
Copyright c© 2007 Tech Science Press CMES, vol.17, no.1, pp.1-18, 2007

Highly Accurate Computation of Spatial-Dependent Heat Conductivity and
Heat Capacity in Inverse Thermal Problem

Chein-Shan Liu1, Li-Wei Liu2 and Hong-Ki Hong2

Abstract: In this paper we are concerned
with the parameters identification of the inverse
heat conduction problems governed by linear
parabolic partial differential equations (PDEs). It
is the first time that one can construct a closed-
form estimation method for the inverse ther-
mal problems of estimating the spatial-dependent
thermophysical parameters. The key points hinge
on an establishment of a one-step group preserv-
ing scheme (GPS) for the semi-discretization of
PDEs, as well as a closed-form solution of the
resulting algebraic equations. The new method,
namely the Lie-group estimation method, has four
advantages: it does not require any prior informa-
tion on the functional forms of thermal conduc-
tivity and heat capacity; no initial guesses are re-
quired; no iterations are required; and the inverse
problem can be solved in closed-form. Numeri-
cal examples were examined to convince that the
new approach is highly accurate and efficient with
the maximum estimation error very small even
for identifying the highly discontinuous and os-
cillatory parameters. Although the estimation is
carried out under a large measurement noise, our
method is also stable.

Keyword: Inverse problem, One-step group
preserving scheme, Inverse thermal problem, Es-
timation of thermophysical parameters, Lie-group
estimation method, Closed-form estimation.

1 Introduction

In this paper we propose a new method for the
identification of unknown coefficients c(x) and

1 Department of Mechanical and Mechatronic Engineer-
ing, Taiwan Ocean University, Keelung, Taiwan, E-mail:
csliu@mail.ntou.edu.tw

2 Department of Civil Engineering, Taiwan University,
Taipei, Taiwan

k(x) in the following heat conduction problem:

c(x)ut −∇ · (k(x)∇u) = h(x, t) in Ω, (1)

u = uB on ΓB, (2)

u = u0 on Γ0, (3)

u = uT on ΓT , (4)

where u is a scalar temperature field of heat dis-
tribution, h(x, t) is a heat source term, and c(x)
and k(x) are heat capacity and heat conductiv-
ity functions of x, reflecting the nonhomogene-
ity of the materials to be identified. We take a
bounded domain D in R

m, m ≤ 3, and a spacetime
domain Ω = D× (0,T) in R

m+1 for a final time
T > 0, and write three surfaces ΓB = ∂D× [0,T ],
Γ0 = D×{0} and ΓT = D×{T} of the boundary
∂Ω. ∇ denotes the m-dimensional gradient oper-
ator. Eqs. (1)-(4) constitute an m-dimensional in-
verse heat conduction problem for a given bound-
ary data uB : ΓB �→ R, an initial data u0 : Γ0 �→ R

and a final data uT : ΓT �→ R to identify the two
unknown functions of c(x) and k(x).

The identification problem in Eqs. (1)-(4) can find
a wide range engineering and science applica-
tions. For new materials, it is often easier to mea-
sure the temperature at some points in the medium
at a certain time, rather than to directly mea-
sure the thermophysical parameters k(x) and c(x)
themselves. The inverse heat conduction prob-
lem considered here is to retrieve the heat conduc-
tivity k(x) and the heat capacity c(x) in Eq. (1)
for a given measured data u(x,T ) at a time T .
This parameters identification problem is known
to be highly ill-posed in the sense that small dis-
turbances of the measured temperature may result
in a tremendous error on the parameters’ estima-
tion. In order to overcome this problem, there
have appeared many studies, for example, Keung
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and Zou (1998), Engl and Zou (2000), Ben-yu and
Zou (2001), Jia and Wang (2004), and references
therein.

Ito and Kunisch (1990, 1996) have proposed very
stable and efficient Lagrangian method for the
identification of only k(x) under a steady-state
condition of Eq. (1) and with a smooth assump-
tion on k(x). Then, Chen and Zou (1999) ex-
tended the Lagrangian method to non-smooth
case in the steady-state elliptic system. In
practical applications we may encounter the in-
verse thermal problems for composite materials
or highly heterogeneous materials with a require-
ment to estimate the discontinuous and oscillatory
thermophysical parameters in a transient state.
For this inverse problem, it remains a great chal-
lenge due to the lack of efficient, accurate and sta-
ble method.

Our approach of the above inverse problem is
based on the numerical method of line, which is a
well-developed numerical method that transforms
the partial differential equations (PDEs) into a
system of ordinary differential equations (ODEs),
together with the group preserving scheme (GPS)
developed previously by Liu (2001) for ODEs.
The GPS method is very effective to treat ODEs
with special structures as shown by Liu (2005,
2006a) for stiff equations and ODEs with con-
straints. It is also extended to the calculations of
backward heat conduction problem by Liu (2004)
and Liu, Chang and Chang (2006), and the side-
way heat conduction problem by Chang, Liu and
Chang (2005).

Recently, Liu (2006b) has extended the GPS
technique to solve the boundary value problems
(BVPs), and the numerical results reveal that the
GPS is a rather promising method to effectively
calculate the two-point BVPs. In the construc-
tion of the Lie group method for the calculations
of BVPs, Liu (2006b) has introduced the idea of
the one-step GPS by utilizing the closure prop-
erty of Lie group, and hence, the new shooting
method has been named by Liu (2006b) the Lie-
group shooting method (LGSM). The LGSM is
also shown effective on the second order general
boundary value problems [Liu (2006c)], the sin-
gularly perturbed BVPs [Liu (2006d)], and the

backward heat conduction problems [Chang, Liu
and Chang (2007)].

