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A New High-order Time-kernel BIEM for the Burgers Equation

N. Mai-Duy1,2, T. Tran-Cong2 and R.I. Tanner3

Abstract: This paper presents a new high-order time-
kernel boundary-integral-equation method (BIEM) for
numerically solving transient problems governed by the
Burgers equation. Instead of using high-order Lagrange
polynomials such as quadratic and quartic interpola-
tion functions, the proposed method employs integrated
radial-basis-function networks (IRBFNs) to represent the
unknown functions in boundary and volume integrals.
Numerical implementations of ordinary and double in-
tegrals involving time in the presence of IRBFNs are dis-
cussed in detail. The proposed method is verified through
the solution of diffusion and convection-diffusion prob-
lems. A comparison of the present results and those ob-
tained by low-order BIEMs and other methods is also
given.

keyword: Burgers equation, Radial-basis-function net-
works, Transient problems, Time-dependent fundamen-
tal solutions, Boundary-integral-equation methods.

1 Introduction

Parabolic differential equations have been employed in a
variety of engineering problems. Solutions to these equa-
tions can be found by means of numerical discretization
methods such as BIEMs, finite-difference (FDMs), finite-
element (FEMs) and finite-volume (FVMs) methods. For
BIEMs (e.g [Banerjee and Butterfield (1981); Brebbia,
Telles and Wrobel (1984)]), there are several approaches
proposed to deal with a time-derivative term. Based on
the criterion of fundamental solutions used, they can be
classified into two groups. The first group employs time-
dependent fundamental solutions, i.e time derivatives en-
ter the integral representation through the kernel func-
tions, which allows the process of discretization in time
and space to be conducted in a similar fashion. The

1 Corresponding author: Telephone +61 7 4631 1324, Fax +61 7
4631 2526, E-mail maiduy@usq.edu.au

2 Faculty of Engineering and Surveying, The University of Southern
Queensland, QLD 4350, Australia

3 School of Aerospace, Mechanical and Mechatronic Engineering,
The University of Sydney, NSW 2006, Australia

second group employs stationary fundamental solutions.
Some additional treatments for time derivatives are thus
required; they generally fall into one of two categories:
Laplace transforms and finite-difference schemes.

In the context of time-kernel BIEMs, there are relatively
few papers on using high-order interpolation schemes to
approximate the unknown functions with respect to time.
The case of using quadratic functional variation was re-
ported in [Brebbia, Telles and Wrobel (1984)]. Recently,
Grigoriev and Dargush (2002) employed quartic inter-
polation functions, and their obtained results indicated
a significant improvement in accuracy, convergence rate
and error distribution.

Radial-basis-function networks have found a wide range
of applications in the field of numerical analysis. These
networks exhibit good approximation properties. For ex-
ample, it has been proved that RBFNs are capable of
representing any continuous function to a desired level
of accuracy by increasing the number of hidden neurons
(universal approximation) [Park and Sandberg (1991)].
Madych and Nelson (1990) showed that the multiquadric
(MQ) interpolation scheme converges exponentially with
respect to the number of data points used. It was found
that IRBFNs have higher approximation power than dif-
ferentiated RBFNs [Mai-Duy and Tran-Cong (2003a)].
There have been widespread applications of RBFNs for
the solution of differential equations (e.g. [Mai-Cao and
Tran-Cong (2005); Sarler (2005); Shu, Ding and Yeo
(2005); La Rocca, Power, La Rocca and Morale (2005)]).

In the present work, MQ-IRBFNs are introduced into the
time-kernel BIEM to represent the functional variations
for the solution of transient problems governed by the
Burgers equation. As with the case of steady problems
(stationary fundamental solutions) [Mai-Duy and Tran-
Cong (2003b); Mai-Duy and Tanner (2005)], numeri-
cal results obtained show that the IRBFN-BIEM attains
a significant improvement in accuracy and convergence
speed over low-order time-kernel BIEMs.

The remainder of the paper is organized as follows. In
Section 2, the governing equations and fundamental solu-
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tions are outlined. In Section 3, a brief review of IRBFNs
is given. The proposed method is then presented in Sec-
tion 4, followed by several numerical examples in Sec-
tion 5 to demonstrate the validity and attractiveness of
the present implementation. Section 6 gives some con-
cluding remarks.

