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The Computations of Large Rotation Through an Index Two Nilpotent Equation

Chein-Shan Liu1

Abstract: To characterize largely deformed spin-free
reference configuration of materials, we have to con-
struct an orthogonal transformation tensor Q relative to
the fixed frame, such that the tensorial equation Q̇ = WQ
holds for a given spin history W. This paper addresses
some interesting issues about this equation. The Euler’s
angles representation, and the (modified) Rodrigues pa-
rameters representation of the rotation group SO(3) un-
avoidably suffer certain singularity, and at the same time
the governing equations are nonlinear three-dimensional
ODEs. A decomposition Q = FQ1 is first derived here,
which is amenable to a simpler treatment of Q1 than
Q, and the numerical calculation of Q1 is obtained by
transforming the governing equations in a space of RP3,
whose dimensions are two, and the singularity-free inter-
val is largely extended. Then, we develop a novel method
to express Q1 in terms of a noncanonical orthogonal ma-
trix, the governing equation of which is a linear ODEs
system with its state matrix being nilpotent with index
two. We examine six methods on the computation of Q
from the theoretical and computational aspects, and con-
clude that the new methods can be applied to the calcu-
lations of large rotations.

keyword: Large rotation, Nilpotent matrix,
Singularity-free, Lie algebra, Noncanonical orthog-
onal matrix.

1 Introduction

The orthogonal matrices Q that represent rotations con-
stitute points on a particular manifold:

SO(3) := {Q|Q−1 = QT, det Q = 1}.

The matrix Q is also called the direction cosine matrix,
which is a configuration space of a rigid-body motion.
The object of every orientational investigation is to study
the time evolution of Q as a function of initial conditions
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and of the parameters introduced in a model of physi-
cal application. The time evolution of Q is summarized
as a second order differential equation on SO(3) (Lang,
1985). Therefore, one has the mapping:

t �→ Q ∈ SO(3),

where the particular structure of SO(3) makes the prob-
lem of devising suitable integrators interesting (Austin,
Krishnaprasad and Wang, 1993; Buss, 2000; Celledoni
and Owren, 2003).

Among many classical Lie groups, the three-dimensional
rotation SO(3) is one of the most widely used groups. For
its numerous physical applications, deriving a proper al-
gorithm to calculate SO(3) has received a considerable
attention in the literature, and this subject is in fact of
primary interest in the computational mechanics. A com-
prehensive review of its applications on the spacecraft at-
titude was given by Shuster (1993) and on the solid me-
chanics was given by Atluri and Cazzani (1995) up to the
1990s. The mathematical role of finite rotations in both
continuum mechanics and multi rigid-body dynamics has
presented in the latter paper. More recently, a new frame-
work of minimal parameterizations of the rotation matrix
was proposed by Bauchau and Trainelli (2003).

According to the polar decomposition theorem, the de-
formation gradient F is equal to RU and also VR, in
which R is the rotation tensor and U and V are the ma-
terial stretch tensors. Utilizing R, many authors have
put much emphases on a particular reference frame or
configuration on which R = I3, I3 being the third or-
der identity tensor. The reference configuration is in-
deed the pull-back of the current configuration under R.
By such a rotation-free configuration/co-rotated frame,
Green and Naghdi (1965) have defined the rotated stress
tensor as the pull-back of the Cauchy stress tensor un-
der R and many constitutive equations are then estab-
lished on such a rotation-free configuration. For ex-
ample, based on this frame, Green and McInnis (1967)
generalized the concept of hypoelasticity, and Simo and
Marsden (1984) formulated the constitutive equations of
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both hyper- and hypo-elasticity. All the aforementioned
works have the same goal of removing the complexity
induced by the rigid-body rotation in the formulation
of large deformation problem. However, contemplating
the relation W = ṘRT +R(U̇U−1−U−1U̇)RT/2 (the so-
called spin tensor), we realize that the spin due to the
material stretching (U̇U−1−U−1U̇)/2 still exists even if
the rigid-body rotation has been gotten rid of.

Besides, more definitions about the spin tensor different
from the above one are seen in the literature. Dienes
(1979), Dafalias (1983), Lee, Mallett and Wertheimer
(1983), Paulun and Pecherski (1985), Sowerby and Chu
(1985) and Xiao, Bruhns and Meyers (1997) have re-
placed the previous W by some other Ŵ and suggested a
modified Jaumann stress rate to eliminate the oscillatory
stress in the simple shear problem; see Liu and Hong
(1999) for a further discussion. The effects of differ-
ent objective stress rates on the plasticity equations have
been discussed by Liu and Hong (2001) and Liu (2004).
However, the purpose of searching for a suitable spin ten-
sor by these authors, in a word, is to find a reference con-
figuration with zero spin throughout the whole motion
such that the constitutive equation for a rate-type material
under large deformation can be objectively integrated.

By the principle of material frame-indifference, many
constitutive laws require for a reference purpose the
rotation-free configuration where the rotation tensor
equals identity. Nevertheless, a reference configura-
tion with zero spin throughout the whole motion history
might be more relevant for a rate-type material under
large deformation to be properly described by an objec-
tive constitutive equation. To characterize this spin-free
reference configuration/co-rotational frame, an orthogo-
nal transformation tensor Q is connecting the spin-free
and the fixed configurations due to the non-zero spin ten-
sor denoted by W, such that the tensorial differential
equation

Q̇ = WQ (1)

is necessary. It does not lose any generality to assume
that the initial condition of Q is identity, i.e., Q(0) = I3.
Throughout this paper, a superimposed dot denotes the
differential with respect to the current time t. Computa-
tional techniques were proposed by Hughes and Winget
(1980), Rubinstein and Atluri (1983) and Flanagan and
Taylor (1987) for integrating Eq. (1), which require a
constant rate of rotation for each finite time step.

On the other hand, special attention has also been paid
on the finite rotation effect in the structural mechanics of
flexible bodies, including beam, plate, shell, etc. Atluri
(1984) has considered finite rotations as direct indepen-
dent variables in the variational formulations of finitely
deformed continua and shells. Han, Rajendran and Atluri
(2005) have formulated an effective MLPG approach for
solving the nonlinear structural problems of beam with
large deformation and rotation. They have shown that
the MLPG is more effective than the FEM.