On the other hand, in order to effectively solve the
backward in time problems of parabolic PDEs, a
past cone structure and a backward group preserv-
ing scheme have been successfully developed,
such that the new one-step Lie-group numerical
methods have been used to solve the backward
in time Burgers equation by Liu (2006e), and the
backward in time heat conduction equation by
Liu, Chang and Chang (2006).

Liu (2006f, 2006g, 2007) has used the concept
of one-step GPS to develop the numerical es-
timation method for the unknown temperature-
dependent heat conductivity and heat capacity of
one-dimensional heat conduction equation. Be-
cause the Lie-group method possesses a certain
advantage than other numerical methods due to its
group structure, the Lie-group estimation method
(LGEM) is believed to be a powerful technique to
solve the inverse problems of parameters identi-
fication. However, the methodology of LGEM is
not yet applied to the identification of parabolic
type linear PDEs with nonhomogeneous coeffi-
cients in the open literature. It thus deserves
our attention to develop an effective, accurate and
stable numerical method for this specific inverse
problem and to investige the numerical behavior
of this new method based on the group properties.

This paper is arranged as follows. In Section 2
for a self-content reason we give a brief sketch of
the GPS for ODEs. While the GPS seems use-
ful for the integration of ODEs since its initial de-
velopment at five years ago, the combination of
it with the semi-discretization technique as to be
demonstrated in Section 3 for the heat conduction
equation really provides us a feasible link to solv-
ing the evolutionary type PDEs by the GPS. Due
to the good property of Lie group, we will pro-
pose an integration technique with a large time
stepsize, such that we can use the one-step GPS
technique to identify the parameters appeared in
the PDEs. The resulting algebraic equations are
derived in Section 4 when we apply the one-step
GPS to identify the heat conductivity k(x). Again,
we demonstrate that how the Lie group theory can
help us to solve these parameter estimation equa-
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tions with closed-form. Several numerical exam-
ples are examined to test our Lie-group estimation
method (LGEM). In Section 5 we turn to the esti-
mation of both k(x) and c(x), where we introduce
a coordinate transformation technique, which to-
gether with the one-step GPS method render again
the closed-form solutions of k(x) and c(x) simul-
taneously. In this section we also consider the
measurement noise effect on the numerical results
obtained from the new LGEM. Finally, we em-
phasize some positive results of the new comput-
ing method in Section 6.

2 GPS for differential equations system

Group-preserving scheme (GPS) can preserve the
internal symmetry group of the considered sys-
tem. Although we do not know previously the
symmetry group of nonlinear differential equa-
tions systems, Liu (2001) has embedded them into
the augmented dynamical systems, which concern
with not only the evolution of state variables but
also the evolution of the magnitude of the state
variables vector. That is, we can embed

u̇ = f(u, t), u ∈ R
n, t ∈ R, (5)

into the following n + 1-dimensional augmented
dynamical system:

d
dt

[
u

‖u‖
]

=

⎡
⎣ 0n×n

f(u,t)
‖u‖

fT(u,t)
‖u‖ 0

⎤
⎦[

u
‖u‖

]
. (6)

It is obvious that the first row in Eq. (6) is the same
as the original equation (5), but the inclusion of
the second row in Eq. (6) gives us a Minkowskian
structure of the augmented state variables of X :=
(uT,‖u‖)T to satisfy the cone condition:

XTgX = 0, (7)

where

g =
[

In 0n×1

01×n −1

]
(8)

is a Minkowski metric, In is the identity matrix of
order n, and the superscript T stands for the trans-
pose. In terms of (u,‖u‖), Eq. (7) becomes

XTgX = u ·u−‖u‖2 = ‖u‖2 −‖u‖2 = 0, (9)

where the dot between two n-dimensional vectors
denotes their Euclidean inner product. The cone
condition is thus the most natural constraint that
we can impose on the dynamical system (6).

Consequently, we have an n+1-dimensional aug-
mented system:

Ẋ = AX (10)

with a constraint (7), where

A :=

⎡
⎣ 0n×n

f(u,t)
‖u‖

fT(u,t)
‖u‖ 0

⎤
⎦ , (11)

satisfying

ATg+gA = 0, (12)

is a Lie algebra so(n,1) of the proper or-
thochronous Lorentz group SOo(n,1). This fact
prompts us to devise the group-preserving scheme
(GPS), whose discretized mapping G must ex-
actly preserve the following properties:

GTgG = g, (13)

det G = 1, (14)

G0
0 > 0, (15)

where G0
0 is the 00th component of G.

Although the dimension of the new system is rais-
ing one more, it has been shown that under the
Lipschitz condition of

‖f(u, t)−f(y, t)‖≤L ‖u−y‖, ∀ (u, t), (y, t)∈D,

(16)

where D is a domain of R
n ×R, and L is known

as a Lipschitz constant, the new system has an ad-
vantage to permit the GPS given as follows [Liu
(2001)]:

X�+1 = G(�)X�, (17)

where X� denotes the numerical value of X at the
discrete time t�, and G(�) ∈ SOo(n,1) is the group
value of G at time t�. If G(�) satisfies the prop-
erties in Eqs. (13)-(15), then X� satisfies the cone
condition in Eq. (7).
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The Lie group can be generated from A ∈ so(n,1)
by an exponential mapping,

G(�) = exp[ΔtA(�)]=

⎡
⎣ In + (a�−1)