2 Governing equations

The equation under discussion here is of the form

µ

(
∂u
∂t

+u
∂u
∂x

)
=

∂2u
∂x2 (1)

where t is the temporal coordinate 0≤ t ≤ t f , x the spatial
coordinate a ≤ x ≤ b, u the dependent variable, and µ a
given parameter, subject to the initial condition

u(x,0) = u0(x) (2)

and a set of Dirichlet and Neumann boundary conditions
prescribed at x = a and x = b.

By treating the convective term u∂u/∂x as a source term,
equation (1) can be recast into the following integral
equation

u(ξ, t f )+
∫ t f

0
[u(x, t)q∗(ξ,x, t f , t)]

b
a dt

=
∫ t f

0

[
∂u(x, t)

∂x
u∗(ξ,x, t f , t)

]b

a
dt

+
∫ b

a
µu0(x)u∗(ξ,x, t f ,0)dx

−
∫ b

a

∫ t f

0
µu(x, t)

∂u(x, t)
∂x

u∗(ξ,x, t f , t)dtdx (3)

where ξ is the source point a ≤ ξ ≤ b, x the field point, u∗

and q∗ the time-dependent fundamental solutions defined
as

u∗ =
1

2
√

πµ(t f − t)
exp

[−µ(x−ξ)2

4(t f − t)

]
, for t < t f (4)

u∗ = 0, for t > t f (5)

q∗ =
∂u∗

∂x
=

−√
µ(x−ξ)

4
√

π(t f − t)3/2
exp

[−µ(x−ξ)2

4(t f − t)

]
(6)

These fundamental solutions depend not only on the vari-
able x and the source point ξ but also on the variable t and

the time t f . It can be seen that the singularity occurs for
u∗ when x → ξ and t → t f . More details can be found
in [Banerjee and Butterfield (1981); Brebbia, Telles and
Wrobel (1984)].

3 Integrated Radial-Basis-Function Networks

Consider a function f (η). The independent variable η
can be taken to be time t or space x. In the IRBFN
scheme [Mai-Duy and Tran-Cong (2003a)], the second-
order derivative ∂2 f/∂η2 is decomposed into RBFs. The
RBF network obtained is then integrated to yield expres-
sions for the first-order derivative and its original func-
tion

d2 f (η)
dη2 =

m

∑
i=1

w(i)g(i)(η) (7)

d f (η)
dη

=
∫ m

∑
i=1

w(i)g(i)(η)dη+C1 =
m+1

∑
i=1

w(i)H(i)
[1] (η) (8)

f (η) =
∫ m

∑
i=1

w(i)H(i)
[1] dη+C1η+C2 =

m+2

∑
i=1

w(i)H(i)
[0] (η)(9)

where superscript (i) is used to denote components asso-
ciated with the ith neuron, m is the number of neurons,
{g(i)}m

i=1 the set of RBFs, {w(i)}m
i=1 the set of network

weights to be found, and {H(i)
[.] }m

i=1 new basis functions

obtained from integrating {g(i)}m
i=1. For convenience of

presentation, integration constants which are unknowns
here and their associated known basis functions (polyno-
mials) on the right-hand side (RHS) of (8)-(9) are also
denoted by the notations w(i) and H(i)

[.] , respectively but
with i > m.

Among RBFs, multiquadrics (MQs) are the most widely
used since several experiments have shown that, in gen-
eral, they tend to result in the most accurate approxima-
tion. Madych and Nelson (1990) showed that the MQ in-
terpolation scheme exhibits an exponential convergence.
In the present work, the MQ function is utilized and

hence the basis functions g(i) and H(i)
[.] (i = 1,2, · · · ,m)

take the forms as

g(i)(η) =
√

(η−c(i))2 +a(i)2 (10)

H(i)
[1] (η) =

(η−c(i))
2

A+
a(i)2

2
B (11)
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H(i)
[0] (η) =

(
−a(i)2

3
+

(η−c(i))2

6

)
A+

a(i)2(η−c(i))
2

B

(12)

where {c(i)}m
i=1 is the set of RBF centres, {a(i)}m

i=1 the
set of RBF widths, A =

√
(η−c(i))2 +a(i)2 and B =

ln
(
(η−c(i))+

√
(η−c(i))2 +a(i)2

)
. The set of centres

is chosen to be the same as the set of collocation points,
i.e. {c(i)}m

i=1 ≡ {x(i)}n
i=1 with m = n, and the width a(i) is

computed using the following relation

a(i) = βd(i) (13)

where β is a positive scalar and d(i) is the minimum dis-
tance from the ith centre to its neighbours.