A recent progress to dealing with the finite rotations in
beams, plates and shells was also summarized in a spe-
cial issue of CMES. Lin and Hsiao (2003) have solved
the buckling problems of 3-D beams by using the co-
rotational formulation. Gotou, Kuwataka, Nishihara and
Iwakuma (2003) have introduced the rotational angles as-
sociated with the Cartesian coordinates as additional de-
grees of freedom, where the Euler’s angles are used to de-
scribe finite rotations. The accuracy of the co-rotational
formulation for 3-D Timoshenko’s beam is discussed
from a theoretical viewpoint by Iura, Suetake and Atluri
(2003). Beda (2003) introduced three rotation angles
and solved the elastica problem of spatial Euler-Bernoulli
beam. Suetake, Iura and Atluri (2003) have derived a
symmetric tangent stiffness operator for thick shells un-
dergoing finite rotation. Basar and Kintzel (2003) have
developed a finite element model for finite rotation and
large strain thin-walled shells. From those papers one
can understand that the finite rotations are important in
the mechanical analysis of flexible body. Equally, for the
rigid multibody dynamics the finite rotations are also im-
portant as shown by Rochinha and Sampaio (2000) and
Huston and Liu (2005).

To describe finite rotation, it should be noted that the his-
tory of Q can be represented by the histories of three Eu-
ler’s angles δ, ζ and η as follows (Goldstein, 1980):

Q =

⎛
⎝ cosψcosφ−cos θ sinφ sinψ

−sinψcosφ−cosθ sinφcosψ
sinθ sinφ

cosψsinφ+cos θcosφ sinψ sinψsinθ
−sinψsinφ+cosθcosφcosψ cosψsinθ

−sinθcosφ cosθ

⎞
⎠ , (2)

and the corresponding differential equations are

ω1 = θ̇cosφ+ ψ̇ sinθ sinφ, (3)
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ω2 = θ̇ sinφ− ψ̇ sinθcosφ, (4)

ω3 = φ̇+ ψ̇ cosθ. (5)

Supposing that the angular velocities ω1, ω2 and ω3 are
given, the above nonlinear equations with assumed zero
initial values need be integrated by a time-stepping tech-
nique.

By searching an effective representation of the rotation
matrix has led to the development of numerous tech-
niques in the last several decades, and reviewing the
properties, advantages and shortcomings of these pa-
rameterization techniques can be found in the papers
by Ibrahimbegovic (1997), Borri, Trainelli and Bottasso
(2000), and Bauchau and Trainelli (2003). For the three-
dimensional rotation the minimal number of parameters
is three as the Euler parameters, the Rodrigues and modi-
fied Rodrigues parameters are. However, these represen-
tations contain singularities, and their governing equa-
tions are nonlinear in nature. The procedures for finding
the solutions of rotation matrix involving such nonlinear
systems are usually not so easy.

The remaining sections of this paper are arranged as
follows. For a motivation of the present study we
mention of the quaternionic representations in Section
2. In Section 3 we point out that the quaternionic rep-
resentations are undertaken in a larger six-dimensional
Lie algebra space so(4). In Section 4 we propose a novel
decomposition of the rotation matrix Q = FQ1, where F
can be obtained exactly and Q1 is amenable to a simpler
treatment than Q. In Section 5 we consider a projective
realization of Q1, the Lie algebra of which is just so(3)
with dimensions much smaller than so(4). In order to
give a more effective numerical computation of Q1, we
develop a fully new representation in terms of nilpotent
differential equations system in Section 6. In Section
7 we consider the computations of Q and compare the
performances of different numerical methods discussed
in this paper through numerical examples in Section 8.
Finally, we conclude some results in Section 9.

2 Quaternionic representations

For a comparison purpose let us mention other represen-
tations of the rotation matrix in this section. It is known
that the spatial orientation Q̃ ∈ SO(3) of rigid body can

be expressed in terms of unit quaternion (Rochinha and
Sampaio, 2000; San Miguel, 2003):

Q̃ =

⎛
⎝ q2

0 +q2
1 −q2

2 −q2
3 2(q1q2 +q0q3)

2(q1q2 −q0q3) q2
0−q2

1 +q2
2 −q2

3
2(q1q3 +q0q2) 2(q2q3 −q0q1)

2(q1q3 −q0q2)
2(q2q3 +q0q1)

q2
0 −q2

1 −q2
2 +q2

3

⎞
⎠ . (6)

These parameters are obtained by using the stereographic
projection of

S
3 := {q = (q,q0) ∈ R

4| ‖q‖2 +q2
0 = 1} (7)

onto R
3 by a two-fold covering; see, e.g., Goldstein

(1980). In above we use ‖q‖ to denote the Euclidean
norm of q ∈ R

3. Corresponding to Eq. (1) the governing
equation of Q̃ is

˙̃Q = Q̃W̃, (8)

where W̃i j = εi jkωk is the transpose of Wi j = ε jikωk. The
above εi jk is a three-dimensional permutation symbol.
Consequently, one has Q̃ = QT.

In terms of the unit quaternion the governing Eq. (8) can
be written as

d
dt

(
q
q0

)
=

1
2

( −W̃ ω
−ωT 0

)(
q
q0

)
, (9)

where ω = (ω1,ω2,ω3)T is the vector of angular velocity.

In terms of (q,q0), Liu (2002) has considered the follow-
ing homogeneous coordinates:

s :=
q
q0

(10)

known as the Rodrigues parameters, and from Eq. (9) one
can obtain the following differential equation:

ṡ =
1
2

ω− 1
2

W̃s+
1
2
(ω · s)s. (11)

From Eqs. (10) and (7) one has

q0 =
1√

1+‖s‖2
. (12)
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The rotation matrix in terms of s is read as (Schaub, Tsio-
tras and Junkins, 1995)

Q̃ =
1

1+‖s‖2

⎛
⎝ 1+ s2

1 − s2
2 − s2

3 2(s1s2 + s3)
2(s1s2− s3) 1− s2

1 + s2
2 − s2

3
2(s1s3 + s2) 2(s2s3− s1)

2(s1s3 − s2)
2(s2s3 + s1)

1− s2
1 − s2

2 + s2
3

⎞
⎠ . (13)

On the other hand, Marandi and Modi (1987) have intro-
duced the modified Rodrigues parameters

S :=
q

1+q0
. (14)

The parameters S = (S1,S2,S3)T are well defined for ev-
ery rotation through the angle φ ∈ [0,2π), in contrast
to the ordinary Rodrigues parameters which are defined
only for the rotation through the angle φ ∈ [0,π).