‖f�‖2 f�fT
�

b�f�
‖f�‖

b�fT�
‖f�‖ a�

⎤
⎦ ,

(18)

where

a� : = cosh

(
Δt‖f�‖
‖u�‖

)
, (19)

b� : = sinh

(
Δt‖f�‖
‖u�‖

)
. (20)

Substituting Eq. (18) for G(�) into Eq. (17), we
obtain

u�+1 = u� +η�f�, (21)

‖u�+1‖ = a�‖u�‖+
b�

‖f�‖ f� ·u�, (22)

where

η� :=
b�‖u�‖‖f�‖+(a� −1)f� ·u�

‖f�‖2 (23)

is an adaptive factor. From f� ·u� ≥−‖f�‖‖u�‖ we
can prove that

η� ≥
[

1−exp

(
−Δt‖f�‖

‖u�‖
)] ‖u�‖

‖f�‖ > 0, ∀Δt > 0.

(24)

This scheme is group properties preserved for all
Δt > 0.

3 Solving heat conduction problems by one-
step GPS

3.1 Semi-Discretization

The semi-discrete procedure of PDE yields a cou-
pled system of ODEs. For the one-dimensional
heat conduction equation

∂u
∂ t

= k
∂ 2u
∂x2 , (25)

we adopt the numerical method of line to dis-
cretize the spatial coordinate x by

∂ 2u(x, t)
∂x2

∣∣∣∣
x=iΔx

=
ui+1(t)−2ui(t)+ui−1(t)

(Δx)2 ,

(26)

where Δx is a uniform discretization spacing
length, and ui(t) = u(iΔx, t) for simple notation.
Such that Eq. (25) can be approximated by

u̇i(t) =
k

(Δx)2 [ui+1(t)−2ui(t)+ui−1(t)]. (27)

The next step is to advance the solution from
the initial condition to a desired time T . Really,
Eq. (27) has totally n coupled linear ODEs for the
n variables ui(t), i = 1,2, . . .,n, which can be nu-
merically integrated to obtain the solutions.

3.2 One-step GPS

Applying scheme (21) to Eq. (27) we can compute
the heat conduction equation by the GPS. Assume
that the total time T is divided by K steps, that is,
the time stepsize we use in the GPS is Δt = T/K.

Starting from an initial augmented condition X0 =
X(0) we want to calculate the value X(T ) at a de-
sired time t = T . By Eq. (17) we can obtain

XT = GK(Δt) · · ·G1(Δt)X0, (28)

where XT approximates the real X(T ) within a
certain accuracy depending on Δt. However, let us
recall that each Gi, i = 1, . . .,K, is an element of
the Lie group SOo(n,1), and by the closure prop-
erty of the Lie group, GK(Δt) · · ·G1(Δt) is also a
Lie group denoted by G(T ). Hence, we have

XT = G(KΔt)X0 = G(T )X0. (29)

This is a one-step transformation from X(0) to
X(T). The most simple method to calculate G(T )
is given by

G(T ) =

⎡
⎢⎣ In + (a−1)

‖f0‖2 f0fT
0

bf0
‖f0‖

bfT0
‖f0‖ a

⎤
⎥⎦ , (30)

where

a :=cosh

(
T‖f0‖
‖u0‖

)
, (31)

b :=sinh

(
T‖f0‖
‖u0‖

)
. (32)
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That is, we use the initial values of u(0) to cal-
culate G(T ). Then from Eqs. (21) and (22) we
obtain a one-step GPS:

uT = u0 +ηf0

= u0 +
(a−1)f0 ·u0 +b‖u0‖‖f0‖

‖f0‖2 f0,
(33)

‖uT‖ = a‖u0‖+
bf0 ·u0

‖f0‖ . (34)

The accuracy and efficiency are demonstrated be-
low by numerical examples.

3.3 Example 1

Let us consider the one-dimensional heat conduc-
tion equation

ut = uxx, 0 < x < 1, 0 < t < T, (35)

with the boundary conditions

u(0, t) = 0, u(1, t) = 1,

and the initial condition

u(x,0) = sinπx+x.

The exact solution is given by

u(x, t) = e−π2t sinπx+x. (36)

Liu (2004) has applied the GPS on the above
equation by using very small time stepsize. The
numerical solution was summarized in Table 1 to
show the numerical values at point x = 0.5 for dif-
ferent times, where n = 20 and Δt = 0.001 sec
were used in the calculation by Liu (2004). In
the same table the Galerkin solutions given by
Fletcher (1984) with N = 2,3 orders are also in-
cluded to compare with the exact solution (36) as
well as with the GPS solutions. It can be seen that
the GPS solutions are more accurate than that of
the Galerkin solutions. Our scheme is more easy
to implement than that of the Galerkin method,
which requires to do a lot of integrals before ob-
taining the N ordinary differential equations for
the N variable coefficients.

In order to apply the one-step GPS to this
problem, by a variable transformation v(x, t) =
u(x, t)−x let us write Eq. (35) to be

vt = vxx, 0 < x < 1, 0 < t < T, (37)

with the boundary conditions

v(0, t) = 0, v(1, t) = 0,

and the initial condition

v(x,0) = sinπx.

We apply the one-step GPS for this problem by
solving v, and then u(x, t)= v(x, t)+x is available.
In Table 1 we compare the numerical solutions
of the one-step GPS at point x = 0.5 for different
times with the exact solutions. In the calculations
by the one-step GPS we were fixed Δx = 1/200
and let the time stepsizes equal to the times which
we carry out the comparison. Very surprisingly,
the numerical one-step GPS solutions are very
good and almost equal to the exact solutions. If
we increase the grid numbers the one-step GPS
may produce the same exact solutions.

