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Sedimentation of a Solid Particle Immersed in a Fluid Film

A. Sellier1 and L. Pasol2

Abstract: This paper examines the slow viscous set-
tling migration of a solid particle immersed in a viscous
fluid film confined by two plane and parallel solid wall
and free surface. The approach rests on the use of suit-
able boundary-integral equations on the surface of the
particle and the analytical calculation of a new Green ten-
sor that complies with all the boundary conditions sat-
isfied by the liquid flow on the plane boundaries. The
numerical implementation resorts to standard boundary
elements on the particle’s surface and provides at a rea-
sonable cpu time cost the motion of the particle and, if
necessary, the velocity field in the liquid film. The migra-
tion of a sphere is found to deeply depend on its location,
the gravity field and the fluid film thickness. Depend-
ing on these parameters the sphere may either translate
faster, slower or at the same speed than in absence of
boundaries. This latter case arises at a critical location of
the sphere for a gravity field parallel to the boundaries.

keyword: Sedimentation, fluid film, wall-particle in-
teractions, free surface-particle interactions, Green ten-
sor, boundary-integral equations.

1 Introduction

The motion of solid particles immersed in a thin film
fluid bounded by a plane solid wall and a free surface ad-
mits many industrial applications such as phtotographic
coating. Hence, Li and Pozrikidis (2003) recently inves-
tigated the viscous two-dimensional gravity-driven film
flow of a suspension of 2D solid particles and com-
puted, within this framework, the deformation of the in-
terface. Since particles are in practice three-dimensional
it however remains of prime interest to tackle the chal-
lenging case of a collection of three-dimensional parti-
cles. Even for a single particle the available works (see
Ganatos, Peffer, and Weibaum (1980a), Ganatos, Peffer,
and Weibaum (1980b), Staben, Zinchenko, and Davis
(2003)) consider two plane and parallel solid bound-
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aries and the case of two parallel plane solid wall and
free surface has not been addressed so far. The present
work therefore introduces a new approach to compute the
gravity-driven rigid-body motion of a 3D and arbitrarily-
shaped particle in a fluid film confined by two plane and
parallel solid wall and free surface and may be seen as
the first step towards modelling the rheology of dilute
fully three-dimensional suspension film flows. This is
achieved by establishing a boundary-integral formulation
of the problem and analytically obtaining the Green ten-
sor which complies with all the boundary conditions.

The paper is organized as follows. The governing prob-
lem and the relevant boundary-integral equations are pre-
sented in §2 whereas the determination of the associated
Green tensor is addressed in §3. The numerical imple-
mentation and several results for the sedimentation of a
spherical particle are presented in §4 whereas a few con-
cluding remarks are given in §5.

2 Governing linear system and boundary-integral
equations

This section introduces our assumptions and shows how
it is possible to compute within this framework the set-
tling motion of the particle by solely solving six Fred-
holm boundary-integral equations on the particle’s sur-
face. By the way we indicate how to subsequently deter-
mine,

if necessay, the induced liquid velocity field by exploiting
a fruitful integral representation of the flow valid in the
entire fluid domain.

2.1 Assumptions and governing equations

We consider, as sketched in Fig. 1, a solid particle P im-
mersed in a quiescent Newtonian viscous fluid with uni-
form density ρ and viscosity µ. The particle, not neces-
sarily homogeneous, has density ρs, volume V , center of
mass O′ and center of volume O′′. The fluid is confined
between the motionless plane solid wall Σ1(x3 = −W)
and the undisturbed plane free surface Σ2(x3 = W). Both
the fluid and the particleP are subject to a uniform
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Figure 1 : A solid particle P immersed in a fluid film and
subject to the uniform gravity field g. The film thickness
is 2W with W > 0.

gravity field g and this results in a rigid-body motion of
P with unknown translational velocity U (the velocity of
O′) and angular velocity ω with respect to Σ1 and a liquid
flow with unknown velocity u and pressure p + ρg.OM
at any point M in the liquid domain Ω. In theory the up-
per free surface Σ2 should be disturbed. However, we
henceforth neglect this deformation and assume that Σ2

remains flat. This model is actually valid in practice as
soon as the particle lies far enough from the free-surface
or when either the surface tension or the liquid density
is large (see Lee, Chadwick, and Leal (1979)). Note that
in other circumstances this zeroth-order solution would
subsequently permit us to gain, if necessary, the small
but not negligible deformation of the free-surface by pro-
ceeding as explained in Lee, Chadwick, and Leal (1979).
If P has lentgh scale a and u has typical magnitude U
we further assume that Re = ρUa/µ � 1 and neglect all
inertial effects. Under those assumptions the liquid expe-
riences a quasi-steady low-Reynolds-number flow (u, p),
with stress tensor σ, obeying the following problem