From Eqs. (14) and (7) it follows that

q0 =
1−‖S‖2

1+‖S‖2 . (15)

Now, taking the time differential of Eq. (14), then using
Eqs. (9) and (15) and through some arrangements we ob-
tain

Ṡ =
1
4
(1−‖S‖2)ω− 1

2
W̃S+

1
2
(ω ·S)S. (16)

The rotation matrix in terms of S is read as (Schaub and
Junkins, 1996; Schaub, Tsiotras and Junkins, 1995)

Q̃ =
1

(1+‖S‖2)2

⎛
⎝ 4(S2

1−S2
2 −S2

3)+S2

8S1S2 −4S3S
8S1S3 +4S2S

8S1S2 +4S3S 8S1S3 −4S2S
4(−S2

1 +S2
2 −S2

3)+S2 8S2S3 +4S1S
8S2S3 −4S1S 4(−S2

1 −S2
2 +S2

3)+S2

⎞
⎠ ,

(17)

where

S := 1−‖S‖2.

It has a higher degree of nonlinearity than the corre-
sponding matrix in terms of the Rodrigues parameters.
Even though, the modified Rodrigues parameters are

used frequently in the attitude control theory for their
singularity-free interval is larger than that of the Ro-
drigues parameters; see, e.g., Akella (2001), Akella, Hal-
bert and Kotamraju (2003), and El-Gohary (2005).

Both the singularities of s and S occur at infinity, i.e.,
‖s‖ = ∞ and ‖S‖ = ∞, which correspond respectively
to q0 = 0 and q0 = −1. Conversely, when q0 = 0 the s
defined by Eq. (10) is infinite, since q �= 0 in view of the
constraint in Eq. (7). That is, the singularity of s is of
the form finite/0. But, when q0 = −1 the S defined by
Eq. (14) is of the form 0/0, since it is also q = 0 when
q0 = −1 in view of the constraint in Eq. (7). This is
the reason that the singularity-free interval of S is larger
than that of s.

3 A Lie algebra study

In order to give a Lie algebra aspect of Eqs. (11) and (16),
we write them with the following componential forms:

ṡi = −1
2

W̃i js j +
1
2
[δi j + sis j]ω j, (18)

Ṡi = −1
2

W̃i jS j +
1
2
[δi j +SiS j]ω j − 1

4
[1+‖S‖2]δi jω j, (19)

where δi j is the Kronecker delta symbol. These equations
can be viewed as the affine nonlinear systems with ω j

and W̃i j as inputs and s j or S j as outputs, which means
that the above equations are linear in both ω j and W̃i j but
nonlinear in s j or S j (Isidori, 1989).

For the nonlinear dynamical system:

dxµ(t)
dt

= ηµ(x1, . . .,xn, t), 1 ≤ µ ≤ n, (20)

if the general solution x(t) = (x1(t), . . .,xn(t))T can
be expressed as a function of m particular solutions
x1(t), . . .,xm(t) and n integration constants c1, . . .,cn such
that

x(t) = F(x1, . . . ,xm,c1, . . . ,cn), (21)

then Eq. (20) is said to admit a superposition principle;
see, e.g. Hong and Liu (1997) and Cariñena, Grabowski
and Ramos (2001).

Lie has proved that Eq. (20) admits a superposition prin-
ciple iff it can be written as

dx
dt

=
s

∑
i=1

Zi(t)ξi(x), (22)
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and its vector fields

Yi = ξµ
i (x)

∂
∂xµ , i = 1, . . ., s, (23)

constitute a finite-dimensional Lie algebra, the dimen-
sion r of which satisfies s ≤ r ≤ mn.

The three vector fields of Eq. (18) corresponding to the
three inputs of ω j/2, j = 1,2,3 are

g j = δi jei + sis jei, 1 ≤ j ≤ 3, (24)

where ei, i = 1,2,3 are unit bases. The vector forms of
g j, j = 1,2,3 are

g1 =

⎛
⎝ 1+ s2

1
s1s2

s1s3

⎞
⎠ , g2 =

⎛
⎝ s1s2

1+ s2
2

s2s3

⎞
⎠ , g3 =

⎛
⎝ s1s3

s2s3

1+ s2
3

⎞
⎠ .

(25)

Similarly, the three vector fields generated from W̃23/2 =
ω1/2, −W̃13/2 = ω2/2 and W̃12/2 = ω3/2 are

wk = εki js jei, 1 ≤ k ≤ 3, (26)

or in terms of the vector forms:

w1 =

⎛
⎝ 0

s3

−s2

⎞
⎠ , w2 =

⎛
⎝ −s3

0
s1

⎞
⎠ , w3 =

⎛
⎝ s2

−s1

0

⎞
⎠ .

(27)

The Lie bracket of gα and gβ is

[gα,gβ] =
∂gβ

∂s
gα − ∂gα

∂s
gβ. (28)

From Eqs. (24) and (26) it follows that

∂gi
α

∂s j
= siδα j + sαδi j, (29)

∂wi
k

∂s j
= εki j, (30)

where gi
α is the ith component of gα, and wi

k is the ith
component of wk.

By using the above equations we can prove that

[gα,gβ] = sβgα − sαgβ. (31)

Inserting Eq. (24) for g, the above right-hand side can be
further reduced to

sβgα − sαgβ = −s j(δ jαδiβ −δ jβδiα)ei. (32)

Reminding that

εki jεkβα = δ jαδiβ −δ jβδiα, (33)

and from Eqs. (31) and (32) we have

[gα,gβ] = −εkβαεki js jei. (34)

From Eqs. (34) and (26) it follows that

[gα,gβ] = εkαβwk. (35)

Furthermore, by Eqs. (29), (30), (24) and (26) through
some calculations we find that

[wk,gα] = εkαβgβ, (36)

[wk,w j] = ε jimwm
k ei −εkimwm

j ei = εk jiwi. (37)

Therefore, the three vector fields in Eq. (25) and the three
vector fields in Eq. (27) constitute a finite-dimensional
Lie algebra, which is indeed the algebra so(4) of the
4-dimensional proper rotation group SO(4) with dimen-
sions six.

Dividing both the denominator and the nominator on the
right-hand side of Eq. (14) by q0, and inserting Eq. (10)
for q/q0 and Eq. (12) for q0 we obtain

S :=
s

1+
√

1+‖s‖2
. (38)

Conversely, dividing both the denominator and the nom-
inator on the right-hand side of Eq. (10) by 1 + q0, and
inserting Eq. (14) for q/(1 + q0) and Eq. (15) for q0 we
obtain

s :=
2S

1−‖S‖2 . (39)

These two equations give relations between the modified
and unmodified Rodrigues parameters. Substituting the
above equation into Eq. (11) we can obtain Eq. (16). By
the same token, substituting Eq. (38) into Eq. (16) we can
obtain Eq. (11). Similarly, the vector fields of Eq. (19)
constitute a six-dimensional Lie algebra.
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Euler’s equations (3)-(5) as well as the kinematic equa-
tions (11) and (16) in terms of Rodrigues and modified
Rodrigues kinematics are nonlinear. Procedures for
finding solutions of these problems involving nonlinear
systems are usually complicated. In contrast, our
approach below is to find a differential equations system
through the projective transformation, the result of which
is a parameteric representation of the rotation group in
terms of two scalar variables with the singularity-free
interval being largely extended.