When T = 0.4 sec, we compare three different
computations in Fig. 1(a) by the one-step Euler
method, the one-step fourth-order Runge-Kutta
method (RK4) and the one-step GPS, where Δx =
1/100 and Δt = 0.4 sec were fixed. It can be
seen that while the one-step GPS provides very
accurate solution, the one-step Euler method and
the one-step RK4 method both gave invalid solu-
tions. In order to get a solution as accurate as that
obtained by the one-step GPS, the RK4 method
requires 40000 steps, i.e., Δt = 0.00001 sec, as
shown in Fig. 1(b) for the comparison of numeri-
cal errors.

4 Identifying k(x) by the LGEM

The above numerical example supports that the
one-step GPS can be very accurate when the time
stepsize employed in the calculation is reasonably
large. In this section we will start to estimate the
nonhomogeneous coefficient functions in the heat
conduction equation through an extra measure-
ment of the tempetrature at a final time. By using
the one-step GPS we also suppose that the initial
temperature is given, which must be nonzero.
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Table 1: The comparison of numerical solutions with exact solutions of Example 1

Time (sec) Galerkin (N=2) Galerkin (N=3) GPS One-step GPS Exact
0.02 1.32611 1.32020 1.32083 1.32087 1.32087
0.04 1.18389 1.17278 1.17373 1.17383 1.17383
0.06 1.06757 1.05188 1.05296 1.05312 1.05312
0.08 0.97242 0.95274 0.95382 0.95405 0.95404
0.10 0.89461 0.87144 0.87243 0.87272 0.87271
0.12 0.83096 0.80477 0.80563 0.80595 0.80594
0.14 0.77890 0.75009 0.75080 0.75115 0.75114
0.16 0.73632 0.70526 0.70580 0.70616 0.70615
0.18 0.70150 0.66849 0.66886 0.66923 0.66922
0.20 0.67301 0.63833 0.63856 0.63892 0.63891
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Figure 1: Comparing numerical solutions of one-step GPS, RK4 and Euler methods for Example 1 in (a),
and (b) the numerical errors.

4.1 Semi-Discretization

We first assume that c(x) = 1, and consider a heat
conducting slab composed of nonhomogeneous
material with only a variable heat conductivity
function k(x) to be identified:

∂u
∂ t

=
∂
∂x

[
k(x)

∂u
∂x

]
+h(x, t). (38)

In order to identify the heat conductivity k(x), let
us impose the following conditions:

u(0, t) = u0(t), u(1, t) = ur(t), (39)

u(x,0) = u0(x), u(x,T ) = uT (x), (40)

where u0(t) and ur(t) are boundary conditions at
two ends of the slab, and u0(x) and uT (x) are two
temperature distributions of the slab measured at
two different times t = 0 and t = T .



Computation of Spatial-Dependent Heat Conductivity and Heat Capacity 7

Let us consider the following difference:

∂
∂x

[
k(x)

∂u
∂x

]∣∣∣∣
x=iΔx

=
1

(Δx)2

{
ki+1[ui+1−ui]−ki[ui −ui−1]

}
, (41)

and Eq. (38) becomes n coupled ODEs:

∂ui(t)
∂ t

=
1

(Δx)2

{
ki+1[ui+1(t)−ui(t)]

−ki[ui(t)−ui−1(t)]
}

+h(xi, t) (42)

with unknown coefficient ki = k(xi) = k(iΔx), i =
1, . . .,n. Here, kn+1 = k(xn+1) is the boundary
value of k, which can be directly measured as a
known value.

4.2 One-step GPS equation

When apply the one-step GPS to Eq. (42) from
time t = 0 to time t = T we obtain a nonlinear
equation for ki:

uT
i = u0

i +
η

(Δx)2{ki+1[u0
i+1−u0

i ]−ki[u0
i −u0

i−1]}

+ ηh(xi,0), (43)

where uT
i and u0

i are two measured temperatures
at the i-th grid point. However, η in the above is
not a constant but a nonlinear function of ki.

It is not difficult to rewrite Eq. (43) as

ki =
1

u0
i −u0

i−1

[
ki+1(u0

i+1−u0
i )

− (Δx)2

η
[uT

i −u0
i −ηh(xi,0)]

]
. (44)

In order to solve ki, let us return to Eq. (33):

f0 =
1
η

[uT −u0]. (45)

Substituting it for f0 into Eq. (34) we obtain

‖uT‖
‖u0‖ = a+

b[uT −u0] ·u0

‖uT −u0‖‖u0‖ , (46)

where

a := cosh
(

T‖uT −u0‖
η‖u0‖

)
, (47)

b := sinh
(

T‖uT−u0‖
η‖u0‖

)
. (48)

Let

cosθ :=
[uT −u0] ·u0

‖uT −u0‖‖u0‖ , S :=
T‖uT −u0‖

‖u0‖ ,

(49)

and from Eqs. (46)-(48) it follows that

‖uT‖
‖u0‖ = cosh

(
S
η

)
+cosθ sinh

(
S
η

)
. (50)

Upon defining

Z := exp

(
S
η

)
, (51)

from Eq. (50) we obtain a quadratic equation for
Z:

(1+cosθ )Z2 − 2‖uT‖
‖u0‖ Z +1−cos θ = 0. (52)

The solution is found to be

Z =

‖uT ‖
‖u0‖ +

√(‖uT ‖
‖u0‖

)2
− (1−cos2 θ )

1+cosθ
, (53)

and from Eq. (51) we obtain a closed-form solu-
tion of η:

η =
T‖uT −u0‖
‖u0‖ lnZ

. (54)

Up to here we must point out that for a given T , η
is fully determined by u0 and uT , which are sup-
posed to be known. Therefore, the original non-
linear equation (44) becomes a linear equation for
ki.

