
Copyright c© 2007 Tech Science Press CMES, vol.17, no.1, pp.35-46, 2007

Dynamic Analysis of Piezoelectric Structures by the Dual Reciprocity
Boundary Element Method
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Abstract: The aim of the present work is to
show the formulation and application of the dual
reciprocity boundary element method (BEM) to
free vibrations of two-dimensional piezoelectric
structures. The piezoelectric materials are mod-
elled as homogenous, linear – elastic, transversal
isotropic and dielectric. Displacements and elec-
tric potentials are treated as generalized displace-
ments and tractions and electric charge flux densi-
ties are treated as generalized tractions. The static
fundamental solutions, which are required in the
proposed approach, are derived using the Stroh
formalism. The domain inertial integral is trans-
formed to the equivalent boundary integral using
the dual reciprocity method (DRM). The bound-
ary quantities are interpolated using constant el-
ements. The developed method is used to com-
pute frequencies and mode shapes of natural vi-
brations of two-dimensional piezoelectric struc-
tures. The boundary conditions are imposed us-
ing the condensation method. In this method, the
degrees of freedom, which correspond to the pre-
scribed generalized displacements are eliminated.
The eigenvalue problem is solved using the Lanc-
zos method. The numerical results computed by
the present method and finite element method are
compared with the available analytical solutions
given in the literature.

Keyword: piezoelectric material, coupled
fields, eigenvalue problem, dynamics, boundary
element method, dual reciprocity method.

1 Introduction

In piezoelectric materials, mechanical and elec-
tric fields are coupled, namely, they produce
an electric field when deformed or conversely,
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they deform when subjected to an electric field.
Piezoelectric materials are widely used as sen-
sors and actuators in smart structures and micro-
electro-mechanical systems (MEMS). The piezo-
electric phenomenon is also applied in ultrasonic
transducers, electromechanical filters and micro-
phones. Dynamic analysis of piezoelectric mate-
rials requires the solution of coupled electric and
mechanical partial differential equations of mo-
tion [Tiersten (1969)]. These equations, partic-
ularly for piezoelectric structures with arbitrary
geometries and boundary conditions, are usually
solved by numerical methods. One of the versatile
computer methods, which is intensively applied in
piezoelectricity in the last decade, is the boundary
element method (BEM). In this paper the BEM
[Brebbia and Dominguez (1992)] is implemented
to solve a free vibration problem of linear piezo-
electricity.

Recently the use of various methods has increased
in the area of the piezoelectric material analy-
sis. Heyliger and Brooks (1995) investigated the
free vibration problem of piezoelectric laminates
in cylindrical bending using analytical methods.
Analytical methods were also used by Benjed-
dou and Deu (2002) and Vel, Mever and Ba-
tra (2004) to solve the free vibrations problem
of 2D piezoelectric plates. Saravanos, Heyliger
and Hopkins (1997) used layerwise mechanics
and the FEM to the dynamic analysis of piezo-
electric composite plates. Wang, Yong and Imai
(1999) used the FEM to analysis of the piezoelec-
tric vibrations of quartz plate resonators. Denda,
Araki and Yong (2004) derived the fundamental
generalized displacement solution for 2D piezo-
electric solids by the Radon transform. Dy-
namic fundamental solutions for piezoelectricity
in time-domain, frequency-domain and Laplace-
transform domain were also presented in Wang
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and Zhang (2005). The direct formulation of the
time – harmonic BEM was applied to the deter-
mination of the eigenfrequencies of piezoelectric
and general anisotropic solids. Recently Kogl and
Gaul (2000b, 2003) solved a free vibration prob-
lem of 3D anisotropic solids by the dual reci-
procity BEM.

The most popular piezoelectric materials are ce-
ramics. These piezoelectrics are solids, which
belong to the hexagonal symmetry class of the
crystals [Tiersten (1969)]. Piezoceramics have
anisotropic physical properties (both mechanical
and electrical), therefore in the present work ho-
mogeneous, transversal isotropic, linear elastic
and dielectric model of the piezoelectric material
is considered. The anisotropy of the material in-
creases the number of the material constants, and
derivation of the fundamental solutions becomes
difficult [Wang and Zhang (2005)].