4 A decomposition of Q

To commence with the derivations of our results we de-
note the spin matrix by

W =

⎛
⎝ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞
⎠ , (40)

and the corresponding angular velocity vector by

ω = (ω1,ω2,ω3)T (41)

with a magnitude

‖ω‖ := (ω2
1 +ω2

2 +ω2
3)

1
2 . (42)

Also the instantaneous spin axis in the three-dimensional
space is denoted by

(η1,η2,η3)T :=
1

‖ω‖(ω1,ω2,ω3)T. (43)

When the spin axis is fixed, it can be defined as a two-
dimensional spin since the rotation only occurs on the
plane perpendicular to this fixed axis. While the spin axis
changes with time, it is defined as a three-dimensional
spin.

In what follows, we present a novel calculus to explore an
analytical decomposition of Q. Since Q is orthogonal, it
belongs to the special orthogonal group with dimensions
three, i.e., Q ∈ SO(3). Therefore, although Eq. (1) can
be divided into nine simultaneous ODEs, only three of
them are independent. In the differential geometry, Q, an
element of SO(3), represents a certain three-dimensional
algebraic surface in a real space of nine dimensions. It is
unwise to find the analytical solution of Eq. (1) by solv-
ing these simultaneous ODEs.

To the later derivations, let us define a matrix operator F
which applys to W and results in the following Rodrigues
form:

F(W) := I3 +
sinϕ
‖ω‖ W+

(1−cosϕ)
‖ω‖2 W2, (44)

where

ϕ :=
∫ t

0
‖ω(τ)‖dτ. (45)

Recalling Eq. (40), we define the following two-
dimensional spin matrix

W1 =

⎛
⎝ 0 0 0

0 0 −ω1

0 ω1 0

⎞
⎠ , (46)

from which we have

F(W1) =

⎛
⎝ 1 0 0

0 cosω1 −sinω1

0 sinω1 cosω1

⎞
⎠ , (47)

where

ω1(t) :=
∫ t

0
ω1(τ)dτ. (48)

It is cunning to presume that Q can be decomposed to

Q = F(W1)Q1, (49)

with Q1 an unknown matrix belonging to SO(3). Substi-
tuting it into Eq. (1) leads to

Q̇1 = AQ1, Q1(0) = I3, (50)

where

A := F(W1)T[WF(W1)−Ḟ(W1)] =

⎛
⎝ 0 −u̇1 −u̇2

u̇1 0 0
u̇2 0 0

⎞
⎠

(51)

is skew-symmetric with

u̇1 := ω3 cosω1 −ω2 sinω1, (52)

u̇2 := −ω2 cosω1 −ω3 sinω1. (53)
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Tsiotras and Longuski (1995) have developed a superfi-
cially similar decomposition to Eq. (49), and called it the
two perpendicular rotations.

The decomposition made in Eq. (49) leads to a simpler
spin matrix for Q1 in Eq. (51) with only two indepen-
dent inputs u̇1 and u̇2. For a given angular velocity
(ω1(t),ω2(t),ω3(t)), it is easy to find the matrix F by
Eq. (47). However, in order to obtain Q we still require
an effort to find Q1. In this paper, some mathematical
procedures will be developed to solve this problem for
arbitrary inputs u̇1 and u̇2.

5 A projective transformation

The system of equations generated by A in Eq. (51) can
be written as

Ẋ = AX, (54)

where

X :=
(

X0

Xs

)
=

⎛
⎝ X0

X1

X2

⎞
⎠ . (55)

The initial values of X0, X1 and X2 are assumed to be
X0(0), X1(0) and X2(0), respectively. So the determina-
tion of Q1(t) is now equivalent to searching a general
solution of Eq. (54), i.e.,

X(t) = Q1(t)X(0). (56)

How to obtain Q1(t) from X(t) will be presented in Sec-
tion 7.

Let

x1 :=
X1

X0
, x2 :=

X2

X0
(57)

be the homegeneous coordinates for RP3. Then, the use
of Eq. (54) implies

Ẋ0

X0
= −x · u̇, (58)

d
dt

(X0x) = X0u̇, (59)

where

x :=
(

x1

x2

)
, u̇ :=

(
u̇1

u̇2

)
(60)

are, respectively, the output and input of Eqs. (58) and
(59). By integrating Eq. (59) from 0 to t we obtain

x(t) =
X0(0)
X0(t)

x(0)+
∫ t

0

X0(τ)
X0(t)

u̇(τ)dτ, (61)

and substituting it for x(t) into Eq. (58) we obtain

Ẋ0(t) = −X0(0)x(0) · u̇(t)−
∫ t

0
u̇(t) · u̇(τ)X0(τ)dτ. (62)

The inner product of Eq. (59) with x and the use of
Eq. (58) render

x · ẋ = − Ẋ0

X0
(‖x‖2 +1). (63)

Integrating Eq. (63) leads to

‖x(t)‖2 =
‖X(0)‖2

X2
0 (t)

−1, (64)

where ‖x(0)‖2 = (X2
1 (0) + X2

2 (0))/X2
0 (0) was consid-

ered. By using Eq. (57), Eq. (64) is equivalent to
‖X(t)‖= ‖X(0)‖, i.e., the length of the vector X is pre-
served under the action of the group of SO(3). Obvi-
ously, X(0) cannot equal zero; otherwise, X(t) will be
zero.

By eliminating X0, Eqs. (58) and (59) can be combined
into a single nonlinear differential equations system for
x:

ẋ− (u̇ ·x)x = u̇. (65)

The transformation made in this section sends each
three-dimensional vector (X0,X1,X2)T ∈ S

2
‖X(0)‖ :=

{(x,y, z)|(x,y,z) ∈ R
3,x2 + y2 + z2 = ‖X(0)‖2} into a

two-dimensional vector (x1,x2)T in the topological space
RP3, which is correlated intimately with the two inde-
pendent inputs of u̇, and leads to the following feasible
formulae:

X0(t) =
‖X(0)‖√

1+‖x(t)‖2
, (66)

X1(t) = X0(t)x1(t) =
x1(t)‖X(0)‖√

1+‖x(t)‖2
, (67)

X2(t) = X0(t)x2(t) =
x2(t)‖X(0)‖√

1+‖x(t)‖2
. (68)



164 Copyright c© 2006 Tech Science Press CMES, vol.16, no.3, pp.157-175, 2006

The first equation is obtained from Eq. (64), while the
other two are the direct results of definition and Eq. (66).

