguyen, E. G.; Peyton, B. W. (1993): Block
sparse Cholesky algorithm on advanced unipro-
cessor computers. SIAM J. Sci. Comput., vol. 14,
no. 5, pp. 1034-55.

Pecher, R.; Elston, S.; Raynes, P. (2006): Mesh-
free Solution of Q-tensor Equations of Nemato-
statics Using the MLPG Method, CMES: Com-
puter Modeling in Engineering & Sciences, vol.
13, no. 2, pp. 91-102.

Powell, M. J. D. (1992): The Theory of Radial
Basis Function Approximation in 1990. Advances
in Numerical Analysis, vol. 2, pp. 105-210.

Qian, L. F.; Batra, R. C.; Chen, L. M. (2003):
Elastostatic deformations of a thick plate by using
a higherorder shear and normal deformable plate
theory and two Meshless Local Petrov-Galerkin
(MLPG) methods, CMES: Computer Modeling in
Engineering & Sciences, vol. 4, no. 1, pp. 161-
176.

Raju, I. S.; Phillips, D. R. (2003): Further de-
velopments in the MLPG method for beam prob-
lems, CMES: Computer Modeling in Engineering
& Sciences, vol. 4, no. 1, pp. 141-160.

Runesha, H. B.; Nguyen, D. T. (2000): Vector-
sparse solver for unsymmetrical matrices. Adv.
Engng. Software, vol. 31, pp. 563-595.

Shepard, D. (1968): A two-dimensional function
for irregularly spaced points. In Proc. of ACM
Nat’l Conf., pp. 517-524.

Sherman, A. H. (1975): On the efficient Solution
of Sparse Systems of Linear and Nonlinear Equa-
tions. PhD thesis, Dept. of Computer Science,
Yale University, 1975.

Sladek, J.; Sladek, V.; Atluri, S. N. (2001): A
pure contour formulation for the meshless local
boundary integral equation method in thermoelas-

134 Copyright c© 2007 Tech Science Press CMES, vol.17, no.2, pp.115-134, 2007

ticity, CMES: Computer Modeling in Engineering
& Sciences, vol. 2, no. 4, pp. 423-434.

Sladek, J.; Sladek, V.; Wen, P. H.; Aliabadi,
M. H. (2006): Meshless Local Petrov-Galerkin
(MLPG) Method for Shear Deformable Shells
Analysis, CMES: Computer Modeling in Engi-
neering & Sciences, vol. 13, no. 2, pp. 103-118.

Sladek, J.; Sladek, V.; Zhang, Ch.; Tan,
C. L. (2006): Meshless Local Petrov-Galerkin
Method for Linear Coupled Thermoelastic Anal-
ysis, CMES: Computer Modeling in Engineering
& Sciences, vol. 16, no. 1, pp. 57-68.

Tang, Z.; Shen, S.; Atluri, S. N. (2003): Anal-
ysis of materials with strain-gradient effects: a
meshless local Petrov– Galerkin (MLPG) ap-
proach, with nodal displacements only, CMES:
Computer Modeling in Engineering & Sciences,
vol. 4, no. 1, pp. 177-196.

Vavourakis, V.; Sellountos, E. J.; Polyzos,
D. (2006): A comparison study on different
MLPG(LBIE) formulations, CMES: Computer
Modeling in Engineering & Sciences, vol.13, no.
3, pp. 171-184.

Wilson, E. L.; Dovey, H. H. (1978): Solution or
reduction of equilibrium equations for large com-
plex structural system. Adv. Engng. Software,
vol. 1, no. 1, pp. 19-26.

Yuan, W.; Chen, P.; Liu, K. (2006): High per-
formance sparse solver for unsymmetrical linear
equations with out-of-core strategies and its ap-
plication on meshless methods. Applied Mathe-
matics and Mechanics, vol. 27, no. 10, pp. 1339-
1348.

Zheng, D.; Chang, T. Y. P. (1995): Parallel
Cholesky method on MIMD with shared memory.
Comput. Struct., vol. 56, no. 1, pp. 25-38.