The Stroh formalism [Ting (1996), Ting and
Wang (1997), Pan (1999)] is a powerful and el-
egant analytic technique for the anisotropic elas-
ticity, which is expanded to the linear piezoelec-
tricity in this work. The formalism requires the
solution of the special eigenvalue problem with
respect to the material constants of the piezoelec-
tric. Derivation of the fundamental solutions in
frequency or time-domain is much more compli-
cated [Denda, Araki and Yong (2004)]. The dual
reciprocity boundary element method allows the
use of the static fundamental solutions for dy-
namic problems [Brebbia and Dominguez (1992),
Kogl and Gaul (2000a, 2000b), Kogl and Gaul
(2003)]. The dual reciprocity formulation is de-
rived from the reciprocal relation between a static
state and a dynamic state in which the inertia
forces are treated as body forces. This method is
used to transform the domain integral, which de-
pends on inertia, into the boundary integral. Af-
ter discretization the system matrices are indepen-
dent of time.

The advantages of the dual reciprocity BEM are:
application of the static fundamental solutions,
which have simpler form than the correspond-
ing fundamental solutions in time or frequency
– domain; the dual reciprocity method is a uni-
versal approach - it allows to analyze structures

subjected to body forces, to solve eigenvalue
and transient problems, using procedures, which
are similar to the finite element algorithms; this
method is also faster in comparison with fre-
quency and time-domain BEM approach, espe-
cially for the transient analysis.

The main drawback of the dual reciprocity BEM
is an additional interpolation of the generalized
displacements. To obtain more accurate results
the application of additional internal points is nec-
essary.

In this paper, the method proposed by Kogl and
Gaul (2000a) is applied to 2D linear piezoelectric-
ity, but the fundamental solutions are obtained by
the different method – the Stroh formalism. Also
the influence of electric boundary conditions and
the polarization direction is considered.

The Stroh formalism applied in the dual reci-
procity BEM gives the new, efficient and effective
numerical tool for solution of dynamic problems
of 2D linear piezoelectricity. The influence of the
polarization direction is also taken into account
using the Stroh formalism.

A numerical example is presented and it shows
that the dual reciprocity boundary element
method allows to analyze efficiently the free vi-
bration problem of linear piezoelectricity.

This paper is organized as follows. In section 2,
the dual reciprocity BEM for linear piezoelectric-
ity is briefly reviewed. In section 3, the Stroh
formalism is introduced and applied to obtain the
fundamental solutions. The Stroh formalism is
also used to investigate the influence of the polar-
ization direction. In section 4, the particular so-
lutions of the linear piezoelectricity operator are
proposed. In section 5, the eigenvalue problem
formulation is presented. In section 6, the numer-
ical examples are given to show accuracy and ap-
plications of the method. Finally, concluding re-
marks are given in section 7.

2 The dual reciprocity BEM formulation of
linear piezoelectricity

The coupled field equations of piezoelectricity are
given by the following system of partial differ-
ential equations [Tiersten (1969), Kogl and Gaul
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(2000a, 2000b)]:

Ci jkluk,li +eli jφ,li = ρ ü j −b j

eikluk,li −εilφ,li = 0
(1)

The tensors Ci jkl,eli j, εil denote elastic moduli,
measured in a constant electric field, piezoelec-
tric constants and dielectric constants, measured
at constant strains, respectively;uk is the displace-
ment vector, φ denotes the electric potential; b j is
the body force vector per unit volume and ρ de-
notes the density. Double dots denote the second
derivative with respect to time. In equations (1)
the intrinsic electric charge is neglected.

To get the classical boundary-initial value prob-
lem formulation, equations (1) must be completed
with the boundary conditions. The mechanical
and electric boundary conditions are:

Γu : ui = ūi; Γt : ti = t̄i
Γφ : φ = φ̄ ; Γq : q = q̄

(2)

In equations (2) ti denotes the tractions, q is the
charge flux density; Γu, Γt , Γφ and Γq denote
parts of the boundary Γ where displacements,
tractions, potentials and charge flux densities are
prescribed. The overbar denotes the prescribed
boundary conditions. These parts of the bound-
aries fulfill the following relations:

Γ = Γt ∪Γu = Γφ ∪Γq

Γt ∩Γu = /0

Γφ ∩Γq = /0

(3)

The initial conditions have a form:

uk (τ = 0) = u0
k, φ (τ = 0) = φ 0

u̇k (τ = 0) = u̇0
k, φ̇ (τ = 0) = φ̇ 0

(4)

The superscript 0 denotes the prescribed initial
condition and τ is time. The coupled field equa-
tions with boundary and initial conditions formu-
late the direct problem of linear piezoelectricity.