It is more convenient to work in physical space than in
network-weight space. The evaluation of (9) at the set of
collocation points {η(i)}n

i=1 results in⎛
⎜⎜⎜⎝

f (η(1))
f (η(2))

...
f (η(n))

⎞
⎟⎟⎟⎠=

⎡
⎢⎢⎢⎢⎣

H(1)
[0] (η(1)) · · · H(m)

[0] (η(1)) η(1) 1

H(1)
[0] (η(2)) · · · H(m)

[0] (η(2)) η(2) 1

· · ·
H(1)

[0] (η(n)) · · · H(m)
[0] (η(n)) η(n) 1

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎝

w(1)

w(2)

...
w(m+2)

⎞
⎟⎟⎟⎠

(14)

The obtained system (14) for the unknown vector of net-
work weights can be solved using the SVD technique⎛
⎜⎜⎜⎝

w(1)

w(2)

...
w(m+2)

⎞
⎟⎟⎟⎠=

⎡
⎢⎢⎢⎢⎣

H(1)
[0] (η(1)) · · · H(m)

[0] (η(1)) η(1) 1

H(1)
[0] (η(2)) · · · H(m)

[0] (η(2)) η(2) 1

· · ·
H(1)

[0] (η(n)) · · · H(m)
[0] (η(n)) η(n) 1

⎤
⎥⎥⎥⎥⎦

−1

⎛
⎜⎜⎜⎝

f (η(1))
f (η(2))

...
f (η(n))

⎞
⎟⎟⎟⎠ (15)

or

w = H−1
[0] f (16)

where H−1
[0] is the Moore-Penrose pseudoinverse, and w,

H[0] and f are matrices of dimension (m + 2)× 1, n ×
(m+2) and n×1, respectively. From (15)-(16), it can be
seen that the network weights {w(i)}m+2

i=1 are expressed in
terms of the function values { f (i)}n

i=1. By substituting
(16) into (7)-(9), the function f and its derivatives at an
arbitrary point η can be computed by

f (η) =
[

H(1)
[0] (η) · · · H(m)

[0] (η) η 1
]

H−1
[0][

f (1) f (2) · · · f (n)
]T

(17)

d f (η)
dη

=
[

H(1)
[1] (η) · · · H(m)

[1] (η) 1 0
]

H−1
[0][

f (1) f (2) · · · f (n)
]T

(18)

d2 f (η)
dη2 =

[
g(1)(η) · · · g(m)(η) 0 0

]
H−1

[0][
f (1) f (2) · · · f (n)

]T
(19)

4 The proposed IRBFN-BIEM

The temporal domain of interest [0, t f ] is represented by
a set of nt uniformly/non-uniformly distributed points:
{t(1) = 0, t(2), · · · , t(nt) = t f}. There are 2(nt − 1) nodal
unknowns (u or ∂u/∂x) on the boundaries so that one
needs to write 2(nt − 1) algebraic equations. This can
be achieved by writing the BIE (3) at x = a and x = b for
different time levels

{
t(2), t(3), · · · , t(nt)

}
:

u(a, t(i))+
∫ t(i)

0

[
u(x, t)q∗(a,x, t(i), t)

]b

a
dt

=
∫ t(i)

0

[
∂u(x, t)

∂x
u∗(a,x, t(i), t)

]b

a
dt

+
∫ b

a
µu0(x)u∗(a,x, t(i),0)dx

−
∫ b

a

∫ t(i)

0
µu(x, t)

∂u(x, t)
∂x

u∗(a,x, t(i), t)dtdx (20)
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u(b, t(i))+
∫ t(i)

0

[
u(x, t)q∗(b,x, t(i), t)

]b

a
dt

=
∫ t(i)

0

[
∂u(x, t)

∂x
u∗(b,x, t(i), t)

]b

a
dt

+
∫ b

a
µu0(x)u∗(b,x, t(i),0)dx

−
∫ b

a

∫ t(i)

0
µu(x, t)

∂u(x, t)
∂x

u∗(b,x, t(i), t)dtdx (21)

where i = {2,3, · · · ,nt}. It can be seen that BIEs (20)-
(21) involve ordinary and double integrals. Here, the
unknown functions in these integrals are approximated
by using IRBFNs. The objective now is to express the
integrals in terms of nodal variable values. For brevity,
consider a generic case