As that done for Eq. (11), the Lie algebra for Eq. (65) can
be proved to be so(3). Even the variables (x1,x2) used in
this formulation are minimal with numbers two only, it
still has a singularity at X0 = 0, i.e., ‖x‖= ∞.

Eqs. (66)-(68) indeed provide a minimal representa-
tion of the rotation matrix, which preserve the length
‖X(t)‖= ‖X(0)‖, and the resulting transformation is an
element of the group SO(3).

6 The nilpotent form of rotation matrix

6.1 The Peano-Baker formula

Q1(t) is a fundamental solution matrix of system (54).
Let

ΦΦΦ(t, t0) := Q1(t)Q−1
1 (t0) (69)

be the state transition matrix (Rugh, 1993). In general, it
may not be possible to derive a closed-form expression
of ΦΦΦ(t, t0) associated with arbitrary matrix A(t). For the
time-varying case, we usually use a power series expan-
sion, called the Peano-Baker formula (Rugh, 1993), to
express ΦΦΦ(t, t0) by

ΦΦΦ(t, t0) = I3 +
∫ t

t0
A(τ1)dτ1

+
∫ t

t0

∫ τ1

t0
A(τ1)A(τ2)dτ2dτ1 + · · ·

+
∫ t

t0

∫ τ1

t0
· · ·

∫ τn−1

t0
A(τ1)A(τ2) · · ·A(τn)dτn · · ·dτ2dτ1

+ · · · (70)

As observed by Hausdorff (1906), Eq. (50) can be trans-
lated to a differential equation of the underlying algebra
σ(t) ∈ so(3) with

σ̇(t) =
∞

∑
k=0

Bk

k!
adk

σA(t), σ(0) = 03, (71)

where Bk are the Bernoulli numbers, and the adjoint oper-
ator adxy with x,y ∈ so(3) is defined by an iterated com-
mutation (Isidori, 1989),

ad0
xy = y, adk

xy = [x,adk−1
x y], k ∈ N. (72)

Here, [x,y] = xy−yx denotes the Lie commutator.

Magnus (1954) showed that

σ(t) =
∫ t

0
A(τ1)dτ1 +

1
2

∫ t

0

∫ τ1

0
[A(τ1),A(τ2)]dτ2dτ1

+
1
4

∫ t

0

∫ τ1

0

∫ τ2

0
[[A(τ3),A(τ2)],A(τ1)]dτ3dτ2dτ1

+
1

12

∫ t

0

∫ τ1

0

∫ τ1

0
[A(τ3), [A(τ2),A(τ1)]]dτ3dτ2dτ1

+ · · · , (73)

and proved that Q1(t)= expσ(t) is a solution of Eq. (50).

6.2 The main results

No matter which formula, Eq. (70) or Eq. (73), is used to
calculate the state transition matrix, we need to calculate
many multivariate integrals of the matrix functions and
the infinite sums. Especially, the latter further requires
to calculate a large number of commutators and a single
exponential of a matrix function with complicated argu-
ment. Here we propose a new method to transform the
time-varying linear system (54) to an index two nilpotent
time-varying linear system:

Ẏ(t) = N(t)Y(t), N2(t) = 0.

Due to this good nilpotent property of N(t), it is belived
that the new system is more effective to develop numeri-
cal method than the original system (54).

For this purpose let us rewrite Eqs. (61) and (62) to be

Xs(t) = Xs(0)+
∫ t

0
X0(τ)u̇(τ)dτ, (74)

Ẋ0(t) = −Xs(0) · u̇(t)−
∫ t

0
u̇(t) · u̇(τ)X0(τ)dτ, (75)

where X0(t)x(t) was replaced by Xs(t).

The main results are given below.

Theorem 1. Corresponding to the linear system (54)
with A satisfying

AT +A = 0, (76)

there exists a linear system

Ẏ(t) = N(t)Y(t), (77)
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where N is a zero trace nilpotent matrix function, satis-
fying

trN = 0, N2 = 0. (78)

Proof. Integrating Eq. (75) we obtain

X0(t) = X0(0)−vT(t)Xs(0)

−
∫ t

0
[vT(t)−vT(ξ)]u̇(ξ)X0(ξ)dξ, (79)

where v(t) = u(t)−u(0).

Left multiplying Eq. (79) by (vTu̇ u̇T)T we obtain a
three-dimensional vectorial integral equation:(

vTu̇
u̇

)
X0 =(

vTu̇
u̇

)∫ t

0

(
1 −vT(t)

)(
vT(ξ)u̇(ξ)

u̇(ξ)

)
X0(ξ)dξ

+
(

vTu̇[X0(0)−vTXs(0)]
u̇X0(0)− u̇vTXs(0)

)
. (80)

Upon introducing

N :=
(

vTu̇
u̇

)(
1 −vT

)
=

(
vTu̇ −vTu̇vT

u̇ −u̇vT

)
, (81)

Y(t) =
(

Y0(t)
Ys(t)

)

:=
∫ t

0

(
vT(ξ)u̇(ξ)

u̇(ξ)

)
X0(ξ)dξ+

(
X0(0)
Xs(0)

)
, (82)

by means of Eq. (80) we obtain a linear equations sys-
tem as that given by Eq. (77), where N can be proved to
satisfy Eq. (78). �
From Eqs. (74), (82), (81) and (77) the relations between
X and Y are obtained:(

X0

Xs

)
=

(
1 −vT

02×1 I2

)(
Y0

Ys

)
, (83)

(
Y0

Ys

)
=

(
1 vT

02×1 I2

)(
X0

Xs

)
. (84)

The above two equations render us easily to prove the
following result.

Theorem 2. The N defined by Eq. (81) satisfies

NTη+ηN =
(

0 u̇T

u̇ −vu̇T − u̇vT

)
, (85)

where

η :=
(

1 −vT

−v I2 +vvT

)
(86)

is a positive definite matrix function. Moreover,

NTη+ηN+ η̇ = 0. (87)

Proof. Substituting Eq. (81) for N and Eq. (86) for η into
the left-hand side of Eq. (85) and through some calcula-
tions we obtain the right-hand side of Eq. (85). For any
nonzero Y = (Y0,Ys) ∈ R

3 we have

(
Y0 YT

s

)(
1 −vT

−v I2 +vvT

)(
Y0

Ys

)
= (vTYs −Y0)2 +‖Ys‖2.