The boundary-initial value problem of linear
piezoelectricity can be formulated in a much more
convenient form using generalized quantities. The
following vectors are introduced:

UK =
{

uk

φ

}
; TJ =

{
t j

q

}
; BJ =

{
b j

0

}
(5)

where UK ,TJ and BJ are the generalized displace-
ment, traction and body force vector, respectively.
Then, the coupled field equations are given by the
operator equation:

LJKUK = DJKUK −BJ (6)

where LJK is the 2D elliptic operator of static
piezoelectricity and DJK is a differential operator,
which has a form:

DJK =

⎡
⎣ρ∂ 2

t 0 0
0 ρ∂ 2

t 0
0 0 0

⎤
⎦ (7)

In the above equation the operator ∂ 2
t is a differen-

tial operator, which denotes double differentiation
with respect to time.

In the present work homogeneous, transversal
isotropic, linear elastic and dielectric model of the
piezoelectric material is chosen. For this model,
the operator LJK , for the two - dimensional case,
has a form [Kogl and Gaul (2000a)]:

LJK =
[

c11∂11+c44∂22 (c13+c44)∂12 (e31+e15)∂12
c44∂11+c33∂22 e15∂11+e33∂22

sym −ε11∂11−ε33∂22

]
(8)

where ∂i j is a differential operator, which denotes
differentiation with respect to the spatial coordi-
nates. The coefficients ci j,ei j and εi j are the val-
ues of the elastic, piezoelectric and dielectric con-
stants, respectively.

The next step in the BEM formulation is applica-
tion of a reciprocity relation. This process is well
known [Brebbia nad Dominguez (1992), Kogl and
Gaul (2000a)]. The system of equations (6) is
weighted with a test function and integrated by
parts. Then, the piezoelectric reciprocity relation
has a form:∫
Ω

(LJKUKUMJ −LJKUMKUJ)dΩ

=
∫
Γ

(UMJTJ −TMJUJ)dΓ (9)

where UMJ is the test function and TMJ depends on
the derivative of the test function and Ω denotes
the region which is occupied by the piezoelectric
body. In this equation the generalized body force
vector is neglected.
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The fundamental solution UMK is given by the re-
lation:

LJKUMK = −δJMδ (10)

where δJM is the Kronecker delta and δ denotes
the Dirac distribution, TKJ depends on the deriva-
tive of the fundamental solution:

TMJ = CiJKlUMK,lni (11)

where CiJKl is the piezoelectric constitutive ten-
sor, which contains elastic, piezoelectric and di-
electric constants and ni denotes the unit outward
normal vector.

When the test function is chosen as a fundamen-
tal solution of the static piezoelectric operator LJK

and a limiting process to the boundary is done, the
boundary integral formula is given by:

cKJUJ +
∫
Γ

TKJUJdΓ

=
∫
Γ

UKJTJdΓ−
∫
Ω

UKJDJLULdΩ (12)

where cKJ denotes a free term coefficient at the
source point.

To obtain the fundamental solutions, the Stroh
formalism is used [Ting and Wang (1997), Pan
(1999), Dziatkiewicz and Fedelinski (2005a,
2005b)]. The derivation of the fundamental solu-
tion will be presented in detail in the next section.

The domain integral in equation (12), which de-
scribes the inertia effect, will be transformed
into the boundary integral using the recipro-
cal theorem between two static states [Brebbia
and Dominguez (1992), Kogl and Gaul (2000a,
2000b)].

Let the generalized displacements be approxi-
mated using a sum of functions multiplied by un-
known coefficients:

DJLUL ≈
M

∑
m=1

Fm
JNαm

N (13)

In the above equation the unknown coefficients
αm

N depend on time, but functions Fm
JN are time

independent. The functions Fm
JN are related to

the inhomogeneous differential equation of static
piezoelectricity:

LJKUm
KN = Fm

JN (14)

Weighting the equation above with the static fun-
damental solution UKJ , one can obtain:

∫
Ω

UKJFm
JNdΩ

= −cKJUm
JN −

∫
Γ

TKJUm
JNdΓ+

∫
Γ

UKJT m
JNdΓ

(15)

Using this new reciprocal relation and approxima-
tion of the generalized acceleration field leads to
the dual reciprocity formulation of the dynamic
piezoelectricity [Kogl and Gaul (2000)]:

cKJUJ +
∫
Γ

TKJUJdΓ =
∫
Γ

UKJTJdΓ+
M

∑
m=1

⎛
⎝cKJU

m
JN

+
∫
Γ

TKJUm
JNdΓ−

∫
Γ

UKJT m
JNdΓ

⎞
⎠αm

N (16)

To solve approximately the boundary integral
equation, the boundary element method is ap-
plied. The boundary Γ is divided into bound-
ary elements. The boundary generalized displace-
ments and tractions are approximated using shape
functions. In the present method constant bound-
ary elements are used. The coefficients αm

N are
calculated using collocation at boundary nodes
and internal nodes.

