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Application of Meshfree Method to Elastic-Plastic Fracture Mechanics
Parameter Analysis
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Abstract: The element-free Galerkin (EFG)
method is applied to the calculation of elastic-
plastic fracture mechanics parameters such as the
J-integral and T*-integral. The fields of displace-
ment, strain and stress for a crack problem are ob-
tained using the elastic-plastic EFG method. Then
the elastic-plastic fracture mechanics parameters
J-integral and T*-integral are calculated from path
and domain integrals. In the finite element analy-
sis, paths for the path integral and domains for the
domain integral are selected depending on finite
element mesh division. On the other hand, they
can be arbitrarily selected in the EFG method, and
we can use a simple integral path and domain such
as a circular shape surrounding a crack tip, which
can provide efficient numerical integral formulae
for the path and domain integrals. In a crack
growth problem, the simple integral path and do-
main can easily move together with the crack tip,
as the crack tip advances. This paper presents
a method for calculating the J-integral and T*-
integral in a framework of the EFG method. The
proposed method is applied to both a stationary
crack problem and a stable crack growth problem.
The results obtained from the EFG method are
compared with those of the finite element method
and experiments to show the effectiveness of the
EFG method to the elastic-plastic fracture me-
chanics parameter analysis.
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1 Introduction

It is necessary to calculate fracture mechanics pa-
rameters of a crack in evaluating the integrity of
a cracked structure. When materials with high
toughness are used as structural materials, duc-
tile fracture is expected as a fracture mode. In
such a case, elastic-plastic fracture mechanics pa-
rameters should be evaluated for the crack. The
J-integral [Rice, J. R. (1968)] and T*-integral
[Atluri, S. N., Nishioka, T. and Nakagaki, M.
(1984)] are typical elastic-plastic fracture me-
chanics parameters.

In the case of stable crack growth, the J-integral
loses path-independence, hence loses its physi-
cal meaning and the T*-integral should be used
instead of the J-integral [Miyazaki, N. and Nak-
agaki, M. (1995)]. Integral forms of fracture
mechanics parameters such as the J-integral and
T*-integral can be calculated using the results
of a finite element (FE) analysis. For a crack
growth problem, it is necessary to move finite el-
ements or to remesh a finite element model in
the vicinity of a crack tip after crack propaga-
tion [Nishioka, T., Furutuka, J., Tchouikov, S.
and Fujimoto, T. (2002)] [Fujimoto, T., Nish-
ioka, T. (2006)] [Nishioka, T., Tchouikov, S.,
Fujimoto, T. (2006)]. In such a case, integral
paths and domains are usually constrained by
the FE division. That is, the integral paths are
usually selected as passing through the integral
points of finite elements or the nodes of finite
elements, at which the stresses and strains are
made smooth. It is also cumbersome to move
the integral paths and integral domains together
with the crack tip, because it is necessary to re-
define the integral paths and domains by relating
them with finite elements. Meshfree methods that
are the element-free Galerkin (EFG) method [Be-
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lytschko, T., Lu, Y. Y. and Gu, L. (1994)], the
meshless local Petrov-Galerkin (MLPG) method
[ Atluri, S. N. and Zhu, T. (1998)], the smoothed
particle hydrodynamics (SPH) method [ Libersky,
L. D., Petschek, A. G., Carney, T. C., Hipp, J.
R. and Allahdadi, F. A. (1993)] and other meth-
ods are widely applied to many problems which
are nonlinear, crack, large deformation and 3-
dimensional problem [Chen, W. H. and Guo, X.
M. (2001)] [Chen, W. H., Chen, C. H. (2005)]
[ Han, Z. D. and Atluri, S. N. (2004)] [Han, Z.
D., Rajendran, A. M., Atluri, S. N. (2005)] [Gao,
L., Liu, K., Liu, Y. (2006)] [ Randles, P. W. and
Libersky, L. D. (1996)]

The element-free Galerkin (EFG) method [Be-
lytschko, T., Lu, Y. Y. and Gu, L. (1994)], one of
meshfree methods, is a method alternative to the
FE method. When the EFG method is used, the
integral paths and domains for the calculation of
elastic-plastic fracture mechanics parameters can
be arbitrarily selected in the EFG method, and we
can use a simple integral path and domain such as
a circular shape surrounding the crack tip, which
can provide efficient numerical integral formulae
for path and domain integrals. In a crack growth
problem, the simple integral paths and domains
can easily move together with the crack tip, be-
cause they are free from finite elements. Several
papers have published on the application of the
EFG method to the calculation of the J-integral
[Wu, C. D., He, P. X. and Li, Z. (2002)] [ Rao, B.
N. and Rahman, S. (2004)] [ Kargarnovin, M. H.,
Toussi, H. E. and Fariborz, S. J. (2004)], but there
has been no paper concerning the efficient compu-
tation of elastic-plastic fracture mechanics param-
eters that utilizes the features of the EFG method.
This paper presents a method for calculating the
J-integral and T*-integral in the framework of the
EFG method. The proposed method is applied to
both a stationary crack problem and a stable crack
growth problem.