I =
∫ b

a

∫ t f

0
f (x, t)u∗(x, t)dtdx (22)

where f (x, t) is an unknown function represented by an
IRBFN (17). This integral can be computed in a sequen-
tial manner (iterated integrals) as follows

I =
∫ b

a

{∫ t f

0
f (x, t)u∗(x, t)dt

}
dx (23)

4.1 Integration with respect to time

The bracketed integration in (23) is performed with re-
spect to t, regarding x as constant (x)

∫ t f

0
f (x, t)u∗(x, t)dt =

nt−1

∑
i=1

∫ t(i+1)

t(i)
f (x, t)u∗(x, t)dt (24)

The integrals on the RHS of (24) can be computed using
Gaussian quadrature. At the base points, the values of
the kernel function u∗(x, t) are evaluated explicitly, while
the values of the function f (x, t) are written in terms of
its nodal values{

f (x, t(1)), f (x, t(2)), · · · , f (x, t(nt))
}

using the IRBFN scheme (17). Expression (24) can thus
be rewritten in a compact form

∫ t f

0
f (x, t)u∗(x, t)dt =

nt

∑
i=1

ψ(x, t(i)) f (x, t(i)) (25)

where ψ(x, t(i)) is the known function.

Applying (25) to x = a and x = b, the discrete forms of
the first integral on the RHS of (3) are obtained. It is
noted that when i = (nt − 1) the corresponding integral
becomes weakly singular due to the presence of the term
1/

√
t f − t. One can use a coordinate transformation (T =√

t f − t, T : a new variable) to cancel out this singularity.

Substitution of (25) into (23) yields

I =
∫ b

a

nt

∑
i=1

ψ(x, t(i)) f (x, t(i))dx (26)

4.2 Integration with respect to space

The spatial domain [a,b] is discretized by a set of
nx points of uniform/nouniform distribution: {x(1) =
a,x(2), · · · ,x(nx) = b}

I =
nx−1

∑
j=1

∫ x( j+1)

x( j)

nt

∑
i=1

ψ(x, t(i)) f (x, t(i))dx (27)

Gaussian quadrature can be utilized to compute integrals
in (27). At the integration points, the values of the func-
tion ψ(x, t(i)) are obtained explicitly, while the values of
the function f (x, t(i)) are expressed in terms of its nodal
values:

{ f (x(1), t(i)), f (x(2), t(i)), · · · , f (x(nx), t(i))}
by means of IRBFNs (17).

Finally, one can write the integral I in terms of nodal val-
ues of the unknown function f over the whole temporal-
spatial domain

I =
nx

∑
j=1

nt

∑
i=1

Φ(x( j), t(i)) f (x( j), t(i)) (28)

where Φ(x, t) is the known function.

5 Numerical results

A number of examples are included in this section to
demonstrate the attractiveness of the present implemen-
tation. In the following test cases, the width of the ith
neuron (a(i)) is simply chosen to be the minimum dis-
tance from the ith centre to neighbouring centres. The
accuracy of a numerical solution produced by an approx-
imation scheme can be measured via a root-mean-square
residual

RMS =

√
∑nx

j=1 ∑nt
i=1

[
ue(x( j), t(i))−u(x( j), t(i))

]2

ntnx
(29)
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Figure 1 : Example 1, diffusion problem, 0 ≤ t,x ≤ 1, nx = 11, nt = 14: the evolution of the solution u by constant-
and IRBFN-BIEMs.

where nt and nx are the numbers of points used for the
temporal and spatial discretizations, respectively, and u
and ue are the calculated and exact solutions, respec-
tively.

5.1 Example 1, diffusion problem

The proposed method is first tested through the solution
of a simplified form of (1). Consider a diffusion problem
governed by

∂u
∂t

=
∂2u
∂x2 (30)

in a planar domain (0 ≤ x, t ≤ 1) with Dirichlet boundary
conditions

u(0, t) = 0 (31)

u(1, t) = 0 (32)

and the initial solution

u(x,0) = sin(πx) (33)

The exact solution of this problem is given by Carslaw
and Jaeger (1959)

ue = exp(−π2t) sin(πx) (34)

Since there are no source terms here, the double integral
on the RHS of (3) is discarded.