The operator DJK shows that the electric potential
has no influence on the inertia term, hence the ap-
proximation, using collocation, of the generalized
acceleration field has a special form:

DJKUK =
[

ρ üm

0

]
=

[
Fmm Fme

Fem Fee

][
αm

αe

]
(17)

where indices m and e denote the mechanical
and electric field respectively and üm denotes the
nodal values of the mechanical acceleration. The
vector coefficient αe can be eliminated from equa-
tion (17) and the vector coefficient α can be ex-
pressed using the generalized acceleration vector
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Ü , in the following matrix form:

α = ρF−1
∗ Ü (18)

where:

F−1
∗ =

[
F−1∗mm 0

−F−1
ee FemF−1∗mm 0

]
(19)

The submatrix F∗mm is equal to:

F∗mm = Fmm −FmeF−1
ee Fem (20)

The discretized equation (16) is applied to all
boundary nodes, and it leads to the following lin-
ear system of equations:

HU −GT = (HÛ −GT̂ )α (21)

where Û and T̂ denote the nodal values of the
particular solutions of equation (14), H denotes
a matrix which depends on derivatives of the fun-
damental solution, G is a matrix which depends
on the fundamental solution. The vectors U and
T contain discretized values of the boundary gen-
eralized displacements and tractions. Using ex-
pression (18) one can obtain the following system
of linear ordinary differential equations:

MÜ +HU = GT (22)

The mass matrix M is equal to:

M = ρ(GT̂ −HÛ)F−1
∗ (23)

In the DRM the system of ordinary differential
equation in time – domain (22) is similar to equa-
tions of the finite element method (FEM). The
present system of equations, with the boundary
and initial conditions is an approximated discrete
form of the boundary-initial value problem of lin-
ear piezoelectricity.

3 The Stroh formalism

Since piezoelectric materials are anisotropic, the
fundamental solutions are rather complicated,
even for the transversal isotropic model of the ma-
terial [Kogl and Gaul (2000a, 2000b)]. To obtain
the fundamental solutions, the Stroh formalism is

used. The Stroh formalism is a powerful and ele-
gant analytic technique for the anisotropic elastic-
ity [Ting (1996), Ting and Wang (1997)], which is
expanded to the linear piezoelectricity in this case
[Pan (1999), Dziatkiewicz and Fedelinski (2005a,
2005b)]. The orientation of the polarization di-
rection is also taken into account using this for-
malism. The formalism requires the solution of
the special eigenvalue problem with respect to the
material constants of the piezoelectric material.
The eigenvalues and eigenvectors, related to these
constants, are specially transformed according to
the polarization direction [Ting (1996)].

3.1 The fundamental solutions

In the Stroh formalism it is assumed that the field
of the generalized displacements has a form [Ting
and Wang (1997), Pan (1999), Dziatkiewicz and
Fedelinski (2005a, 2005b)]:

U = a f (z) (24)

where a is the unknown vector and f (z) is an an-
alytic complex function and z is a complex vari-
able:

z = x1 + px2 (25)

where x1 and x2 are the coordinates, p denotes the
unknown complex constant. Introducing equa-
tion (24) into the coupled field equations (1) for
a static case, the quadratic eigenvalue problem is
obtained:

{
Q+ p(R+RT )+ p2T

}
a = 0 (26)

where the matrices Q,R and T depend only on
the material constants. The above equation can
be transformed into the standard eigenvalue prob-
lem:

Nξ = pξ (27)

where:

N =
[ −T−1RT T−1

RT−1RT −Q (−T−1RT )T

]
, ξ =

[
a
b

]
(28)
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where the vector b is equal to:

b = −1
p

(Q+ pR)a (29)