2 Method of analysis

2.1 Weak form of elastic-plastic element-free
Galerkin method

A weak form of the EFG method for elastic-
plastic problems is described in the following.
Based on the hypothesis that the elastic strain
εεεe and the plastic strain εεεp are independent each
other, the total strain εεε is written in separable form
as follows:

εεε= εεεe +εεεp (1)

The incremental form of strain is given as:

Δεεε= Δεεεe +Δεεεp (2)

A weak form for the EFG method is given by the
following equation including a penalty factor α in
order to impose the essential boundary conditions.∫

V
δΔεεεT (σσσN−1 +Δσσσ)dV

−
∫

S
δΔuT (T

N−1 +ΔT)dS

−
∫

V
δΔuT (FN−1 +ΔF)dV

+
∫

Su

αδΔuT (u−u)dS = 0

(3)

By using the nodal displacement vector, the fol-
lowing discrete form is derived.

∫
V
[δΔqT BTσσσN−1 +δΔqT BT (De +Dp)BΔq]dV

−
∫

S
δΔqT NT (T

N−1 +ΔT)dS

−
∫

V
δΔqT NT (F

N−1 +ΔF)dV

+
∫

Su

αδΔqT NT (u−u)dS = 0

(4)

where σσσN−1, Δσσσ, T
N−1

, ΔT, F
N−1

, ΔF and Δu are
stress, incremental stress, external traction, incre-
mental external traction, body force, incremental
body force and incremental displacement, respec-
tively. δ denotes the variational operator. Su-
perscript N-1 denotes the previous (N-1)th time
step. B, De, Dp and N denote the strain-nodal dis-
placement matrix, the elastic stress-strain matrix,
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the plastic stress-strain matrix, the interpolation
function matrix determined from the moving least
square (MLS) method, respectively. The J2 flow
theory is used to make the plastic stress-strain ma-
trix Dp. Since δΔq is arbitrary virtual displace-
ment, we obtain the incremental form of equilib-
rium equation of a total system in the following
form:

KΔq = ΔFa +Fp +R (5)

where
K = elastic-plastic stiffness matrix including a
term due to the penalty factor,
Δq = incremental nodal displacement vector,
ΔFa = incremental external force vector,
Dp = vector due to the penalty factor,
R = residual force vector

The incremental nodal displacements within each
load increment are obtained by solving equation
(5) for Δq. The total nodal displacements are ob-
tained by accumulating the incremental ones in
each step. If the internal force is equilibrium with
the external force, R becomes zero, otherwise the
imbalance force is corrected in each increment by
the Newton-Raphson scheme. Background cells
are needed to perform integration over analyzed
region. Triangles generated by using the De-
launay tessellation are used as background cells.
Either the Lagrange multiplier method or the
penalty function method is utilized for the treat-
ment of the essential boundary conditions in the
EFG method. We employ the penalty function
method in the present analysis.

B and N in equation (4) are written by using
a local shape function determined by the MLS
method. The local shape function is made from
the sampling nodes in the domain of influence. In
the present EFG method, the linear basis function
p(x) is used, and the approximate displacement
function uh(x) can be written as follows:

p(x)T = [1,x,y] (6)

uh(x) = p(x)T a(x) (7)

a(x) is determined so as to minimize the follow-
ing function.

J =
n

∑
I

w(x−xI)[p(x)Ta(x)−uI ]2 (8)

The following exponential type of a weight func-
tion is employed in this analysis.

wI(dI) =

⎧⎪⎨
⎪⎩

e−(dI/C)−e−(dmI/C)2

1−e−(dmI/C)2 if dI ≤ dmI

0 if dI > dmI

(9)

where dI = ‖x−xI‖, C = β · dmI. β is a parame-
ter which determines configuration of the weight
function.