Since the right-hand side is positive, by definition
η is positive definite. Taking the time derivative of
Eq. (86) and noting v̇ = u̇, then substituting the resultant
into Eq. (87) which together Eq. (85) leads to Eq. (87). �

Theorem 3. The fundamental matrix Q1 for Eq. (50)
with A satisfying Eq. (76) has the following representa-
tion:

Q1 =
(

1 −vT

02×1 I2

)
K, (88)

where K ∈ SL(3,R) is the fundamental matrix for
Eq. (77), satisfying

K̇ = NK, K(0) = I3, (89)

KTηK = I3. (90)

System (77) possesses the following first integral:

YTηY = YT(0)η(0)Y(0). (91)

Proof. With K satisfied Eq. (89), the solution of Eq. (77)
can be expressed by

Y(t) = K(t)Y(0). (92)
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Substituting it into Eq. (83) and using Y(0) = X(0) we
obtain

X(t) =
(

1 −vT

02×1 I2

)
KX(0), (93)

which comparing with the solution of Eq. (54), X(t) =
Q1(t)X(0) with Q1(t) satisfying Eq. (50), we obtain
Eq. (88). Since trN = 0 as shown in Eq. (78), the prop-
erty of det K = 1 follows from the Abel formula and
det K(0) = 1. It indicates that K ∈ SL(3,R).

Substituting Eq. (88) for Q1 into the identity

QT
1 Q1 = I3, (94)

and noting that(
1 01×2

−v I2

)
I3

(
1 −vT

02×1 I2

)
= η, (95)

where η is given in Eq. (86), we can prove Eq. (90).

It is well known that XTX is an invariant form of sys-
tem (54) as discussed before. Substituting Eq. (83) for X
into XTX, we obtain an invariant form YTηY of system
(77). Substituting Eq. (92) for Y into the above quadratic
form and using Eq. (90) and η(0) = I3 we can prove that
YTηY = YT(0)η(0)Y(0) is a first integral of system (77).
�
From the above we know that η is a noncanonical metric
in the underlying space for Y and I3 is a canonical
metric in the underlying space for X. The two metrics
are related through a similar transformation as shwon
in Eq. (95), both of which are positive definite. The
matrix K preserves the orthogonality under the metric η
as shown by Eq. (90). Therefore, the mathematical role
of K is a noncanonical orthogonal matrix in the η-metric
space. In Table 1 we compare the Lie groups, Lie
algebras and other properties for these two systems X
and Y about the rotations in the Euclidean space, as well
as with Eqs. (9), (11), (16) and (65). The dimensions
are referred to the numbers of the independent variables
used in these equations, not to the dimensions of the Lie
algebras.

6.3 Numerical methods

In this section, we first derive numerical methods for sys-
tem (77) by utilizing the nilpotent matrix property. By
means of the Peano-Baker formula the state transition

matrix ΦΦΦ(t, t0) for system (77), which maps the state vec-
tor Y(t0) at time t0 to the state vector Y(t) at time t, can
be expressed as:

ΦΦΦ(t, t0) = I3 +
∫ t

t0
N(τ1)dτ1 +

∫ t

t0

∫ τ1

t0
N(τ1)N(τ2)dτ2dτ1

+ · · ·
+

∫ t

t0

∫ τ1

t0
· · ·

∫ τn−1

t0
N(τ1)N(τ2) · · ·N(τn)dτn · · ·dτ2dτ1

+ · · · (96)

For developing a numerical scheme we search a state
transition matrix from state Y� at time t� to state Y�+1 at
time t�+1 with Δt = t�+1− t� small enough. Upon letting
t0 to be t� and t to be t�+1 in the above integrals, then ap-
proximating of which by the trapezoidal rule and taking
advantage of N2(t) = 0 for all t ∈ R

+, we obtain

ΦΦΦ(t�+1, t�) = I3+
Δt
2

[N(t�)+N(t�+1)]+
(Δt)2

4
N(t�+1)N(t�),

(97)

which being substituted into

Y�+1 = ΦΦΦ(t�+1, t�)Y�, (98)

results in a numerical scheme for system (77):

Y�+1 =
(

I3 +
Δt
2

[N(t�)+N(t�+1)]+
(Δt)2

4
N(t�+1)N(t�)

)
Y�.

(99)

Then, by means of Eq. (83) we can calculate X forward
step-by-step.

It should be emphasized that the matrix resulting from
the Peano-Baker formula is not equal to exp

∫ t
t0 N(τ)dτ,

and is not guaranteed to be an element of SL(3,R) even
N is an element of the Lie algebra sl(3,R), i.e., trN =
0. In order to obtain this type numerical scheme which
preserving SL(3,R), let us return to system (77). The
resulting N makes us easily to derive the so-called group
preserving scheme as follows:

Y�+1 = exp[ΔtN(�)]Y� = [I3 +ΔtN(�)]Y�, (100)

where N(�) = N(t� + Δt/2). The higher order
terms disappear due to Nk = 0, k ≥ 2. Obviously,
I3 +ΔtN(�) ∈ SL(3,R).
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7 The computation of Q

First, we calculate Q1 by the method of Eq. (65). Select
three independent set of the initial values of X(0) with
X0(0) �= 0, for example,

⎛
⎝ X1

0 (0) X2
0 (0) X3

0 (0)
X1

1 (0) X2
1 (0) X3

1 (0)
X1

2 (0) X2
2 (0) X3

2 (0)

⎞
⎠

=

⎛
⎝ 1/

√
3 1/

√
2 1/

√
6

1/
√

3 −1/
√

2 1/
√

6
1/

√
3 0 −2/

√
6

⎞
⎠ . (101)

The corresponding solutions are denoted by⎛
⎝ X1

0 (t) X2
0 (t) X3

0 (t)
X1

1 (t) X2
1 (t) X3

1 (t)
X1

2 (t) X2
2 (t) X3

2 (t)

⎞
⎠ , (102)

and from Eq. (56) we obtain

Q1(t) =

⎛
⎝ X1

0 (t) X2
0 (t) X3

0 (t)
X1

1 (t) X2
1 (t) X3

1 (t)
X1

2 (t) X2
2 (t) X3

2 (t)