It is known, that the eigenvalue problem (26) or
(27), in a two – dimensional case, gives three
pairs of complex conjugate eigenvalues and corre-
sponding eigenvectors. If pJ (J=1,2,3) are eigen-
values with a positive imaginary part, then:

pJ+3 = p̄J , aJ+3 = āJ, bJ+3 = b̄J (30)

where the overbar denotes the complex conjugate.
In this formulation only a quasi-isotropic mate-
rial can be analyzed, but the difference between
the solution based on a quasi-isotropic and a pure
isotropic model is negligible [Pan (1999)]. For
piezoelectric materials eigenvalues are distinct, so
it can be written that the solution (24) is equal to:

U =
3

∑
J=1

{aJ fJ(zJ)+ āJ fJ+3(z̄J)} (31)

where functions f1, . . ., f6 have arguments in the
form:

zJ = x1 + pJx2 (32)

Most often functions f have the same form, but
with different complex coefficients vector:

fJ(zJ) = qJ f (zJ),
fJ+3(z̄J) = q̄J f̄ (z̄J),

(33)

where the vector q must be determined. Let:

A =
[
a1 a2 a3

]
,

B =
[
b1 b2 b3

]
,

[ f (z∗)] = diag
[

f (z1) f (z2) f (z3)
]
,

q =
{

q1 q2 q3
}

.

(34)

Then equation (31) can be written in the form
[Pan (1999)]:

U = 2Re{A [ f (z∗)]q} (35)

Now, the fundamental solution can be obtained
in the following way. Let a generalized disloca-
tion be U∗ = (U+−U−) at the source point (x0

1,
x0

2) and the generalized force is T ∗ = (T−−T +).

Then the complex function fJ will have a form
[Pan (1999)]:

f (zJ) = ln(zJ − sJ) (36)

where:

sJ = x0
1 + pJx0

2 (37)

Let the jump of the generalized quantities be equal
to U∗ and T ∗ and if U∗ = 0 and the generalized
force T ∗ is a unit point force then q in equation
(35) is equal to [Pan (1999)]:

q =
1

2π

[
B−1 (Y +Ȳ )−1 U∗

− A−1 (
Y−1 +Ȳ−1)−1

T ∗
]

(38)

where the matrix Y is equal to:

Y = iAB−1 (39)

where i =
√−1.

The Green functions (the fundamental solutions)
of piezoelectric elliptic operator LJK (8) are then
given by:

UKL =
−1
π

Re

[
3

∑
J=1

ALJVJK ln(zJ − sJ)

]
,

TKL =
1
π

Re

[
3

∑
J=1

BLJ
pJn1−n2

zJ − sJ
VJK

]
,

(40)

where:

V = A−1(Y−1 +Ȳ−1)−1 (41)

In equations (40) zJ and sJ are given by (32) and
(37), respectively.

3.2 The influence of the polarization direction

The last stage of the manufacturing process of the
piezoceramics is polarization [Tiersten (1969)].
The polarization direction has a great influence
on the behaviour of piezoelectric materials. For
example, when the piezoelectric linear actuators
are designed, relatively small changes of the po-
larization direction vary the designed displace-
ment fields. For this reason, determining the re-
lationship between the polarization direction and
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the response of the structure is an important task.
The orientation of the polarization direction is
taken into account using the Stroh formalism. The
eigenvalues and the eigenvectors of the eigenvalue
problem (27) are specially transformed according
to the polarization direction [Ting (1996)].

The properties of the piezoceramics are measured
in the coordinate system, which is parallel to the
polarization axis. When the polarization direction
is not parallel to the axis of the global coordinate
system, a rotational transformation is necessary.

The Stroh formalism requires the transformation
of the eigenvalues and the eigenvectors only. It
takes a form [Ting (1996)]:

A = ΩT A∗

B = ΩT B∗ (42)

for the eigenvectors, and:

p =
sinΘ+ p∗ cosΘ
cosΘ− p∗ sinΘ

(43)

for the eigenvalues, where Θ denotes the angle be-
tween the coordinate system where the properties
are measured and the coordinate system where the
boundary – value problem is solved, as shown in
Figure 1.

Figure 1: The coordinate system transformation

The transformation matrix Ω is given by:

Ω =

⎡
⎣ cosΘ sinΘ 0
−sinΘ cosΘ 0

0 0 1

⎤
⎦ (44)

4 Particular solutions

The dual reciprocity method requires the solution
of the inhomogeneous partial differential equa-
tion of the static piezoelectricity (14). The proce-
dure, which leads to the solution, is quite difficult
for piezoelectric materials because the governing
equations for an anisotropic material have compli-
cated forms. An alternative is to assume a particu-
lar solution and find the corresponding functions.