µ∇2u = ∇p and ∇.u = 0 in Ω, (1)

(u, p)→ (0,0) as |OM| → ∞, (2)

u = 0 on Σ1,u.e3 = e1. σ.e3 = e2. σ.e3 = 0 on Σ2, (3)

u = U+ω∧O′M on S (4)

where the unit vectors e1 and e3 are indicated in Fig. 1
and e2 = e3 ∧ e1. In (3) we actually require a no-slip
boundary condition on the plane solid wall Σ1 and zero
normal velocity and tangential tractions on the steady
free-surface Σ2 whereas the translational and angular ve-
locities U and ω occurring in (4) are unknown. Because
of negligible inertia, the particle experiences zero net
force and torque (for instance, with respect to O′). De-
noting by n the unit outward normal on S, we thus sup-
plement (1)-(4) with the relations
∫

S
σ.ndS = (ρV −M )g, (5)

∫
S

O′M∧ σ.ndS = M O′O′′ ∧g. (6)

For a prescribed rigid-body motion X = (U,ω) it is think-
able to compute the flow (u, p), governed by (1)-(4), by
using a 3D Finite Element Code and also to evaluate
the resulting traction σ.n on the particle’s surface. This
suggests determining the rigid-body motion (U,ω) dic-
tated by (1)-(4) and (5)-(6) by starting with a guess value
Xg and iteratively going on until the conditions (5)-(6)
are satisfied. Unfortunately, such a procedure would be
highly cpu time consuming and not accurate enough be-
cause a loss of accuracy occurs when computing the trac-
tion on the particle’s surface from the numerical approx-
imation of (u, p) in it’s vicinity. We present in the next
subsections a quite different approach which is free from
those drawbacks.

2.2 Extended reciprocal identity and resulting key lin-
ear system

The key idea here consists in extending and exploiting
the reciprocal identity available for Stokes flows. More
precisely, let us prove for two arbitrary flows (u, p) and
(u′, p′) that obey (1)-(3) with stress tensors σ and σ′ the
basic identity
∫

S
u. σ′.ndS =

∫
S

u′. σ.ndS. (7)

Using Cartesian coordinates (O,x1,x2,x3) with the nota-
tion d(M) = {x2

1 +x2
2}1/2, we first introduce the bounded

liquid domain Ω(b) = {M ∈ Ω;d(M) ≤ b} for b posi-
tive and large enough such that the boundary ∂Ω(b) con-
sists of both S, the cylinder Σ(b) = {M ∈ Ω;d(M) = b}
with outward unit normal n′(M) = (OM− x3e3)/b and
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surfaces Σl(b) = {M,x3 = (l −1)W and d(M) < b} for
l = 1,2. According to the usual reciprocal theorem (see
Happel and Brenner (1973)) the equation (1) for (u, p)
and (u′, p′) ensures that

∫
S
[u. σ′ −u′. σ].ndS =

∫
Σ(b)

[u. σ′ −u′ . σ].n′dS

+
2

∑
l=1

∫
Σl(b)

(−1)l[u′. σ−u. σ′].e3dS. (8)

By virtue of (3) the integrations on the surfaces Σl(b)
appear to vanish. In addition, the far-field behaviors (2)
show that the integration on Σ(b) vanishes as b becomes
large and one thus arrives at (7).

In expressing the conditions (5)-(6) it is fruitful to select
(u′, p′) as one of the specific Stokes flows (u(i)

T , p(i)
T ) or

(u(i)
R , p(i)

R ) defined for i = 1,2,3, with stress tensors σ(i)
T

and σ(i)
R , and produced by the particle when it translates

or rotates respectively parallel to ei. In other words, these
flows fulfill (1)-(3) and the boundary conditions

u(i)
T = ei and u(i)

R = ei ∧O′M on S. (9)

We moreover introduce for L = T,R the traction f(i)L =
σ(i)

L .n exerted on the particle’s surface S by the flow

(u(i)
L , p(i)

L ) and the associated coefficients

Ai, j
L = −

∫
S

e j.f
(i)
L dS, Bi, j

L = −
∫

S
(e j ∧O′M).f(i)L dS. (10)

Adopting henceforth the usual tensor summation conven-
tion, it is straightforward by exploiting the identity (7)
to cast the relations (5)-(6) into the following 6-equation
linear system for the unknown Cartesian velocity compo-
nents Uj = U.e j and Ω j = ω.e j

Ai, j
T Uj +Bi, j

T Ω j = (M −ρV )g.ei, (11)

Ai, j
R Uj +Bi, j

R Ω j = M (g∧O′O′′).ei. (12)

In order to prove that (11)-(12), with 6×6 matrix A, ad-
mits a unique solution let us consider for 6 arbitrary real
numbers Ti and Ri the flow (u′, p′) such that

u′ = Tiu
(i)
T +Riu

(i)
R , p′ = Tip

(i)
T +Rip

(i)
R . (13)