To provide the basis for the assessment of the presently
proposed IRBFN-BIEM, low-order BIEMs are also con-
sidered here. The temporal domain is divided into a
number of intervals. There are two principal time-
marching schemes available in the BIEM literature,
namely the time-recurring initial condition and convolu-
tion approaches. The former treats each time interval as
a new problem, while the latter always starts the time in-
tegration process at t = 0. Since information from all
previous time steps are used to calculate the current in-
tegrals, the convolution approach is seen to be more ac-
curate than the time-recurring initial condition approach
[Ramachandran (1994)]. Complete computational de-
tails can be found in [Banerjee and Butterfield (1981);
Brebbia, Telles and Wrobel (1984)]. Results presented
here for comparison purposes are obtained using con-
stant elements and the convolution approach. In the pro-
posed IRBFN-BIE approach, global IRBFN interpola-
tion schemes are employed to represent the variation with
time for the variable ∂u/∂x. An incremental time be-
tween two successive points along the time axis is also
referred to as time step. It is instructive to note that the
present boundary solutions over the temporal domain of
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Figure 2 : Example 1, diffusion problem, 0 ≤ t,x ≤ 1, nx = 11, nt = {3,4, · · · ,14}: accuracy and convergence rate
obtained by constant- and IRBFN-BIEMs.

interest are obtained at once rather than step by step as in
the case of low-order BIEMs.

For both approaches, i.e. constant- and IRBFN-BIEMs,
volume integrals generated by the initial solution are sim-
ply computed by standard Gaussian quadrature. The spa-
tial domain is discretized using 11 uniformly distributed
points.

Figure 1 displays the evolution of the solution u from
t = 0 to t = 1 using nt = 14 by the constant- and IRBFN-
BIEMs. More accurate results are obtained with the
present method. To study the convergence behaviour
with time refinement, a number of time steps, nt =
{3,4, · · · ,14}, are employed. The IRBFN-BIEM is far
superior to the constant-BIEM in terms of convergence
and accuracy as shown in Figure 2. The convergence
rates obtained are of O(Δt0.63) and O(Δt4.12) for the
constant- and IRBFN-BIEMs, respectively.

In the case of non-smooth time-dependent boundary con-
ditions, it is necessary to decompose the temporal do-
main into several subdomains, over each of which the

boundary data are continuous. It thus allows the use of
the IRBFN-BIEM over each subdomain. Solutions will
be then obtained step by step as in the case of finite dif-
ferences.

The proposed method yields a much higher level of ac-
curacy than conventional techniques. However, the con-
struction of the IRBFN approximations requires more
computational effort than that of approximations based
on low-order polynomials.

5.2 Example 2, diffusion problem

This problem is the same as the previous one, except the
initial solution is replaced by

u(x,0) =
{

2x if 0 ≤ x ≤ 0.5
2(1−x) if 0.5 ≤ x ≤ 1.0

(35)

The analytical solution given by Carslaw and Jaeger
(1959) is

ue(x, t) =
8
π2

∞

∑
k=1

1
k2 sin

kπ
2

sinkπxexp(−(kπ)2t) (36)
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Table 1 : Example 2, diffusion problem, 0 ≤ x ≤ 1, 0 ≤ t ≤ 0.25: temperature at the centre of the slab obtained by
the present method and various finite difference methods (FDMs).

u(error %)

t FDM-CN FDM-PI FDM-WT IRBFN-BIEM Exact

0.025 0.5637(12.35) 0.6888(7.09) 0.6807(5.84) 0.6432(0.00) 0.6432
0.05 0.5440(9.69) 0.5330(7.47) 0.5286(6.58) 0.4959(0.01) 0.4959
0.075 0.3493(9.68) 0.4226(9.27) 0.4188(8.29) 0.3867(0.01) 0.3868
0.1 0.3313(9.66) 0.3376(11.76) 0.3341(10.58) 0.3021(0.01) 0.3021
0.125 0.2117(10.31) 0.2705(14.58) 0.2671(13.14) 0.2360(0.01) 0.2360
0.15 0.2038(10.50) 0.2169(17.60) 0.2137(15.86) 0.1844(0.01) 0.1844
0.175 0.1270(11.84) 0.1740(20.74) 0.1710(18.67) 0.1441(0.01) 0.1441
0.2 0.1262(12.10) 0.1396(20.99) 0.1369(21.57) 0.1126(0.01) 0.1126
0.225 0.0756(14.12) 0.1120(27.33) 0.1096(24.54) 0.0880(0.01) 0.0880
0.25 0.0787(14.47) 0.0899(30.76) 0.0877(27.58) 0.0687(0.01) 0.0687