In the present fomulation the particluar solution is
assumed as a radial basis function with a constant
term [Kogl and Gaul (2000a)]:

Um
KN = δKN(r3 + r2 +C) (45)

where δKN is a Kronecker isotropic tensor, a C
is a constant. To obtain the corresponding trac-
tion field and an “artificial" body force term, the
derivatives of the assumed particular solution are
calculated:

Um
KN,l = δKN(3r2 +2r)r,l

Um
KN,li = δKN [(3r +2)δli +3rr,ir,l]

(46)

Then the traction field and body force field are
described by the following equations:

T m
JN = CiJKlUm

KN,lni

Fm
JN = CiJKlU

m
KN,li

(47)

5 The eigenvalue problem formulation

When the boundary conditions are known, the
matrix equation of motion can be written in the
form [Kogl and Gaul (2003)]:[

Muu Mut

Mtu Mtt

][
Üu

Üt

]
+

[
Huu Hut

Htu Htt

][
Uu

Ut

]

=
[

Guu Gut

Gtu Gtt

][
Tu

Tt

] (48)

where the subscript u is related to the part of the
boundary, where the generalized displacements
are prescribed and the generalized tractions are
unknown; t corresponds to the part of the bound-
ary, where the generalized tractions are known
and the generalized displacements are unknown.
Eliminating the unknown generalized tractions
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and assuming that the known generalized trac-
tions are equal to zero, the following system of
equations can be obtained:

Mred1Üt +Hred1Ut = 0 (49)

where:

Mred1 = Mtt −GtuG−1
uu Mut

Hred1 = Htt −GtuG−1
uu Hut

(50)

In the free vibration problem it is assumed that the
solution of the equation of motion are harmonic
functions. In this case:

Üt = −ω2Ut (51)

where ω is an angular frequency. Then the gen-
eralized eigenvalue problem is described by the
equation:

Hred1X = ω2Mred1X (52)

where X is an amplitude. The above formulation
is equivalent to :

(Hred1 −λ Mred1)X = 0 (53)

where λ = ω2. From the formulation of the
dynamic problem of linear piezoelectricity it is
known that the electric potential does not influ-
ence the inertia term. The eigenvalue problem can
be formulated as follows:([

Hmm Hme

Hem Hee

]
−λ

[
Mmm Mme

Mem Mee

])[
Xm

Xe

]
= 0

(54)

where the index m denotes the mechanical part of
the quantity and e – the electric part.

After reduction, the eigenvalue problem is repre-
sented by the equation:

(Hred2 −λ Mred2)Xm = 0 (55)

where :

Hred2 = Hmm −HmeH−1
ee Hem

Mred2 = Mmm −HmeH−1
ee Mem

(56)

The two - step condensation process reduces num-
ber of degrees of freedom. The above equation

can be transformed into the standard eigenvalue
problem:

λredX = AX (57)

where:

λred =
1
λ

A = H−1
red2

Mred2

(58)

The present eigenvalue problem is solved using
the Lanczos method.

6 Numerical examples

The eigenvalue problem for the rectangular piezo-
electric plate made of PZT-4 ceramic is consid-
ered [Vel, Mever and Batra (2004)]. The length of
the plate is equal to L=0.04 m, and height is equal
to H=0.01 m, as shown in Figure 2.

Figure 2: Piezoelectric strip

Table 1: Material properties of the PZT-4

constant value
c11 [Pa] 1.39·1011

c33 1.14·1011

c55 25.6·1010

c12 74.3·1010

e15 [C/m2] 12.72
e31 -5.20
e33 12.72
ε11 [C/Vm] 1.31·10−8

ε33 1.12·10−8

ρ [kg/m3] 7600
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The material properties of PZT-4 are given in Ta-
ble 1.

The piezoelectric plate is simply supported – the
nodes on the vertical edges can only move in the
horizontal direction. The edges are electrically
grounded to zero potential – this boundary con-
dition is called the closed condition. To discretize
the boundary of the plate 100 constant boundary
elements and 114 internal nodes are applied.