Of course, (u′, p′) has stress tensor σ′ = Ti σ(i)
T +Ri σ(i)

R .
Denoting by tX the transposed value of the vector X =
(T1,T2,T3,R1,R2,R3) it follows from (9)-(13) that
∫

S
u′. σ′.ndS = −X.A.tX. (14)

If e′i j = [∂u′i/∂x j + ∂u′j/∂xi]/2 with u′i = u′.ei we arrive,
because (u′, p′) obeys (1), at

∫
S

u′. σ′.ndS +
2

∑
l=1

∫
Σl

(−1)lu′. σ′.e3dS

= −2µ
∫

Ω
e′i je

′
i jdΩ < 0. (15)

Finally, since (u′, p′) also fulfills (3) the integrals over
Σ1 and Σ2 in (15) vanish and (14)-(15) thus shows that
X.A.tX > 0 for arbitrary vectors X. Therefore, the real-
valued square matrix A is positive-definite. From the def-
initions (10) and the identity (7) it is straightforward to
prove that A is also symmetric. Accordingly, the sys-
tem (11)-(12) admits a unique solution (U,ω) which is
by virtue of (10) obtained by solely determining on the
particle’s surface the specific tractions f(i)T = σ(i)

T .n and

f(i)R = σ(i)
R .n for i = 1,2,3.

2.3 Relevant boundary-integral equations and veloc-
ity field representation

For source and observation points y(y1,y2,y3) and
x(x1,x2,x3) located in the domain D = Ω∪ P we con-
sider (for j = 1,2,3) the stokes flows (v( j), p( j)), with
stress tensor σ( j), such that

µ∇2v( j) = ∇p( j) −δ3d(x−y)e j, ∇.v( j) = 0 in D, (16)

(v( j), p( j)) → (0,0) as |x−y| → ∞, (17)

v( j) = 0 on Σ1, (18)

v( j).e3 = e1. σ( j).e3 = e2. σ( j).e3 = 0 on Σ2, (19)

with δ3d(x−y) = δd(x1 − y1)δd(x2 − y2)δd(x3 − y3) and
δd the Dirac pseudo-function. Solving (16)-(19) and set-
ting vk j(x,y) = v( j).ek then provides the second-rank and
so-called Green tensor vk j(x,y)ek ⊗ e j which adequately
takes into account the boundaries Σ1 and Σ2. Extending
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the approach used for only solid boundaries in Pozrikidis
(1992) it is possible to prove, by virtue of (7), the sym-
metry property

vk j(x,y) = v jk(y,x) (20)

and if the pole y lies in Ω and (u, p) obeys (1)-(4) to get
the flow representation

uk(y) = [u.ek](y) =
∫

S∪Σ1∪Σ2

[u. σ( j).n−v( j). σ.n]dS(x)

=
∫

S
[U+ω∧O′M]. σ( j).ndS(x)

−
∫

S
vk j(x,y)ek. σ.ndS(x). (21)

Since the pole y lies outside the particle domain P where
the rigid-body motion V = U+ω∧O′M is a Stokes flow
with constant pressure P, one also obtains the relation

∫
S
[U+ω∧O′M]. σ( j).ndS(x) = −P

∫
S

v( j).ndS(x). (22)

For y outside the particle v( j) is divergence-free in P and
the integrals arising in (22) are thus zero. Recalling (20)
and switching the notations y and x finally yields for any
flow (u, p) obeying (1)-(4) with arbitrary values of the
rigid-body motion (U,ω) the integral representation

uk(x) = −
∫

S
v jk(x,y)[ek. σ.n](y)dS(y), x ∈ Ω∪S. (23)

Note that the above single-layer representation estab-
lished for x in the liquid domain indeed also holds by
continuity on the boundary S. Exploiting (23) finally
makes it possible to solve our problem as follows:

(i) We first compute the required surface tractions
f(i)T and f(i)R on the particle’s surface by inverting the fol-
lowing Fredholm boundary-integral equations of the first
kind

[u(i).ek](x) = −
∫

S
v jk(x,y)[f(i)L .ek](y)dS(y) on S, (24)

obtained by employing (23) on the boundary S for each

specific flow (u(i)
L , p(i)

L ). The determination of the vectors

f(i)L on S thus reduces to the treatment of six boundary-
integral equations (24) and makes it further possible to
compute the unknown rigid-body motion (U,ω) of the
particle by solving the linear system (11)-(12) under the
definitions (10). Note that, as outlined in Pozrikidis

(1992), any constant multiple of the unit normal n on S is
an eigensolution of (24). Fortunately, the matrix A (see
(10)) is not sensitive to those eigensolutions and our nu-
merical experiment reveals that for a prescribed mesh on
the particle’s surface the discretized counterpart of (24)
is a well-posed linear system with unique solution.