⎞
⎠×

⎛
⎝ 1/

√
3 1/

√
3 1/

√
3

1/
√

2 −1/
√

2 0
1/

√
6 1/

√
6 −2/

√
6

⎞
⎠ . (103)

Then, inserting the above equation for Q1(t) and Eq. (47)
for F into Eq. (49) we obtain

Q(t) =

⎛
⎝ 1 0 0

0 cosω1 −sinω1

0 sinω1 cosω1

⎞
⎠×

⎛
⎝ X1

0 (t) X2
0 (t) X3

0 (t)
X1

1 (t) X2
1 (t) X3

1 (t)
X1

2 (t) X2
2 (t) X3

2 (t)

⎞
⎠×

⎛
⎝ 1/

√
3 1/

√
3 1/

√
3

1/
√

2 −1/
√

2 0
1/

√
6 1/

√
6 −2/

√
6

⎞
⎠ . (104)

For other methods of Eqs. (99) and (100)
we can suppose the simplest initial condi-
tions with (X1

0 (0),X1
1 (0),X1

2 (0)) = (1,0,0),
(X2

0 (0),X2
1 (0),X2

2 (0)) = (0,1,0) and (X3
0 (0),X3

1 (0),
X3

2 (0)) = (0,0,1). Therefore, the matrix function pre-
sented in Eq. (102) is just the matrix of Q1 and Q = FQ1

is obtained. If we use Eqs. (11) and (13) to calculate

Q = Q̃T we can select the initial condition of s to be
(s1(0), s2(0), s3(0)) = (0,0,0). Similarly, for Eqs. (16)
and (17) we use (S1(0),S2(0),S3(0)) = (0,0,0). The
integrations of these three nonlinear equations (11), (16)
and (65) can be performed very well by the fourth-order
Runge-Kutta method RK4.

8 Numerical tests

In order to give a criterion to assess our numerical meth-
ods we first derive a closed-form solution of Q1 in the
Appendix under the angular velocities ω1 = Ω−ω, ω2 =
−sinΩt and ω3 = cosΩt, where Ω and ω are angular
frequencies parameters.

Then, for the purpose of comparison we also consider a
naive approach to Eq. (54) by discretizing the state tran-
sition matrix given in Eq. (70) with a similar procedure
as that for Eq. (97). Through some calculations we find
that

ΦΦΦ(t�+1, t�) = I3 +
Δt
2

[A(t�)+A(t�+1)]

+
(Δt)2

4
[A2(t�+1)+A(t�+1)A(t�)]

+ · · ·+
(

Δt
2

)n

[An(t�+1)+An−1(t�+1)A(t�)]

+ · · · (105)

However, because A is not a nilpotent matrix the higher
order terms appear.

After given the closed-form solutions we compare our
numerical results with them. In Fig. 1 we have employed
different numerical methods as compared in Table 1 to
calculate the rotation matrix Q, where ω = 2, Ω = 3 and
a fixed time step of Δt = 0.001 sec were used. Because
Eq. (65) has a singular point at X0 = 0 we can only pro-
ceed the calculations to a final time t f = 0.5 sec. The
errors of the components of Q, called the componential
errors, are obtained by taking the absolute of the differ-
ences between the numerical solutions with the closed-
form solutions. The error of orthogonality is defined as
‖QQT − I3‖ with Q calculated by the numerical meth-
ods. The componential errors are only plotted for the
numerical methods based on Eqs. (65), (11) and (99), be-
cause the ones with Eq. (16) are closer to that of Eq. (11)
and the ones with Eq. (100) are close to that of Eq. (99).
However, the errors of orthogonality were plotted totally
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Figure 1 : Comparing the componential errors and the errors of orthogonality for five types numerical methods
within the range of small rotation.

Table 1 : Comparisons of six formulations for rotations in the Euclidean space R
3 (Dims. means Dimensions)

Variables Eqs. Metrics Lie Algebras Lie Groups Invariants Dims. Linearity Singularity
(q,q0) (9) I4 so(4) SO(4) ‖q‖2 +q2

0 4 linear No
s (11) I3 so(4) SO(4) × 3 nonlinear Yes
S (16) I3 so(4) SO(4) × 3 nonlinear Yes
x (65) RP3 so(3) SO(3) × 2 nonlinear Yes
X (54) I3 so(3) SO(3) XTI3X 3 linear No
Y (77) η nilpotent SL(3,R) YTηY 3 linear No
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Figure 2 : Comparing the errors of orthogonality for four types numerical methods in the range of large rotation.

as shown in Fig. 1(j). It can be seen that the componen-
tial errors by Eqs. (65) and (11) are of the same order
of 10−10 and that with Eq. (99) are in the order of 10−7.
As expected, the errors of orthogonality by Eqs. (11) and
(16) are almost zero, that of Eq. (65) is in the order of
10−9 and that of Eqs. (99) and (100) are in the order of
10−7.

The better accuracy of the numerical methods based on
the three Eqs. (11), (16) and (65) are due to the high accu-
racy of RK4. We have employed RK4 to the quaternionic
Eq. (9) and found that its errors no matter in the compo-
nents or in the orthogonality increase rapidly to the order
of 10−2. Obviously, RK4 cannot retain the invariant of
Eq. (7), and thus leads to a larger error.

Now, let us turn to the case of large rotation in Figs. 2
and 3, where ω = 10 and Ω = 5 were used. Under these
parameters, Eq. (11) can be computed by the RK4 un-
til 0.5 sec, and Eq. (16) until 1 sec with a time step of
Δt = 0.01 sec; however, Eq. (65) is still survived. As
shown in Fig. 2 the error of orthogonality induced by
the numerical method based on Eq. (65) is the small-
est one, and then sequentially by Eq. (105) with n = 2,
and Eqs. (100) and (99). The above calculations are per-
formed under a fixed time step of Δt = 0.001 sec un-
til the final time of t f = 5 sec. Next, we investigate a

long-term rotation behavior by increasing the final time
to t f = 50 sec in Fig. 3, where Δt = 0.01 sec were used
for all calculations. By the same token, Eq. (65) pre-
serves the orthogonality best, and then Eqs. (105) and
(100). It can be seen that the scheme (100) is stable, but
the scheme (105) slowly increases its errors on the or-
thogonality as shown in Fig. 3(c), and more obviously
its componential errors are increased rapidly as shown in
Fig. 3(a) for the Q11 component and Fig. 3(b) for the Q22

component. For the other components they are also of
this situation even we do not plot them in this figure.