Therefore, if we substitute the above η into
Eq. (44) and start from a given kn+1 = k(xn+1) we
can proceed to find kn, . . . ,k1 sequentially. This
solution is closed-form for ki.

In the above we have mentioned that η is a nonlin-
ear function of ki; however, by viewing Eqs. (49),
(53) and (54) it is known that η is fully deter-
mined by u0 and uT , which are given (or mea-
sured) at two different times. This point is very
important for our closed-form solution of the pa-
rameter. The key points rely on the construction
of the method by using the one-step GPS for the
estimation of parameter, and the full use of the n+
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Figure 2: Comparing numerical solution of one-step GPS with exact solution for Example 1 and the error in
the estimation of k(x).
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1 equations (33) and (34), which are the Lie group
transformation between initial temperature and
final temperature in the augmented Minkowski
space. To distinguish the present method by a
combined use of the one-step GPS and the closed-
form solution with the aid of Eq. (34), we may call
the new method a Lie-group estimation method
(LGEM). In order to test our estimation method
by the LGEM, let us first consider a simple Exam-
ple 1 given in Section 3.3, where the exact k(x) is
k(x) = 1. In this identification of k(x) we have
fixed Δx = 1/50 and T = 0.04 sec. Applying
Eq. (44), the solutions of ki is almost equal to 1
with the maximum relative error 4.441×10−15 as
shown in Fig. 2.

4.3 Example 2

Let us consider a one-dimensional heat conduc-
tion problem with [Yeung and Lam (1996)]

k(x) = 1+0.25e−4(x−0.3)2, (55)

h(x, t) = (x−0.6)2(1− t)e−t −
{

2+
[
0.5

−4(x−0.3)(x−0.6)e−4(x−0.3)2]}
te−t. (56)

Under the boundary conditions

u(0, t) = 0.36te−t, u(1, t) = 0.16te−t, (57)

and the initial condition

u(x,0.1) = 0.090484(x−0.6)2, (58)

the exact solution is given by

u(x, t) = (x−0.6)2te−t . (59)

The one-dimensional domain [0,1] is discretized
by N = n + 2 points including two end points,
at which the two boundary conditions u0(t) =
0.36te−t and un+1(t) = 0.16te−t are imposed on
the totally n differential equations obtained from
Eq. (42). In this identification of k(x) we have
fixed Δx = 1/40, i.e., n = 39, and T = 0.101 sec.
Applying Eq. (44), the solutions of ki is almost
equal to the exact one with the maximum relative
error 6.18×10−13 as shown in Fig. 3. The above
maximum relative error is much smaller than the
one 0.0004 obtained by Yeung and Lam (1996).

4.4 Example 3

Let us consider a one-dimensional heat conduc-
tion problem with [Yeung and Lam (1996)]

k(x) = (x−3)2, (60)

h(x, t) = −7(x−3)2e−t . (61)

Under the boundary conditions

u(0, t) = 9e−t , u(1, t) = 4e−t, (62)

and the initial condition

u(x,0) = (x−3)2, (63)

the exact solution is given by

u(x, t) = (x−3)2e−t . (64)

In this identification of k(x) we have fixed Δx =
1/40 and T = 0.01 sec. Applying Eq. (44), the
solutions of ki is almost equal to the exact one
with the maximum relative error 2.92×10−11 as
shown in Fig. 4. The above maximum relative er-
ror is much smaller than the one 0.0025 obtained
by Yeung and Lam (1996).

4.5 Example 4

Let us consider a one-dimensional heat conduc-
tion problem with [Keung and Zou (1998)]

k(x) =

⎧⎪⎨
⎪⎩

2−x x ∈ [0,0.3],

1−x+4x2 x ∈ (0.3,0.70),

3 x ∈ [0.7,1],

(65)

h(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{π cosπt(0.5−|x−0.5|)+1}
·exp[sinπt] x ∈ [0,0.3],

{π cosπt(0.5−|x−0.5|)+(1−8x)}
·exp[sinπt] x ∈ (0.3,0.5),

{π cosπt(0.5−|x−0.5|)− (1−8x)}
·exp[sinπt] x ∈ [0.5,0.7),

π cosπt exp[sinπt](0.5−|x−0.5|)
x ∈ [0.7,1].