(ii) If needed, we finally gain the velocity field u in
the liquid domain by using the representation (23) for the
previously-obtained surface traction σ.n = Uif

(i)
T +Ωif

(i)
R

on S.

3 Determination of the Green tensor

As established in the previous section, a key issue for the
present work consists in determining the Cartesian com-
ponents v jk(x,y) of the Green tensor introduced in §2.3.
This challenging task, which has not been addressed so
far to the authors very best knowledge, is achieved here
by mimicking the procedure recently advocated in Jones
(2004) when both surfaces Σ1 and Σ2 are solid.

3.1 Obtention of the Fourier transform of v33,v32,v12

and v22

For symmetry reasons the velocity v( j) induced by
a given pole y(y1,y2,y3) at the observation point
x(x1,x2,x3) actually depends upon s1 = x1 − y1, s2 =
x2 − y2,x3 and y3. We thus look at the two-dimensional
Fourier transform v̂k j = v̂k j(q,x3,y3) in the s1 − s2 plane
of the coefficient vk j(x,y) with q(q1,q2) the associ-
ated two-dimensional real wave number, as introduced
in Jones (2004). Since the calculation of v̂k j follows
the lines detailed in this latter paper we here content
ourselves with briefly giving the results established for
v̂33, v̂k2 (with k = 1,2,3) and the way to deduce from
those functions all the coefficients vk j.

Setting A = (16µπ2)−1 and q = |q|, the function v̂33 takes
the following form

v̂33 = A[t0nn + t1nn](q,x3,y3)/q, (25)

t0nn(q,x3,y3) = (1+q|x3 −y3|)e−q|x3−y3|, (26)

t1nn(q,x3,y3) = S3 cosh(qx3)+S4 sinh(qx3)
+qy3[S1 cosh(qx3)+S2 sinh(qx3)] (27)

with functions S1,S2,S3 and S4, depending on u = qW
and v = qy2, determined by enforcing the boundary con-
ditions v̂33 = dv̂33/dx3 = 0 at x3 =+

− W and given in the
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Appendix. In a similar fashion, one can also compute the
functions v̂k2. Curtailing the details and denoting by i the
complex such that i2 = −1, it has been found by a great
deal of algebra that

v̂32 = iAq2[t0np + t1np](q,x3,y3)/q2, (28)

t0np(q,x3,y3) = −q(x3 −y3)e−q|x3−y3|, (29)

t1np(q,x3,y3) = N3 cosh(qx3)+N4 sinh(qx3)
+qy3[N1 cosh(qx3)+N2 sinh(qx3)], (30)

v̂12 = −Aq1q2[t0pp + t1pp](q,x3,y3)/q3, (31)

t0pp(q,x3,y3) = t0nn(q,x3,y3), (32)

t1pp(q,x3,y3) = M1 cosh(qx3)+M2 sinh(qx3)
+qy3[N1 cosh(qx3)+N2 sinh(qx3)], (33)

v̂22 = A[r0pp + r1pp − q2
2

q2 (t0pp + t1pp)](q,x3,y3)/q, (34)

r0pp(q,x3,y3) = 2e−q|x3−y3|, (35)

with functions Nm,M1,M2 and r1pp dictated by the
boundary conditions v̂k2 = dv̂32/dx3 = 0 for k = 1,2,3 at
x3 =−W and v̂32 = dv̂12/dx3 = dv̂22/dx3 = d2v̂23/dx2

3 =
0 at x3 = W. More precisely, one finds that for u =
qW,v = qy3 and w = qx3

r1pp(q,x3,y3) =
2e−u

cosh(2u)
{

coshv(eu sinhw−e−u coshw)

+ sinhv(eu coshw+e−u sinhw)
}

(36)

whereas Nm,M1 and M2 are provided as functions of
(u,v) in the Appendix.

3.2 Final expression and decomposition of the Green
tensor

Each component vk j is obtained by taking the inverse
Fourier transform of v̂k j. If δ designates the usual Kro-
necker delta, the final result then reads

vk j(x,y) =
1

8πµ
[gk j + rk j](x,y), (37)

gk j(x,y) =
δk j

|x−y| +
[(x−y).ek][(x−y).e j]

|x−y|3 (38)

where one recognizes the free-space Oseen-Burgers
Green tensor gk jek ⊗e j (see Happel and Brenner (1973))
which prevails in absence of boundaries (case of the un-
bounded fluid domain) and the occurrence of a regu-
lar tensor rk jek ⊗ e j which permits the obtained Green
tensor to comply with the boundary conditions on the
plane solid wall and free surfaces Σ1 and Σ2. As in Jones
(2004)3, if J0,J1 and J2 designate the usual Bessel func-
tions this additional tensor satisfies

r11(x,y) = −1
2

∫ ∞

0
{J0(qs)[t1pp−2r1pp](q,x3,y3)