Table 2 : Example 3, Burgers equation, Re = 1, t f = 0.22, Δx = 0.1, Δt = 0.02: Solution profiles at some time levels.
Results by the generalized BIEM (GBIEM) using Δx = 0.05 and Δt = 0.02 are also included for comparison.

u(error %)
t = 0.1 t = 0.22

x GBIEM Present Exact GBIEM Present Exact
0.1 0.11718(6.97) 0.10956(0.02) 0.10954 0.03972(15.00) 0.03455(0.03) 0.03454
0.2 0.22436(6.95) 0.20979(0.00) 0.20979 0.07578(15.06) 0.06586(0.00) 0.06586
0.3 0.31202(6.89) 0.29190(0.00) 0.29190 0.10478(15.13) 0.09101(0.00) 0.09100
0.4 0.37168(6.83) 0.34793(0.00) 0.34792 0.12390(15.25) 0.10751(0.00) 0.10751
0.5 0.39668(6.75) 0.37158(0.00) 0.37158 0.13112(15.35) 0.11367(0.00) 0.11367
0.6 0.38303(6.68) 0.35905(0.00) 0.35905 0.12552(15.47) 0.10870(0.00) 0.10870
0.7 0.33040(6.61) 0.30991(0.00) 0.30991 0.10741(15.57) 0.09293(0.01) 0.09294
0.8 0.24277(6.56) 0.22782(0.00) 0.22782 0.07841(15.67) 0.06779(0.00) 0.06779
0.9 0.12856(6.52) 0.12071(0.02) 0.12069 0.04135(15.73) 0.03574(0.02) 0.03573

Haberland and Lahrmann (1988) used FDMs to solve
this problem, where a comparative investigation on re-
currence formulae such as the Euler, Crank-Nicolson
(CN), Pure Implicit (PI) and Weighted time step (WI)
schemes was conducted. Their results with Δt = 0.025
and Δx = 0.05 are included here for comparison purposes
(Table 1). Using the same time step (Δt = 0.025) and
a coarser spatial discretization (Δx = 0.1), the present
method yields superior accuracy. For example, the max-
imum error is 0.01% for IRBFN-BIEM while they are

14.47%, 30.76% and 27.58% for FDM-CN, FDM-PI and
FDM-WI, respectively.

5.3 Example 3, convection-diffusion problem

This example consider a non-linear partial differential
equation, the Burgers equation (1). This equation has
a structure similar to the Navier-Stokes equation. Al-
though it is nonlinear, the Burgers equation can be solved
analytically for many combinations of initial and bound-
ary conditions. It is thus used as a simple model for the
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Table 3 : Example 3, Burgers equation, Re = 10, t f = 1.5, Δx = 0.1, Δt = 0.05: Solution profiles at some time levels.
Results by the generalized BIEM (GBIEM) using Δx = 0.025 and Δt = 0.05 are also included.

u(error %)
t = 0.75 t = 1.5

x GBIEM Present Exact GBIEM Present Exact
0.1 0.08649(3.67) 0.08342(0.01) 0.08343 0.04521(3.34) 0.04375(0.01) 0.04374
0.2 0.17146(3.59) 0.16551(0.00) 0.16552 0.08868(3.42) 0.08575(0.00) 0.08575
0.3 0.25289(3.44) 0.24447(0.00) 0.24448 0.12830(3.52) 0.12394(0.00) 0.12394
0.4 0.32767(3.24) 0.31738(0.00) 0.31738 0.16127(3.67) 0.15557(0.00) 0.15556
0.5 0.39026(2.99) 0.37892(0.00) 0.37892 0.18378(3.88) 0.17691(0.00) 0.17691
0.6 0.43060(2.71) 0.41923(0.00) 0.41922 0.19089(4.16) 0.18327(0.00) 0.18327
0.7 0.43120(2.44) 0.42095(0.01) 0.42093 0.17721(4.47) 0.16963(0.01) 0.16962
0.8 0.36690(2.21) 0.35904(0.02) 0.35896 0.13888(4.79) 0.13254(0.01) 0.13253
0.9 0.21751(2.06) 0.21319(0.03) 0.21312 0.07691(5.03) 0.07324(0.01) 0.07323