(66)



10 Copyright c© 2007 Tech Science Press CMES, vol.17, no.1, pp.1-18, 2007

0 0.2 0.4 0.6 0.8 1

0

0.01

0.02

0.03

0.04

u
Exact solution
GPS

0 0.2 0.4 0.6 0.8 1

0

0.04

0.08

0.12

0.16

0 0.2 0.4 0.6 0.8 1

0.99

0.995

1

1.005

1.01

k
Exact solution
GPS

0 0.2 0.4 0.6 0.8 1

0

2E-013

4E-013

6E-013

8E-013

x

x

x

x

u(x,0.101)

|(uexact(x,0.101)-uGPS(x,0.101))/uexact(x,0.101)|

k(x)

|(kexact(x)-kGPS(x))/kexact(x)|

0 0.2 0.4 0.6 0.8 1

0
2
4
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the estimation of k(x).
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Under the boundary conditions

u(0, t) = u(1, t) = 0, (67)

and the initial condition

u(x,0) = 0.5−|x−0.5|, (68)

the exact solution is given by

u(x, t) = (0.5−|x−0.5|)exp[sinπt]. (69)

In this identification of k(x) we have fixed Δx =
1/260 and T = 0.5 sec. Applying Eq. (44), the
solutions of ki is almost equal to the exact one
with a maximum error 8.882× 10−16 as shown
in Fig. 5. The error is much smaller than the one
0.026 calculated by Keung and Zou (1998). From
this example one may appreciate the high accu-
racy of our estimation method of LGEM even for
identifying a highly discontinuous parameter of
the above one k(x) in Eq. (65).

4.6 Example 5

This problem is with the following observed data

uT (x) = sinπx, T = 1, (70)

which is obtained from the following exact solu-
tion:

u(x, t) = sinπxexp[sinπt]. (71)

But the identifying function k(x) is highly discon-
tinuous and oscillatory given as follows:

k(x) =

⎧⎪⎨
⎪⎩

2 x ∈ [0,0.3],

4 x ∈ (0.3,0.6),

2+ sin(10πx) x ∈ [0.6,1].

(72)

The function h(x, t) is calculated as

h(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{π cosπt +2π2}exp[sinπt] sinπx
x ∈ [0,0.3],

{π cosπt +4π2}exp[sinπt] sinπx
x ∈ (0.3,0.6),

{π cosπt +(2+ sin10πx)π2}
·exp[sinπt] sinπx
−10π2 cosπxcos10πxexp[sinπt]

x ∈ [0.6,1].

(73)

In this identification of k(x) we have fixed Δx =
1/100 and T = 1 sec. Applying Eq. (44), the
solutions of ki is almost equal to the exact one
with the maximum error 6.484×10−14 as shown
in Fig. 6. The error is much smaller than the
one 0.054 calculated by Keung and Zou (1998).
From this example it can be seen that our method
is also applicable to the estimation of highly dis-
continuous and oscillatory parameter. It should be
stressed that the final time T = 1 used here is no
more a small qnantity. Through these identifica-
tions of k(x) in Examples 1-5, it can be seen that
our estimations are very accurate in the orders of
10−16−10−11, no matter the function k(x) is con-
stant, smooth or non-smooth. To our best knowl-
edge, there appears no report in the open literature
that in the estimation of thermophysical parame-
ter one can obtain the closed-form estimating so-
lution. It is clear that the accuracy and efficiency
of our LGEM is much better than other methods.

5 Identifying k(x) and c(x) simultaneously

Encouraging by the success of the Lie-group es-
timation method (LGEM) developed in the previ-
ous section for estimating k(x), we will extend the
LGEM to both the estimations of k(x) and c(x).

5.1 Semi-Discretization

Let us consider a heat conducting slab with
spatial-dependent c(x) > 0 and k(x) > 0:

c(x)
∂u
∂ t

=
∂
∂x

[
k(x)

∂u
∂x

]
. (74)

If we consider the central difference as that given
by Eq. (41), then Eq. (74) becomes n-coupled lin-
ear ODEs:

u̇i(t) =
1

(Δx)2ci

{
ki+1[ui+1(t)−ui(t)]

− ki[ui(t)−ui−1(t)]
}

(75)

with unknown coefficients ci = c(xi), ki =
k(xi), i = 1, . . .,n.
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Figure 5: Comparing exact and estimated k(x) for Example 4 in (a), and (b) the estimation error.

5.2 One-step GPS equation

When apply the one-step GPS to Eq. (75) from
time t = 0 to time t = T we obtain

uT
i = u0

i +
ηa

(Δx)2ci

{
ki+1[u0

i+1−u0
i ]−ki[u0

i −u0
i−1]

}
.

(76)

Let yi := ki/ci and suppose that c(x) is a slowly
changing function of x, then we can further ap-
proximate Eq. (76) by

uT
i = u0

i +
ηa

(Δx)2

{
yi+1[u0

i+1−u0
i ]−yi[u0

i −u0
i−1]

}
,

(77)

which can be rearranged to

yi =
1

u0
i −u0

i−1

[
yi+1[u0

i+1−u0
i ]−

(Δx)2

ηa
(uT

i −u0
i )

]
,

(78)

where

cosθa :=
[uT −u0] ·u0

‖uT −u0‖‖u0‖ , (79)

Za =

‖uT ‖
‖u0‖ +

√(‖uT ‖
‖u0‖

)2 − (1−cos2 θa)

1+cos θa
, (80)

ηa =
T‖uT −u0‖
‖u0‖ lnZa

. (81)
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Figure 6: Comparing exact and estimated k(x) for Example 5 in (a), and (b) the estimation error.

Therefore, if we start from a given yn+1 =
k(xn+1)/c(xn+1) we can proceed to find yn, . . .,y1

sequentially by Eq. (78).

From the above process we can estimate y(x) =
k(x)/c(x) but not c(x) or k(x) alone. However, let
us consider the following coordinate transforma-
tion:

z(x) =
∫ x

0
y(ξ )dξ =

∫ x

0

k(ξ )
c(ξ )

dξ , (82)

and z is a monotonic function of x because of
y(x) = k(x)/c(x) > 0. With this transformation,
y can be expressed as a function of z, and Eq. (74)
can be written as

∂u
∂ t

= y2 ∂
∂ z

(
y

∂u
∂ z

)
+y3 k′

k
∂u
∂ z

. (83)

Here k is also supposed to be a function of z and
the prime denotes the differentiation with respect
to z.