+
s2

2 − s2
1

s2 J2(qs)t1pp(q,x3,y3)}dq, (39)

r33(x,y) =
∫ ∞

0
J0(qs)t1nn(q,x3,y3)dq, (40)

r12(x,y) =
s1s2

s2

∫ ∞

0
J2(qs)t1pp(q,x3,y3)dq, (41)

r13(x,y) = −s1

s

∫ ∞

0
J1(qs)t1pn(q,x3,y3)dq, (42)

t1pn(q,x3,y3) = −t1np(q,y3,x3), (43)

whereas r23(x,y) is obtained from r13 by replacing s1

with s2 in (42)-(43), r22(x,y) is deduced from r11 by re-
placing (s1, s2) with (s2,−s1) in (39) and the remaining
components are given by applying the same symmetry
property as (20).

4 Numerical method and results

This section describes the achieved numerical implemen-
tation and also provides results for the settling motion of
a spherical particle with uniform density ρs.

4.1 Numerical implementation

The integrands of the integrals (39)-(42) tend to zero
when q becomes large but such a decay becomes very
slow as (x3,y3) approaches either (W,W) or (−W,−W),

3 The misprint occurring for T1xy in equation (26) in this latter paper
is corrected here.
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i. e. when both the pole y and the observation point x
lie in the vicinity of the same boundary Σ1 or Σ2. In such
circumstances a dramatic loss of accuracy results if one
directly evaluates the integrals (39)-(42) by a usual Gaus-
sian quadrature. We circumvent this difficulty by using
the following decompositions

t1nn = t ′1nn−eq(x3+y3−2W){q(x3 +y3 −2W )−1}
+e−q(x3+y3+2W ){2q2(W +x3)(W +y3)
+q(2W +x3 +y3)+1}, (44)

t1pn = t ′1pn +q(2W −x3 −y3)eq(x3+y3−2W )

−e−q(x3+y3+2W ){2q2(W +x3)(W +y3)
+q(x3 −y3)}, (45)

t1pp = t ′1pp +eq(x3+y3−2W){q(x3 +y3 −2W )−1}
−e−q(x3+y3+2W ){2q2(W +x3)(W +y3)
−q(2W +x3 +y3)−1}, (46)

r1pp = r′1pp −2eq(x3+y3−2W) +2e−q(x3+y3+2W), (47)

where the regularized functions t ′1nn, t
′
1np, t

′
1pp and r′1pp

quickly vanish for q large whatever the value of (x3,y3).
We then accurately evaluate the integrals (39)-(42) ob-
tained by replacing the functions t1nn, t1np, t1pp, r1pp with
t ′1nn, t

′
1np, t

′
1pp and r′1pp, respectively by using the change

of variable t = −log(q) and a standard Gaussian quadra-
ture.

Each encountered boundary-integral equation (24) is nu-
merically inverted by employing a standard boundary el-
ement technique (see, among others, Bonnet (1999)). For
a sake of accuracy, we here resort on the particle’s surface
to a N−node mesh consisting of isoparametric, curved
and triangular boundary elements. When discretized at
each nodal point each equation (24) then results in a lin-
ear system M.X = Y with fully-populated, real-valued
and non symmetric influence 3N ×3N square matrix M.
At that stage the exhibited decomposition (37)-(38) of
each Cartesian component vk j into a weakly-singular an-
alytical term gk j and a regular one rk j (evaluated as pre-
viously explained) permits us a straightforward and ac-
curate computation of this influence matrix M. Because
this latter issue is standard, we however direct the reader
to Pozrikidis (1992) and Bonnet (1999) for further de-
tails, especially for the removal of the weakly singular
singularity exhibited by gk j. Finally, each arising linear
system M.X = Y is solved by Gaussian elimination.

4.2 Numerical results

We confine our attention to the case of a sphere with con-
stant density ρs, radius a < W and center O′ = O′′ such
that OO′.e3 +W = h > a, as illustrated in Fig. 2. Note

2W

Σ1(x3 = −W)

Σ2(x3 = W)

x1

Ω

g

a
h

O′
OS

x1

x3

Figure 2 : Case of a solid sphere with radius a, uniform
density ρs and center O′ = O′′.