The trianglular background cells generated by the
Delaunay tessellation are used to perform do-
main integration. The information of triangles is
generated by the Delaunay tessellation using the
initial node data of the EFG method. Search-
ing nodes within a domain of influence to make
the shape function of the MLS method consumes
large amount of computational time. The shape
functions of the MLS method are made from sam-
pling nodes searched by the directed graph the-
ory [Hagihara, S., Tsunori, M., Ikeda, T. and
Miyazaki, N. (2003)]. The directed graph also
uses the information of the triangles generated by
the Delaunay tessellation. The searching nodes to
make the shape function by directed graph theory
can reduce the searching time for nodes.

2.2 Implementation of J-integral for EFG
method

The path independent parameter J-integral pro-
posed by Rice (1968) is well known to fracture
mechanics problems. The mathematical represen-
tation for the J-integral on the contour as shown in
Fig. 1 is given as follows:

J =
∫

Γ
[Wn1 − tiui,1]dΓ (10)

where W is the strain energy density defined by
the following equation.

W =
∫ εi j

0
σi jdεi j

where σi j , εi j and ui are the components of stress
tensor, strain tensor and displacement vector, re-
spectively. ( ),1 denotes ∂ ( )/∂X1. The summa-
tion convention is applied to the subscripts. Γ is
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an arbitrary contour enclosing a crack tip coun-
terclockwise in Fig. 1, dΓ is an infinitesimal arc-
length along Γ, and ti is the traction vector. Γρ
is a contour enclosing the vicinity of the crack-
tip. n1 is a component of X1 direction of a nor-
mal vector n along Γ. Since strain, stress and

Figure 2: Circular integral path for J-integral and
mapping of integral path to ξ -axis

displacement at an arbitrary point can be calcu-
lated by the MLS method, a line integral is im-
plemented on an arbitrary circle independent of
nodes and background cells. To perform the inte-
gration given by Eq. 10 along the circle we define
the local ξ -coordinate along the circle as shown
in Fig. 2. When the function is integrated along
the arc from θ1 to θ2, the arbitrary point on the
circle, the center of which is identical to the crack
tip shown in Fig. 2, is represented as follows:{

x = acosθ
y = asinθ (11)

where a is the radius of the circle. θ is the angle
as shown in Fig. 2. The Jn along Γc which is the
arc of the circle from θ1 to θ2 is transformed to
the following equation, using the local coordinate
ξ .

Jn =
∫

Γc

[W n1− tiui,1]dΓ

=
∫ 1

−1

[{
W cosθ −

(
tx

∂ux

∂x
+ ty

∂uy

∂x

)}
a(θ2 −θ1)

2

]
dξ

(12)

where⎧⎪⎨
⎪⎩

tx = σx(x,y)cosθ +τxy(x,y) sinθ

ty = σy(x,y) sinθ +τxy(x,y)cosθ

θ = 1
2 (θ1 +θ2)− 1

2(θ1 −θ2)ξ

Each Jn transformed to the local coordinate is
numerically calculated by the Gauss-Legendre
quadrature. J is obtained from summation of all
Jn as follows:

J = ∑Jn (13)

2.3 Implementation of T*-integral for EFG
method

The path independent integral parameter T*-
integral proposed by Atluri et al. [Atluri, S. N.,
Nishioka, T. and Nakagaki, M. (1984)] is used
to detect the crack tip severity of a propagating
crack. This parameter is useful to problems sub-
jected to loading and unloading in elastic-plastic
range such as a crack growth problem. The
mathematical representation for the T*-integral is
given as follows, for the domain shown in Fig.3:

T∗ =
∫

Γρ
[Wn1 − tiui,1]dΓ

=
∫

Γ
[Wn1 − tiui,1]dΓ−

∫
V−Vρ

[W,1n1 −σi jεi j,1]dV

= JL − JD

(14)

The T*-integral is separable to a line integral JL

Figure 3: Integral path and domain for T*-integral
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Figure 4: Circular integral path and domain for
T*-integral and mapping of integral domain to
ξ −η coordinate system

and a the J-integral, we can obtain it from the
same procedure as shown in 2.2. Hereafter we
will show how to calculate the domain integral
JD in detail. As shown in Fig.4, a subdomain is
defined as the domain ranging from θ1 to θ2 and
from a1 to a2. An arbitrary point in the subdomain
defined by a and θ can be expressed by local co-
ordinates (ξ ,η) shown in Fig. 4, as follows:{

a = 1
2(a1 +a2)− 1

2 (a1−a2)ξ

θ = 1
2(θ1 +θ2)− 1

2 (θ1−θ2)η
(15)