If we consider the following central difference:

∂
∂ z

[
y(z)

∂u
∂ z

]∣∣∣∣
z=iΔz

=
1

(Δz)2

{
yi+1[ui+1−ui]−yi[ui −ui−1]

}
, (84)
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then Eq. (83) becomes n-coupled linear ODEs:

u̇i(t) =
y2

i

(Δz)2

{
yi+1[ui+1(t)−ui(t)]

−yi[ui(t)−ui−1(t)]
}

+
y3

i

(Δz)2

(
ki+1

ki
−1

)
[ui+1(t)−ui(t)]

(85)

with unknown coefficients ki = k(zi), i = 1, . . .,n.
Notice that yi were already calculated previously.
When Δz is calculated from Eq. (82) as by Δz =
yiΔx, the above equation can be further reduced to

u̇i(t) =
1

(Δx)2

{
yi+1[ui+1(t)−ui(t)]

−yi[ui(t)−ui−1(t)]
}

+
yi

(Δx)2

(
ki+1

ki
−1

)
[ui+1(t)−ui(t)].

(86)

When apply the one-step GPS to Eq. (86) from
time t = 0 to time t = T we obtain

uT
i = u0

i +
ηb

(Δx)2

{
yi+1[u0

i+1−u0
i ]−yi[u0

i −u0
i−1]

}
+

yiηb

(Δx)2

(
ki+1

ki
−1

)
[u0

i+1−u0
i ], (87)

which can be written as

ki = ki+1

[
1+

{
(Δx)2[uT

i −u0
i ]

−ηb

{
yi+1 · [u0

i+1 −u0
i ]−yi[u0

i −u0
i−1]

}}
/{

ηbyi[u0
i+1−u0

i ]
}]−1

, (88)

where

cosθb :=
[uT −u0] ·u0

‖uT −u0‖‖u0‖ , (89)

Zb =

‖uT ‖
‖u0‖ +

√(
‖uT ‖
‖u0‖

)2
− (1−cos2 θb)

1+cos θb
, (90)

ηb =
T‖uT −u0‖
‖u0‖ lnZb

. (91)

If we start from a given kn+1 = k(xn+1) we can
proceed to find kn, . . .,k1 sequentially by Eq. (88).
When both y and k are estimated we can calculate
the heat capacity by c = k/y.

5.3 Example 6

Let us apply the above LGEM to estimate the fol-
lowing thermophysical parameters:

k(x) =

⎧⎪⎨
⎪⎩

2 x ∈ [0,0.3],

4 x ∈ (0.3,0.6),

2+ sin(10πx) x ∈ [0.6,1],

(92)

c(x) =

⎧⎪⎨
⎪⎩

2−x x ∈ [0,0.3],

1−x+4x2 x ∈ (0.3,0.6),

3 x ∈ [0.6,1].

(93)

Subjecting to the boundary conditions:

u(0, t) = u(1, t) = 0, (94)

and the initial condition

u(x,0) = x, (95)

we can apply the one-step GPS to calculate the
required data.

In this identification of k(x) and c(x) we have
fixed Δx = 1/200 and T = 0.1 sec. We first apply
Eq. (78) to estimate yi, which is with the maxi-
mum error 3.954× 10−6. Then we use Eq. (88)
to estimate ki, the maximum error of which is
1.11× 10−15. Then ci = ki/yi is calculated, the
maximum error of which is 3.558 × 10−5. In
Fig. 7 we compare the numerical solutions of k(x)
and c(x) with the exact solutions. The errors are
very small in the order of 10−15 for k(x), and in
the order of 10−5 for c(x). From this example
one may appreciate the highly accurate LGEM we
provided here even identifying the highly discon-
tinuous and oscillatory parameters of the above
k(x) and c(x). As mentioned in Section 1 the
inverse thermal problem is sensitive to the mea-
surement error. In the case when the final mea-
sured data are contaminated by the random noise,
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Figure 7: Comparing exact and estimated k(x) and c(x) for Example 6 in (a), and (b) the estimation errors.

we are concerned with the stability of our estima-
tion method, which is investigated by adding ran-
dom noise on the final data. We use the function
RANDOM−NUMBER given in Fortran to gen-
erate the noisy data R(i), where R(i) are random
numbers in [−1,1]. The noise is obtained by mul-
tiplying R(i) by a factor s, and we let uT

i [1+sR(i)]
replace the uT

i in our estimation equations.

The numerical results with noise were compared
with the exact solutions in Fig. 8, where we use
Δx = 1/100 and T = 0.1 sec. It can be seen
that the noise level with s = 0.01 disturbs the nu-
merical solutions deviating from the exact solu-
tions very small, and it appears that the measure-
ment noise makes no obvious effect of our esti-
mation even at the two singular points x = 0.3 and

x = 0.6.

6 Conclusions

In order to estimate the spatial-dependent thermal
conductivity and heat capacity under a given ini-
tial temperature and a measured temperature at a
final time, we have employed the LGEM to derive
algebraic equations and solved them in closed-
form. The key points were the construction of
one-step group preserving scheme and the full use
of the n + 1 equations (33) and (34), which are
the Lie group transformation between initial tem-
perature and final temperature in the augmented
Minkowski space.