that under these notations h < 2W − a whereas h− a is
the gap between the sphere’s surface and the solid wall
Σ1. In absence of boundaries the sphere is known to set-
tle (without rotating) parallel to the uniform gravity field
g at the velocity 2a2(ρs − ρ)g/(9µ). This motion is af-
fected in the present analysis by the sphere’s interactions
with Σ1 and/or Σ2 which clearly depend upon the normal-
ized fluid film thickness 2W/a and the particle’s location
h/a. As shown by symmetries, when g = ge1 is parallel
to the boundaries U and ω are aligned with e1 and e2,

respectively whereas only U.e3 is non-zero if g = ge3 is
normal to the boundaries. Therefore, by superposition
we only compute for g �= 0 the normalized translational
velocity components u,v and normalized angular veloc-
ity w defined as

u =
9µU.e1

2(ρs−ρ)a2g
and w =

9µω.e2

2(ρs−ρ)ag
if g = ge1, (48)

v =
9µU.e3

2(ρs −ρ)a2g
if g = ge3. (49)

As illustrated in Tab. 1 and Tab. 2, putting N = 242 nodal
points on the sphere yields a quite sufficient relative ac-
curacy of order of one percent even for the severe case of
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Table 1 : Computed normalized velocity components
u,w and v using increasingly refined N−node meshes on
a sphere located at the center (O′ = O) of a fluid film of
medium thickness: W = h = 2a.

N u w v
74 0.685834 0.024189 0.4164102
242 0.683736 0.024437 0.4146364
1058 0.683506 0.024455 0.4144290

Table 2 : Computed normalized velocity components
u,w and v using increasingly refined N−node meshes on
a sphere located at the center (O′ = O) of a thin fluid
film: W = h = 1.1a.

N u w v
74 0.426037 0.057660 0.078630

242 0.423524 0.060454 0.069648
1058 0.423205 0.060439 0.069313

a thin fluid film (W = h = 1.1a). All reported computa-
tions have thus been performed with N = 242.

We first examine the influence of the fluid film thickness
2W on the induced velocities u,v and w when the sphere
is located either very close to the solid wall Σ1 with h =
1.1a or very close to the free-surface Σ2 with h = 2W −
1.1a.

The sphere is clearly seen in Fig. 3(a) to settle faster
when close to the free surface than when close to the solid
wall. Indeed, the no-slip condition on the solid boundary
requires a small fluid velocity in it’s vicinity whereas the
mixed velocity-stress condition on the free surface autho-
rizes larger fuid velocities near it. The sphere translates
normal to the boundaries slower than parallel to the wall
(v < u) in all circumstances. Note also that its interac-
tions with the boundaries slow down the sphere (u < 1
and v < 1) except when it migrates parallel and close
to the free surface with u = 1 for a critical fluid film
thickness Wc ∼ 2.65a,u < 1 for W < Wc and u > 1 for
W > Wc. In this latter circumstances, the free-surface ac-
tually drives the motion of the sphere and makes it move
faster than if isolated as it happens for a sphere moving
parallel and close to a single free surface (see Lee, Chad-
wick, and Leal (1979)). The motion of a sphere close to
the solid wall is weakly sensitive to the influence of the
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Figure 3 : Normalized velocities u,v and w versus the
normalized fluid film thickness 2W/a for a sphere close
to the solid wall Σ1(h = 1.1a) or to the free-surface
Σ2(h = 2W −1.1a). (a) u for a sphere close to Σ1(�) or
Σ2(♦) and v for a sphere close to Σ1(�) or Σ2(�). (b) w
for a sphere close to Σ1(•) or Σ2(◦).

free surface (see the nearly flat curves for u and v) which
actually decays as (2W/a)−2. When the sphere is close
to the free surface a similar trend is observed for the nor-
mal migration (the normalized velocity v exhibits a flat
profile versus

2W/a near 2W/a = 10) but the influence of the solid
wall on the parallel motion becomes larger and scales
as (2W/a− 1.1)−1. As depicted in Fig. 3(b), the inter-
actions with the boundaries also make the sphere rotate



194 Copyright c© 2006 Tech Science Press CMES, vol.16, no.3, pp.187-196, 2006

when it settles parallel to the solid wall. The resulting
positive angular velocity w is larger when the sphere lies
near the free surface than when it is

close to the solid wall whatever the fluid film thickness
2W.
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Figure 4 : Normalized velocities u,v and w versus h/a
for W = 5a. (a) u(♦) and v(�). (b) w(◦). We also plot
u,w (solid lines) or v (solid line and symbols ∗) in ab-
sence of free surface (when there is only a solid wall)
and u,w (dashed curves) or v (dashed line and symbols
∗) in absence of solid wall.