The problem is also solved using the finite ele-
ment method. For the FEM model 100 quadrilat-
eral finite elements with quadratic shape functions
are used. The solutions of the eigenvalue prob-
lem for the smallest 5 thickness modes are given
in Table 2.

The eigenfrequencies are scaled using the rela-
tion:

ω̄ = ω
(

L2

H

)√
ρ

c11
(59)

where ω̄ denotes the scaled dimensionless eigen-
frequency and ω is the computed eigenfrequency.

0 50 100 150 200 250 300 350
0

5

10

15

20

25

30

number of internal nodes

m
ea

n 
sq

ua
re

 e
rr

or
 [%

]

Figure 3: Mean square error of smallest 5 thick-
ness eigenfrequencies vs. number of internal
nodes

In [Vel, Mever and Batra (2004)] is shown, that
these eigenfrequencies are thickness modes corre-
sponding to large axial displacements, which are

generated by the sinusoidal potential applied to
the top surface of the plate. In Table 2, the fact
that the smallest 5 thickness eigenfrequencies are
not equivalent to the smallest eigenfrequencies is
presented.

When only the boundary is discretized, the inertia
is modelled inaccurately – for higher modes, the
complex eigenvalues are found in the spectrum.
[Kogl and Gaul (2003)]. The internal nodes are
necessary to improve the accuracy of the solution
and remove complex eigenfrequencies. All eigen-
frequencies presented in Table 2 are real.

In this table a comparison between the analyti-
cal [Vel, Mever and Batra (2004)], the BEM and
FEM results with the relative percentage error are
shown. A good agreement between the analytical,
FEM and BEM solutions can be observed. The
FEM results are better than BEM results for the
first and second thickness eigenfrequencies and
worse for higher modes.

Figure 3 shows the influence of internal nodes
on the mean square error of smallest 5 thickness
eigenfrequencies. When the internal nodes are
used, the accuracy of the solution is better and in
the spectrum there are not many complex eigen-
frequencies. An application of 57 internal nodes
gives satisfactory accuracy.

The mode shapes shown in Figures 4-8 agree well
with the results in [Vel, Mever and Batra (2004)].

Figure 4: 1st mode shape of the plate

Figure 5: 2nd mode shape of the plate
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Table 2: Comparison between analytical, BEM and FEM solution

No. of
thickness

mode

No. of
mode

ω̄0

analytical
ω̄0

BEM
ω̄0

FEM

relative
error
FEM
[%]

relative
error
BEM
[%]

1 2 2.26 2.31 2.25 0.44 2.21
2 4 10.09 9.88 9.98 1.09 2.08
3 8 24.09 24.10 23.84 1.04 0.04
4 15 41.66 41.83 39.83 4.15 0.41
5 20 49.51 50.00 47.94 3.17 0.99

Figure 6: 3rd mode shape of the plate

Figure 7: 4th mode shape of the plate

Figure 8: 5th mode shape of the plate

When on the bottom and top edges of the plate the
charge flux density is equal to zero – the boundary
conditions are called open [Heyliger nad Brooks
(1995)]. The influence of the boundary conditions
on normalized eigenfrequencies is given in Table
3. It is easy to see, that for the same mode, the
eigenfrequencies for the open circuit are bigger.

The influence of the polarization direction is also
explored. The same plate is considered. In Figure
9 the change of the smallest 2 thickness eigenfre-
qeuncies vs. polarization direction is presented.

Table 3: Comparison between open and closed
boundary condition

mode ω̄c closed (φ=0) ω̄0 open (q=0)
1 2.31 2.33
2 9.88 10.84
3 24.10 28.53
4 41.83 42.50
5 50.00 52.32
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Figure 9: Relative change of the smallest 2 thick-
ness eigenfreqeuncies vs. polarization direction

7 Conclusions

In this paper, the dual reciprocity BEM for the
free vibration problem of linear piezoelectric-
ity is developed. The results confirm that the
present formulation allows to solve the eigen-
value problem of linear piezoelectricity with ar-
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bitrary boundary conditions – especially with dif-
ferent electric boundary conditions. The two step
condensation method reduces degrees of free-
dom. This is an important property of the present
method, because an accurate analysis requires
many internal degrees of freedom [Kogl and Gaul
(2003)], which allows to avoid complex eigenfre-
quencies. The utilized radial basis functions, as
the particular solutions, give good approximation
of the inertia term in the dual reciprocity BEM.
The influence of the polarization direction is also
taken into account using the Stroh formalism.
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