Numerical examples were worked out, which
show that our LGEM is applicable even under
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Figure 8: Comparing exact and estimated k(x) and c(x) under noise for Example 6 in (a), and (b) the
estimation errors.

a large noise on the measured final temperature.
Through this study, it can be concluded that the
new estimation method is accurate, effective and
stable. Its numerical implementation is very sim-
ple and the computational speed is very fast.

In contrast to other parameter estimation meth-
ods, the advantages of the new method are that
it does not need any prior information on the
functional forms of thermal conductivity and heat
capacity, no initial guesses are required, no it-
erations are required and the closed-form solu-
tions are available. It is the first time that one
can construct a closed-form estimation method
for the inverse problems of estimating the spatial-
dependent thermophysical parameters. Accord-
ing to these facts, we may claim that the present

LGEM is highly accurate and effective.

References

Ben-yu G.; Zou, J. (2001): An augmented La-
grangian method for parameter identifications in
parabolic systems. J. Math. Anal. Appl., vol. 263,
pp. 49-68.

Chang, C.-W.; Liu, C.-S.; Chang, J.-R. (2005):
A group preserving scheme for inverse heat con-
duction problems. CMES: Computer Modeling in
Engineering & Sciences, vol. 10, pp. 13-38.

Chang, J.-R.; Liu, C.-S.; Chang, C.-W. (2007):
A new shooting method for quasi-boundary regu-
larization of backward heat conduction problems.
Int. J. Heat Mass Transf., in press.



18 Copyright c© 2007 Tech Science Press CMES, vol.17, no.1, pp.1-18, 2007

Chen, Z. M.; Zou, J. (1999): An augmented
Lagrangian method for identifying discontinuous
parameters in elliptic systems. SIAM J. Contr.
Optim., vol. 37, pp. 892-910.

Engl, H. W.; Zou, J. (2000): A new approach to
convergence rate analysis of Tikhonov regulariza-
tion for parameter identification in heat conduc-
tion. Inv. Prob., vol. 16, pp. 1907-1923.

Fletcher, C. A. J. (1984): Computational
Galerkin Methods. Springer-Verlag, New York.

Ito, K.; Kunisch, K. (1990): The augmented La-
grangian method for parameter estimation in el-
liptic systems. SIAM J. Contr. Optim., vol. 28,
pp. 113-136.

Ito, K.; Kunisch, K. (1996): Augmented
Lagrangian-SQR-methods in Hilbert spaces and
applications to control in the coefficients prob-
lems. SIAM J. Optim., vol. 6, pp. 96-125.

Jia, C.; Wang, G. (2004): Identifications of pa-
rameters in ill-posed linear parabolic equations.
Nonlinear Anal., vol. 57, pp. 677-686.

Keung, Y. L.; Zou, J. (1998): Numerical identi-
fications of parameters in parabolic systems. Inv.
Prob., vol. 14, pp. 83-100.

Liu, C.-S. (2001): Cone of non-linear dynami-
cal system and group preserving schemes. Int. J.
Non-Linear Mech., vol. 36, pp. 1047-1068.

Liu, C.-S. (2004): Group preserving scheme for
backward heat conduction problems. Int. J. Heat
Mass. Transf., vol. 47, pp. 2567-2576.

Liu, C.-S. (2005): Nonstandard group-preserving
schemes for very stiff ordinary differential equa-
tions. CMES: Computer Modeling in Engineering
& Sciences, vol. 9, pp. 255-272.

Liu, C.-S. (2006a): Preserving constraints of dif-
ferential equations by numerical methods based
on integrating factors. CMES: Computer Model-
ing in Engineering & Sciences, vol. 12, pp. 83-
107.

Liu, C.-S. (2006b): The Lie-group shooting
method for nonlinear two-point boundary value
problems exhibiting multiple solutions. CMES:
Computer Modeling in Engineering & Sciences,
vol. 13, pp. 149-163.

Liu, C.-S. (2006c): Efficient shooting methods

for the second order ordinary differential equa-
tions. CMES: Computer Modeling in Engineering
& Sciences, vol. 15, pp. 69-86.

Liu, C.-S. (2006d): The Lie-group shooting
method for singularly perturbed two-point bound-
ary value problems. CMES: Computer Modeling
in Engineering & Sciences, vol. 15, pp. 179-196.

Liu, C.-S. (2006e): An efficient backward group
preserving scheme for the backward in time Burg-
ers equation. CMES: Computer Modeling in En-
gineering & Sciences, vol. 12, pp. 55-65.

Liu, C.-S. (2006f): One-step GPS for the estima-
tion of temperature-dependent thermal conductiv-
ity. Int. J. Heat Mass Transf., vol. 49, pp. 3084-
3093.

Liu, C.-S. (2006g): An efficient simultaneous es-
timation of temperature-dependent thermophysi-
cal properties. CMES: Computer Modeling in En-
gineering & Sciences, vol. 14, pp. 77-90.

Liu, C.-S. (2007): Identification of temperature-
dependent thermophysical properties in a partial
differential equation subject to extra final mea-
surement data. Num. Meth. Partial Diff. Eq.,
in press.

Liu, C.-S.; Chang, C.-W.; Chang, J.-R. (2006):
Past cone dynamics and backward group preserv-
ing schemes for backward heat conduction prob-
lems. CMES: Computer Modeling in Engineering
& Sciences, vol. 12, pp. 67-81.

Yeung, W. K.; Lam, T. T. (1996): Second-order
finite difference approximation for inverse deter-
mination of thermal conductivity. Int. J. Heat
Mass. Transf., vol. 39, pp. 3685-3693.