Let us now investigate the influence of the boundaries
for a given fluid thickness 2W and a sphere not neces-
sarily located very close to Σ1 or Σ2. This is achieved
for 2W = 10a by plotting in Fig. 4 the normalized ve-

locities u,v and w versus h/a. For comparisons, we also
provide the computed values for a single solid wall and
a single free surface if one employs the associated Green
function given in Blake (1971) and Lee, Chadwick, and
Leal (1979), respectively. As previously emphasized, the
sphere settles parallel to the boundaries faster (u > 1)
or slower (u < 1) than in an unbounded fluid (u = 1)
when it lies very close to the solid wall or the free sur-
face, respectively. Accordingly there exists, as seen in
Fig. 4(a), a critical value hc ∼ 8.1a at which the wall-
sphere and free-surface sphere interactions cancel with
u(hc) = 1,u < 1 if h < hc and u > 1 if h > hc. In addi-
tion, both the normal velocity v and the angular velocity
w are positive and exhibit a maximum and a minimum
respectively for different locations h/a of the sphere.

5 Concluding remarks

A new approach has been proposed to accurately de-
termine at a reasonable cpu time cost the slow viscous
gravity-driven motion of a solid particle between two
plane and parallel solid wall and free surface. The Green
tensor associated with these specific boundary condi-
tions is analytically obtained and it is shown how to gain
the particle’s migration by solely inverting six carefully-
selected boundary-integral equations on its surface. The
procedure holds for arbitrarily-shaped particles and cir-
cumvents determining the fluid flow velocity field. This
later however receives a fruitful integral representation
which would also permit its straightforward and subse-
quent computation in the liquid domain. As revealed by
our computations, the migration of a sphere deeply de-
pends upon its location, the film fluid thickness and the
direction of the gravity field g. Depending on g the sphere
may either translate parallel to the gravity field (for in-
stance when g is normal or parallel to the boundaries), as
if in an unbounded fluid, or not. In addition, when g is
normal to the boundaries the sphere always moves slower
than if isolated whereas when g is parallel to the bound-
aries it may either migrates slower, faster or even at the
same speed (therefore ignoring the boundaries) than as
isolated.

In practice collections of particles are encountered and
the liquid may be subject to a prescribed external flow
(think, for instance, about linear shear and quadratic
Poiseuille flows). Such challenging issues are likely to be
adequatly addressed by extending the present method to
the case of several particles as recently achieved in Pasol
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and Sellier (2006) for the sedimentation of a two-particle
cluster between two parallel and solid plane walls. Such
a task will be pursued in future research to investigate
combined particle-particle and particle-wall or particle-
free surface interactions. For this purpose we intend to
use the method described in Wang and Yao (2005) when-
ever the number of particles becomes large.

Finally, one should note that the advocated approach
would also permit to compute, through the achieved de-
termination of the associated Green tensor, the motion of
a bioartificial capsule immersed in a fluid film by mim-
icking and extending the treatment employed in Dias and
Barthes-biesel (2002) for an ellipsoidal capsule moving
in a long axisymmetric pore with a hyperbolic entrance.

References

Blake, J. R. (1971): A note on the image system for a
Stokeslet in a no-slip boundary. Proc. Camb. Phil. Soc.,
vol. 70, pp. 303–310.

Bonnet, M. (1999): Boundary Integral Equation Meth-
ods for Solids and Fluids. John Wiley & Sons Ltd.

Dias, A.; Barthes-biesel, D. (2002): A Geometrically
Nonlinear Nine-Node Solid Shell Element Formulation
with Reduced Sensitivity to Mesh Distortion. CMES:
Computer Modeling in Engineering & Sciences, vol. 3,
pp. 321–338.

Ganatos, P.; Peffer, R.; Weibaum, S. (1980a): A
strong interaction therory for the creeping motion of a
sphere between plane parallel boundaries. 1. Perpendic-
ular motion. J. Fluid Mech, vol. 9, pp. 739–753.

Ganatos, P.; Peffer, R.; Weibaum, S. (1980b): A
strong interaction therory for the creeping motion of a
sphere between plane parallel boundaries. 1. Parallel mo-
tion. J. Fluid Mech, vol. 9, pp. 755–783.

Happel, J.; Brenner, H. (1973): Low Reynolds number
hydrodynamics. Martinus Nijhoff.

Jones, R. B. (2004): Spherical particle in Poiseuille
flow between planar walls. Journal of Chemical Physics,
vol. 121, pp. 483–500.

Lee, S. H.; Chadwick, R. S.; Leal, L. G. (1979): Mo-
tion of a sphere in the presence of a plane interface.
Part 1. An approximate solution by generalisation of the
method of Lorentz. J. Fluid Mech, vol. 93, pp. 705–726.

Li, X.; Pozrikidis, C. (2003): Film flow of a suspension
down an inclined plane. Phil. Trans. R. Soc. Lond., vol.
A 361, no. 1, pp. 847–869.