Then the JD of the subdomain, JDn, can be ob-
tained by performing the integration with respect
to the local coordinates (ξ , η), as follows:

JDn =
∫ ∫

f (x,y)dxdy

=
∫ 1

−1

∫ 1

−1
f (acosθ ,asinθ )det[J]dξdη

(16)

[J] =

⎡
⎢⎣

dx
dξ

dy
dξ

dx
dη

dy
dη

⎤
⎥⎦ (17)

where f (acosθ ,asinθ ) is an integrand in JD ex-
pressed by the local coordinates. det |J| denotes
the determinant of the Jacobian matrix [J]. The

JDn can be obtained numerically by the Gauss-
Legendre quadrature, using the solution of the
EFG method. Finally the T*-integral is obtained
from summation of all JLn and JDn as follows:

T∗ = ∑(JLn −JDn) (18)

Near a crack-tip area for the FE analysis, discon-
tinuity between elements is conspicuous, i.e. the
stresses and strains obtained from the analyses are
usually unreliable within Vρ . In order to circum-
vent such a problem, Vρ is set to a finite value. in
general [Brust, F. W., Nishioka, T., Atluri, S. N.
and Nakagaki, M. (1985)]. We can obtain con-
tinuous displacements, strains, and stresses at the
arbitrary point due to using the MLS method of
EFG method, so that Vρ can be set to zero and still
reliable T*-integral is secured. Thus, the accurate
and meaningful crack-tip state is evaluated. Since
the stress and strain can be obtained at an arbi-
trary point, we can use an arbitrary circular path
and quadrature point for calculation of both the J-
integral and T*-integral. The circular paths and
domains can be moved to any place together with
a crack tip, as shown in Fig.5, when the crack tip
advances. We can obtain these fracture mechanics
parameter easily by using the EFG method.

Figure 5: Circular integral path moving together
with crack tip

3 Results and Discussion

3.1 J-integral evaluation for stationary crack
problem

The fracture mechanics parameter J-integral is
evaluated using line integration for a stationary
crack problem of a center cracked plate under uni-
form tension. An elastic-plastic analysis is per-
formed for the quarter model shown in Fig. 6,
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Figure 6: Quarter model of center cracked plate
under tension

in which the dimensions and boundary conditions
are depicted. A sample of the regular node config-
uration and triangular background cells are shown
in Fig. 7. As mentioned in 2.1, the integral
paths in the EFG method can be selected arbi-
trarily without constraint of finite elements. The
circular paths surrounding the crack tip shown in
Fig. 8 are used in the present analysis. Follow-
ing are the material properties used in the present
analysis:

E = 206GPa, ν = 0.3, σY = 190MPa,

H = 220MPa

where E, ν , σY and H are Young’s modulus, Pois-
son’s ratio, yield stress and rate of strain hard-
ening respectively. These material properties are
corresponding to A533B Class 1 steel [Miyazaki,
N.; Nakagaki, M. (1995)]. A bilinear approx-
imation is employed for the stress-strain curve.

At first, the elastic J-integral values calculated
from the EFG analysis are compared with a refer-
ence solution obtained from the conversion of the
stress intensity factor given in the handbook [Mu-
rakami, Y. (1987)] into the energy release rate.
The path dependence of the J-integral normalized
by the reference solution is shown in Fig. 9 for
three EFG models, 176-nodes model, 651-nodes
model and 4941-nodes model. Although the 176-
nodes model and 651-nodes model give erroneous
J-values at the paths near the crack tip, they pro-
vide accurate J-values at the paths 3 through 6
far from the crack tip. On the other hand, the

(a) Node configuration (b) Triangular back-
ground cell

Figure 7: Node configuration and triangular back-
ground cells for EFG analysis (651-node model)

Figure 8: Integral paths for J-integra

Figure 9: Path depedence of elastic J-integral nor-
malized by reference solution

4941-nodes model provides accurate results for
all paths. The results of the elastic-plastic J-
integral are compared between the EFG method
and the FE method. Figure 10 shows the compar-
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Figure 10: Comparison of Elastic-plastic J-
integral among several EFG models and very fine
FE model

ison among several EFG models and a very fine
FE model. The FE solutions are obtained from the
virtual crack extension method applied to a very
fine regular mesh with 2400 eight-noded isopara-
metric elements and 7401 nodes. As the number
of nodes increases in the EFG model, the results
approach to those of the very fine FE model, and
the 4941-nodes model of the EFG method gives
almost the same results as the very fine FE model.