Table 4 : Example 3, Burgers equation, Re = 100, t f = 3.0, Δx = 0.02, Δt = 0.1, relax=0.1: Solution profiles at
some time levels. Results by the generalized BIEM (GBIEM) using Δx = 0.01 and Δt = 0.01 are also included.

u(error %)
t = 1.2 t = 3.0

x GBIEM Present Exact GBIEM Present Exact
0.2 0.13173(0.62) 0.13092(0.00) 0.13092 0.06036(0.44) 0.06010(0.01) 0.06009
0.4 0.26285(0.60) 0.26127(0.01) 0.26128 0.12068(0.43) 0.12015(0.00) 0.12016
0.6 0.39264(0.56) 0.39043(0.00) 0.39044 0.18095(0.43) 0.18018(0.00) 0.18018
0.8 0.52012(0.50) 0.51756(0.01) 0.51753 0.23906(0.18) 0.23861(0.00) 0.23863
0.9 0.57950(0.29) 0.57780(0.00) 0.57781 0.23766(1.63) 0.24158(0.00) 0.24159

0.92 0.58466(0.01) 0.58482(0.02) 0.58472 0.22050(2.48) 0.22616(0.00) 0.22612
0.94 0.57336(0.77) 0.57760(0.03) 0.57779 0.18997(3.51) 0.19696(0.01) 0.19690
0.96 0.51253(2.42) 0.52551(0.05) 0.52524 0.14228(4.58) 0.14915(0.01) 0.14911
0.98 0.33294(5.04) 0.35023(0.11) 0.35060 0.07698(5.41) 0.08140(0.01) 0.08139

understanding of physical flows and the testing of the
performance of numerical methods [Fletcher (1984)].

The spatial domain, boundary conditions and initial con-
dition are defined as

a = 0, b = 1

u(0, t) = u(1, t) = 0

u0 = sin(πx)

Here, the parameter µ can be regarded as the Reynolds
number Re. The analytical solution to this problem was
given in the form of an infinite series by Cole (1951)

u(x, t) =
4π
µl

∑∞
k=1 exp(− k2π2t

µl2 )kIk(
lµ
2π) sin( kπx

l )

I0(
lµ
2π)+2∑∞

k=1 exp(−k2π2t
µl2 )Ik(

lµ
2π)cos( kπx

l )

(37)

where l = b− a and Ik represents the modified Bessel
function of order k. However, it is not practical to ob-
tain the analytical solution for Re > 102 due to the fact
that the magnitude of Ik(lµ/2π) on the RHS of (37) ex-
ceeds the limit of the computer precision [Hon and Mao
(1998)]. A Picard-type iteration scheme is employed to
handle the non-linearity of the system matrix. In the cal-
culation of the convective term, the present work em-
ploys the IRBFN scheme to compute the derivative of the
function u, which is more straightforward than the case
of using the BIE for ∂u/∂x. Results concerning the solu-
tion u at some different time levels for Re = {1,10,100}
are given in Tables 2–4, respectively. The correspond-
ing results obtained by the generalized BIEM (GBIEM)
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Figure 3 : Example 3, convection-diffusion problem:
the evolution of the solution u for several values of the
Reynolds number. For Re = 1, the parameters used are
t f = 0.2,nt = 6 and nx = 21; for Re = 10: t f = 1,nt = 6
and nx = 21; and for Re = 100: t f = 1,nt = 21 and
nx = 41 (time levels displayed: {0,0.2,0.4,0.6,0.8,1}).

[Kakuda and Tosaka (1990)], where the domain is di-
vided into a number of subdomains and the BIE with the
time-dependent convective kernel is applied for each sub-
domain, are also included for comparison. The present
results are far superior to those of the GBIEM using lin-
ear and constant elements, and in addition, their errors do
not accumulate in time. The evolution of the solution u
is depicted in Figure 3.

6 Concluding remarks

In this paper, a high-order interpolation scheme, namely
integrated RBFNs, is introduced into the time-kernel
BIEM to approximate the unknown functions in bound-
ary and volume integrals for the solution of the Burgers
equation. All relevant integrals are written in terms of
nodal variable values. Solutions over the temporal do-
main can be obtained at once rather than step by step as
in the case of conventional BIEMs. Numerical results
show that the method yields a high degree of accuracy
and a very fast convergence.
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