Pasol, L.; Sellier, A. (2006): Gravitational motion of
a two-particle cluster between two parallel plane walls.
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Appendix A: Relevant functions for the green ten-
sor

This Appendix provides the functions Sm,Nm (for m =
1, ...,4) and M1,M2 arising in (27), (30) and (33). For
convenience we introduce the new variables u = qW,v =
qy3 and functions

E+
−(u) = sinh(u)cosh(u)+

−u, (50)

A+
−(u) = u+

− sinh(u)e−u, (51)

B(u) = u+cosh(u)e−u. (52)

Under those definitions and trough elementary but te-
dious manipulations it is found that

E−(2u)S1 = −[2usinh2(u)]coshv

+2[cosh2(u)B(u)+ sinh(u)e−uE+(u)] sinhv

− [2cosh2(u)]vcoshv+[sinh(2u)]vsinhv, (53)

cosh(u)E−(2u)S2 = [2usinh3(u)+E−(2u)e−u]coshv

− [2sinh(u)(cosh2(u)B(u)+ sinh(u)e−uE+(u))
−E−(2u)e−u] sinhv

+[cosh(u) sinh(2u)]vcoshv

− [2sinh2(u)cosh(u)]vsinhv, (54)
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cosh2(u)E−(2u)S3 =
− [B(u)E−(2u)+2u2 sinh4(u)]coshv

+[2ucosh2(u) sinh2(u)B(u)+2usinh3(u)E+(u)e−u

−usinh(u)e−u +E−(2u)] sinhv

− [2usinh2(u)cosh2(u)]vcoshv

+cosh(u)[E−(2u)e−u +2usinh3(u)]vsinhv, (55)

sinh(u)E−(2u)S4 = [u2 sinh(2u) sinh(u)]coshv

− [e−u(1+u)E−(2u)+2ucosh3(u)B(u)
+usinh2(u)e−uE+(u)] sinhv

+[e−uE−(2u)+2ucosh3(u)]vcoshv

− [2usinh(u)cosh2(u)]vsinhv,

E−(2u)N1 = −[A−(2u)+usinh(u)]coshv

+[2usinh2(u)− sinh(2u)] sinhv

− [sinh(2u)]vcoshv+[2cosh2(u)]vsinhv, (56)

E−(2u)N2 = [2ucosh2(u)− sinh(2u)]coshv

+[A−(2u)−usinh(2u)] sinhv

+[2sinh2(u)]vcoshv− [sinh(2u)]vsinhv, (57)

E−(2u)N3 = [2usinh2(u)−u2 sinh(2u)]coshv

+[uE−(2u)−2usinh2(u)E−(u)
−usinh2(u) sinh(2u)] sinhv

+[2sinh2(u)cosh(2u)−usinh(2u)−E−(2u)]vcoshv

+[2usinh2(u)]vsinhv, (58)

E−(2u)N4 = [2ucosh2(u)E+(u)−uE−(2u)
+ucosh2(u) sinh(2u)]coshv

+[2ucosh2(u)−u2 sinh(2u)] sinhv

+[E−(2u)−2cosh2(u)cosh(2u)−usinh(2u)]vsinhv

+[2ucosh2(u)]vcoshv (59)

and upon introducing the following functions

M1
1 = E−(2u)e−u[usinh(u)−cosh(u)−ucosh(u)]
+[A(2u)+usinh(2u)][sinh2(u)+usinh(2u)]
−E−(2u)[2ucosh2(u)− sinh(2u)], (60)

M1
2 = E−(2u)e−u[usinh(u)+cosh(u)+ucosh(u)]
− [sinh2(u)+usinh(2u)][2usinh2(u)− sinh(2u)]
−E−(2u)[A−(2u)−usinh(2u)], (61)

M1
3 = −E−(2u)+ sinh(2u)[sinh2(u)+usinh(2u)]
−2sinh2(u)E−(u), (62)

M1
4 = E−(2u)e−2u−2cosh2(u)[sinh2(u)+usinh(2u)]
+ sinh(2u)E−(u), (63)

M2
1 = E−(2u)A+(u)+E+(u)[A−(2u)+usinh(2u)]
− [cosh2(u)+usinh(2u)][2ucosh2(u)− sinh(2u)],(64)

M2
2 = E−(2u)e−u[ucosh(u)− sinh(u)−usinh(u)]
−E+(u)[2usinh2(u)− sinh(2u)]
− [cosh2(u)+usinh(2u)][A(2u)−usinh(2u)], (65)

M2
3 = −E−(2u)e−2u +E+(u) sinh(2u)
−2sinh2(u)[cosh2(u)+usinh(2u)], (66)

M2
4 = −E−(2u)−2cosh2(u)E+(u)
+ sinh(2u)[cosh2(u)+usinh(2u)], (67)

one also arrives at

cosh(2u)E−(2u)M1 = M1
1 coshv+M1

2 sinhv

+M1
3vcoshv+M1

4 vsinhv, (68)

cosh(2u)E−(2u)M2 = M2
1 coshv+M2

2 sinhv

+M2
3vcoshv+M2

4 vsinhv. (69)