3.2 Evaluation of J-integral and T*-integral
for stable crack growth

The J-integral and T*-integral are evaluated for
stable crack growth in a compact tension (CT)
specimen. Figure 11 shows a half model of the CT
specimen used in the present analysis, in which
the dimensions and boundary conditions are de-
picted. Figures 12 shows the node configuration
and triangular background cells used in the analy-
sis. The total number of nodes is 514. The nodes
are concentrated in the vicinity of the crack tip.

A generation phase analysis for stable crack
growth is performed to obtain the variations of
the J-integral and T*-integral with crack growth.
The EFG analysis is performed by controlling the
displacement at a loading point and crack growth
to trace the experimentally determined a half of
displacement at the loading point versus crack
growth curve shown in Fig. 13 [Miyazaki, N.

Figure 11: Half model of CT specimen

(a) Node configuration

(b) Triangular background cells

Figure 12: Node configuration and triangular
background cells for EFG analysis

and Nakagaki, M. (1995)]. Such crack growth is
simulated by releasing the constraint ahead of the
crack tip. The circular paths shown in Fig. 14
are employed to calculate the J-integral. In ad-
dition to the path integral, the domain integral is
required to calculate the T*-integral. Figure 15
shows an integral path and a mesh for domain in-
tegral for the T*-integral. The circular paths and
the mesh shown in Figs 14 and 15 moves together
with the crack tip, as the crack tip advances. The
CT specimen is made of A533B Class 1 steel and
the same material properties as in 3.1 are used in
the present analysis. A bilinear approximation for
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Figure 13: A half of displacement at loading point
versus crack growth obtained from experiment

Figure 14: Integral paths for J-integral

Figure 15: Integral path and mesh for domain in-
tegral for T*-integral

stress strain curve is also assumed in the present
analysis.

Figures 16(a) and 16(b) show the path dependence
of the elastic-plastic fracture mechanics param-
eters, J-integral and T*-integral. The J-integral

(a) J-integral

(b) T*-integral

Figure 16: Path dependence of elastic-plastic
fracture mechanics parameters for stable crack
growth

shows the path dependence after crack growth,
which means that it does not represent the crack
tip severity after crack growth. On the other hand,
the T*-integral shows good path independence af-
ter crack growth. Thus it is valid fracture mechan-
ics parameter representing the crack tip severity
even after crack growth. Figure 17 shows a J-
integral versus crack extension curve, that is, a J-
resistance curve obtained form the EFG analysis,
together with those evaluated from the simple for-
mulae JD(EXP) by Ernst [Ernst, H. A. (1981)] and
JMC(EXP) by Merkle and Corten [Merkle, J. G.
and Corten, H. T. (1974)], using the experimen-
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Figure 17: J-resistance curve

Figure 18: T*-resistance curve

tally obtained displacement at the loading point.
The T*-resistance curve obtained from the EFG
analysis is shown in Fig. 18, together with that
of the FEM analysis [Miyazaki, N. and Nakagaki,
M. (1995)]. The J-resistance curve obtained from
the EFG analysis agrees well with those of exper-
imental results, and the T*-resistance curve ob-
tained from the EFG analysis agrees well that of
the FE analysis. It is therefore concluded that the
EFG method can be used to evaluate the elastic-
plastic fracture mechanics parameters for stable
crack growth. In comparison of the J-resistance
curve and the T*-resistance curve, the former in-

creases with crack growth, and the latter keeps
almost constant during stable crack growth. So
such a constant T*-value can be used as a mate-
rial property for stable crack growth, and we can
perform the application phase analysis of stable
crack growth and predict the behavior of stable
crack growth in an arbitrary structure.

4 Conclusions

The EFG method is applied to both a stationary
crack problem and a stable crack growth prob-
lem. The J-integral is evaluated in the former
problem, and both J-integral and T*-integral are
evaluated in the latter problem. The J-integral and
T*-integral based on the results obtained from the
EFG analysis are compared with those of the FE
analysis and experimental results. Compared with
the FE method, the EFG method provides reason-
able accurate J-integral and T*-integral. In the fi-
nite element analysis, paths for the path integral
and domains for the domain integral are selected
depending on finite element mesh division. On
the other hand, in the EFG method they can be ar-
bitrarily selected and easily moved together with
the advancing crack tip, and we can use a simple
integral path and domain such as a circular shape
surrounding a crack tip, which can provide effi-
cient numerical integral formulae for the path and
domain integrals. Due to such attractive features,
the EFG method can be used as an analytical tool
for elastic-plastic crack problems.
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