To assess the performance of a numerical scheme on the
computation of rotation, there are four factors should be
considered: stability, accuracy, the preservation of or-
thogonality and the free of singularity. The scheme based
on Eq. (65) has a good advantage in its dimension is min-
imum; however, an inherent singularity at X0 = 0 is not
easily removed, and its singularity seems to depend on
the parameters of angular frequencies as that in Fig. 1
with ω = 2 and Ω = 3 it fails to be applicable until time
0.5 sec, but that with ω = 10 and Ω = 5 in Fig. 3 we
can apply it on the computation until 50 sec. A naive ap-
proach as that given in Eq. (105) has several advantages
including a reasonable accuracy and the free of singular-
ity; however, its long-term behaviors show the spill-over
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Figure 3 : Comparing the componential errors and the errors of orthogonality for three types numerical methods in
the long-term range under very large rotation.

phenomena of the rotation matrix.

In order to keep the invariant in Eq. (91) unchanged, we
modify the numerical method when applied the RK4 on
Eq. (77) by considering a unit vector

n :=
Y

‖Y‖ . (106)

As suggested by Liu (2006), we can insert it into Eq. (91)
to solve ‖Y�‖ by the following formula:

‖Y�‖ =

√
‖Y(0)‖2

nT
� η�n�

, (107)

because of η(0) = I3. Upon ‖Y�‖ is obtained, from
Eq. (106) we obtain a new Y� by

Y� = ‖Y�‖n�, (108)

which is guaranteed to satisfy the invariant in Eq. (91).
This numerical method is indeed a projection of the nu-
merical solutions onto the invariant manifold.

Under the same parameters as that used in Fig. 3, we
plot the numerical results calculated by the RK4 method
with the above modification in Fig. 4. It can be seen
that this method gives highly accurate numerical com-
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Figure 4 : The componential errors and the error of orthogonality by the modified RK4 method on the nilpotent
equation.

ponents of Q and also preserves the orthogonality very
well. Through these investigations, the scheme based on
Eqs. (106)-(108) is a rather stable one in all aspects of
the accuracy and the preservation of orthogonality. More
importantly, it is free of singularity, and is very simple to
implement as a numerical program.

The same modification strategy can also be applied
on Eqs. (99) and (100) to improve their performance;
however, these numerical results are similar to that in
Fig. 4.

9 Concluding remarks

In this paper we have developed two new mathematical
procedures to calculate Q. The first one is obtained by
transforming the governing equations in a space of RP3,
whose singularity-free interval is largely extended. Then,
we developed a second method to express Q in terms of a
noncanonical orthogonal matrix, the governing equation
of which is a linear ODEs system with the state matrix
being nilpotent with index two.

We have examined different methods on the computation
of Q from a theoretical aspect. There are three linear
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equations (9), (54) and (77), which are singularity-free
and have invariants. There are also three nonlinear equa-
tions (11), (16) and (65), each of which has a singular
point at infinity. The first three equations (9), (11) and
(16) use a slightly larger algebra of so(4) to realize their
representations of SO(3). Both equations (65) and (54)
use the Lie algebra so(3) to realize their representations
of SO(3). Especially, Eq. (77) employed a nilpotent Lie
algebra to realize its representation of SO(3).

Through numerical examples testing we concluded that
the new methods can pass all the requirements of larger
singularity-free interval, long-term stability, accuracy
and easy implementation. They are therefore amenable
to the calculations of large rotation.
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Appendix A:

We attempt to compare the numerical solutions computed
by the algorithms developed in the context to the closed-
form solution given below.

For example, taking ω3 = cosΩt, ω2 =−sinΩt and ω1 =
Ω−ω in Eq. (40) we have

u̇1 = cosωt, u̇2 = sinωt. (A.1)

For the input (A.1) we have

u(iii) = −ω2u̇, u̇ · u̇ = 1, u̇ · ü = 0. (A.2)

Noting that the differential of Eq. (75) again gives

Ẍ0(t) = −ü(t) ·Xs(0)−X0(t)−
∫ t

0
ü(t) · u̇(τ)X0(τ)dτ.

(A.3)

Further differentiating yields

X (iii)
0 (t) = −(1+ω2)Ẋ0(t), (A.4)

where the superscript (iii) denotes the third order differ-
ential. The solution of above equation is found to be

X0(t) = f0 + f1 cosm0t + f2 sinm0t, (A.5)

where

m0 :=
√

1+ω2, f1 =
X0(0)

m2
0

+
ωX2(0)

m2
0

,

f2 =
−X1(0)

m0
, f0 =

ω2X0(0)
m2

0

− ωX2(0)
m2

0

. (A.6)

Taking the differential of Eq. (58) and using Eq. (59),
thus substituting Eqs. (A.1) and (A.2) into those results
and noting that Eq. (57), we obtain

cosωtX1 + sinωtX2 = −Ẋ0, (A.7)

ωsinωtX1−ωcos ωtX2 = Ẍ0 +X0. (A.8)

Solutions of the above two equations for X1 and X2 render

X1 =
1
ω

[sinωt(Ẍ0 +X0)−ωcosωtẊ0], (A.9)

X2 =
−1
ω

[cosωt(Ẍ0 +X0)+ωsinωtẊ0]. (A.10)

Finally, substituting Eq. (A.5) and its differentials into
the above equations we obtain

X1(t) =
1
ω

sinωt( f0− f1ω2 cosm0t − f2ω2 sinm0t)

+cosωt( f1m0 sinm0t − f2m0 cosm0t), (A.11)

X2(t) =
1
ω

cosωt( f1ω2 cosm0t + f2ω2 sinm0t − f0)

+ sinωt( f1m0 sinm0t − f2m0 cosm0t). (A.12)

In the form of Eq. (56) the components of Q1 can be
written as follows:

Q1,11 =
cosm0t +ω2

m2
0

, (A.13)

Q1,12 =
−sinm0t

m0
, (A.14)

Q1,13 =
ω(cosm0t −1)

m2
0

, (A.15)

Q1,21 =
ωsinωt(1−cosm0t)

m2
0

+
cosωt sinm0t

m0
, (A.16)
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Q1,22 =
ωsinωt sinm0t

m0
+cosωt cosm0t, (A.17)

Q1,23 =
ωcosωt sinm0t

m0
− sinωt(1+ω2 cosm0t)

m2
0

, (A.18)

Q1,31 =
ωcosωt(cosm0t −1)

m2
0

+
sinωt sinm0t

m0
, (A.19)

Q1,32 = sinωt cosm0t − ωcosωt sinm0t
m0

, (A.20)

Q1,33 =
cosωt(1+ω2 cosm0t)

m2
0

+
ωsinωt sinm0t

m0
. (A.21)




